References
Anderegg, W. R. L., Martinez-Vilalta, J., Cailleret, M., Camarero, J.
J., Ewers, B. E., Galbraith, D., et al. (2016). When a Tree Dies in the
Forest: Scaling Climate-Driven Tree Mortality to Ecosystem Water and
Carbon Fluxes. Ecosystems , 19 (6), 1133-1147.
https://doi.org/10.1007/s10021-016-9982-1
Binks, O., Cernusak, L. A., Liddell, M., Bradford, M., Coughlin, I.,
Bryant, C., et al. (2023). Vapour pressure deficit modulates hydraulic
function and structure of tropical rainforests under nonlimiting soil
water supply. New Phytologist , 240 (4), 1405-1420.
https://doi.org/10.1111/nph.19257
Bison, N. N., & Michaletz, S. T. (2024). Variation in leaf carbon
economics, energy balance, and heat tolerance traits highlights
differing timescales of adaptation and acclimation. New
Phytologist, 242(5), 1919-1931 . https://doi.org/10.1111/nph.19702
Blasini, D. E., Koepke, D. F., Bush, S. E., Allan, G. J., Gehring, C.
A., Whitham, T. G., et al. (2022). Tradeoffs between leaf cooling and
hydraulic safety in a dominant arid land riparian tree species.Plant, Cell & Environment , 45 (6), 1664-1681.
https://doi.org/10.1111/pce.14292
Blonder, B., & Michaletz, S. T. (2018). A model for leaf temperature
decoupling from air temperature. Agricultural and Forest
Meteorology , 262 , 354-360.
https://doi.org/10.1016/j.agrformet.2018.07.012
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker,
T. R., Lloyd, J., et al. (2015). Long-term decline of the Amazon carbon
sink. Nature , 519 (7543), 344-348.
https://doi.org/10.1038/nature14283
Chen, S. G., Yang, J., Zhang, M. S., Strasser, R. J., & Qiang, S.
(2016). Classification and characteristics of heat tolerance inAgeratina adenophora populations using fast chlorophyll a
fluorescence rise O-J-I-P. Environmental and Experimental Botany ,122 , 126-140. https://doi.org/10.1016/j.envexpbot.2015.09.011
Coast, O., Posch, B. C., Rognoni, B. G., Bramley, H., Gaju, O.,
Mackenzie, J., et al. (2022). Wheat photosystem II heat tolerance:
evidence for genotype‐by‐environment interactions. The Plant
Journal , 111 (5), 1368-1382. https://doi.org/10.1111/tpj.15894
Commander, L. E. (2021). Florabank Guidelines – best practice
guidelines for native seed collection and use (L. E. Commander, Ed. 2nd
ed.). Florabank Consortium: Australia.
Cook, A. M., Berry, N., Milner, K. V., & Leigh, A. (2021). Water
availability influences thermal safety margins for leaves.Functional Ecology , 35 (10), 2179-2189.
https://doi.org/10.1111/1365-2435.13868
Corripio, J. G. (2021). insol: Solar Radiation. In (Vol. R Package
1.2.2).
Crous, K. Y., Cheesman, A. W., Middleby, K., Rogers, E. I. E.,
Wujeska-Klause, A., Bouet, A. Y. M., et al. (2023). Similar patterns of
leaf temperatures and thermal acclimation to warming in temperate and
tropical tree canopies. Tree Physiology , 43 (8), 1383-1399.
https://doi.org/10.1093/treephys/tpad054
Davies-Colley, R. J., Payne, G. W., & van Elswijk, M. (2000).
Microclimate gradients across a forest edge. New Zealand Journal
of Ecology , 24 (2), 111-121.
Deva, C. R., Urban, M. O., Challinor, A. J., Falloon, P., & Svitakova,
L. (2020). Enhanced Leaf Cooling Is a Pathway to Heat Tolerance in
Common Bean. Frontiers in Plant Science , 11 , 17, Article
19. https://doi.org/10.3389/fpls.2020.00019
Doughty, C. E., Keany, J. M., Wiebe, B. C., Rey-Sanchez, C., Carter, K.
R., Middleby, K. B., et al. (2023). Tropical forests are approaching
critical temperature thresholds. Nature .
https://doi.org/10.1038/s41586-023-06391-z
Drake, J. E., Tjoelker, M. G., Varhammar, A., Medlyn, B. E., Reich, P.
B., Leigh, A., et al. (2018). Trees tolerate an extreme heatwave via
sustained transpirational cooling and increased leaf thermal tolerance.Global Change Biology , 24 (6), 2390-2402.
https://doi.org/10.1111/gcb.14037
Duursma, R. A. (2015). Plantecophys - An R Package for Analysing and
Modelling Leaf Gas Exchange Data. Plos One , 10 (11), 13,
Article e0143346. https://doi.org/10.1371/journal.pone.0143346
Escribano‐Rocafort, A. G., Ventre‐Lespiaucq, A. B., Granado‐Yela, C.,
López‐Pintor, A., Delgado, J. A., Muñoz, V., et al. (2014). Simplifying
data acquisition in plant canopies‐ Measurements of leaf angles with a
cell phone. Methods in Ecology and Evolution , 5 (2),
132-140. https://doi.org/10.1111/2041-210x.12141
Fauset, S., Freitas, H. C., Galbraith, D. R., Sullivan, M. J. P., Aidar,
M. P. M., Joly, C. A., et al. (2018). Differences in leaf
thermoregulation and water use strategies between three co-occurring
Atlantic forest tree species. Plant Cell and Environment ,41 (7), 1618-1631. https://doi.org/10.1111/pce.13208
Gauthey, A., Bachofen, C., Deluigi, J., Didion‐Gency, M., D’Odorico, P.,
Gisler, J., et al. (2023). Absence of canopy temperature variation
despite stomatal adjustment in Pinus sylvestris under
multidecadal soil moisture manipulation. New Phytologist, 240(1),
127-137. https://doi.org/10.1111/nph.19136
Geange, S. R., Arnold, P. A., Catling, A. A., Coast, O., Cook, A. M.,
Gowland, K. M., et al. (2021). The thermal tolerance of photosynthetic
tissues: a global systematic review and agenda for future research.New Phytologist , 229 (5) 2497-2513.
https://doi.org/10.1111/nph.17052
Gimeno, T. E., Pias, B., Lemos-Filho, J. P., & Valladares, F. (2008).
Plasticity and stress tolerance override local adaptation in the
responses of Mediterranean holm oak seedlings to drought and cold.Tree Physiology , 29 (1), 87-98.
https://doi.org/10.1093/treephys/tpn007
Girardin, C. A. J., Jenkins, S., Seddon, N., Allen, M., Lewis, S. L.,
Wheeler, C. E., et al. (2021). Nature-based solutions can help cool the
planet — if we act now. Nature , 593 (7858), 191-194.
https://doi.org/10.1038/d41586-021-01241-2
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G.,
Miteva, D. A., et al. (2017). Natural climate solutions.Proceedings of the National Academy of Sciences , 114 (44),
11645-11650. https://doi.org/10.1073/pnas.1710465114
Guo, Z. F., Yan, Z. B., Majcher, B. M., Lee, C. K. F., Zhao, Y. Y.,
Song, G. Q., et al. (2022). Dynamic biotic controls of leaf
thermoregulation across the diel timescale [Article].Agricultural and Forest Meteorology , 315 , 11, Article
108827. https://doi.org/10.1016/j.agrformet.2022.108827
Hammond, W. M., Williams, A. P., Abatzoglou, J. T., Adams, H. D., Klein,
T., López, R., et al. (2022). Global field observations of tree die-off
reveal hotter-drought fingerprint for Earth’s forests. Nature
Communications , 13 (1).
https://doi.org/10.1038/s41467-022-29289-2
Hultine, K. R., Allan, G. J., Blasini, D., Bothwell, H. M., Cadmus, A.,
Cooper, H. F., et al. (2020). Adaptive capacity in the foundation tree
species Populus fremontii: implications for resilience to climate change
and non-native species invasion in the American Southwest.Conservation Physiology , 8 (1).
https://doi.org/10.1093/conphys/coaa061
IPCC. (2022). Climate Change 2022: Impacts, Adaptation, and
Vulnerability (Contribution of Working Group II to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change [H.-O.
Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A.
Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama
(eds.)]. , Issue.
Jayalakshmy, M. S., & Philip, J. (2010). Thermophysical Properties of
Plant Leaves and Their Influence on the Environment Temperature.International Journal of Thermophysics , 31 (11-12),
2295-2304. https://doi.org/10.1007/s10765-010-0877-7
Jones, H. G. (2013). Plants and Microclimate: A Quantitative
Approach to Environmental Plant Physiology (3 ed.). Cambridge
University Press. https://doi.org/10.1017/CBO9780511845727
Jordan, R., Harrison, P., & Breed, M. (2023). The
eco-evolutionary risks of not changing seed provenancing practices in
changing environments . Authorea, Inc.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H.,
Soria-Auza, R. W., et al. (2017). Climatologies at high resolution for
the earth’s land surface areas. Scientific Data , 4 (1),
170122. https://doi.org/10.1038/sdata.2017.122
Kitudom, N., Fauset, S., Zhou, Y. Y., Fan, Z. X., Li, M. R., He, M. J.,
et al. (2022). Thermal safety margins of plant leaves across biomes
under a heatwave. Science of the Total Environment , 806 ,
Article 150416. https://doi.org/10.1016/j.scitotenv.2021.150416
Krause, G. H., Winter, K., Krause, B., Jahns, P., Garcia, M., Aranda,
J., & Virgo, A. (2010). High-temperature tolerance of a tropical tree,Ficus insipida : methodological reassessment and climate change
considerations. Functional Plant Biology , 37 (9), 890-900.
https://doi.org/10.1071/fp10034
Kullberg, A. T., Coombs, L., Soria Ahuanari, R. D., Fortier, R. P., &
Feeley, K. J. (2023). Leaf thermal safety margins decline at hotter
temperatures in a natural warming ‘experiment’ in the Amazon. New
Phytologist . https://doi.org/10.1111/nph.19413
Lancaster, L. T., & Humphreys, A. M. (2020). Global variation in the
thermal tolerances of plants. Proceedings of the National Academy
of Sciences , 117 (24), 13580-13587.
https://doi.org/10.1073/pnas.1918162117
Leigh, A., Sevanto, S., Ball, M. C., Close, J. D., Ellsworth, D. S.,
Knight, C. A., et al. (2012). Do thick leaves avoid thermal damage in
critically low wind speeds?. New Phytologist , 194 (2),
477-487. https://doi.org/10.1111/j.1469-8137.2012.04058.x
Lenth, R. (2022). EMMEANS: Estimated Marginals Means, aka
Least-Square Means. In (Version R package v.1.8.3.)
https://CRAN.R-project.org/package=emmeans
Leon-Garcia, I. V., & Lasso, E. (2019). Heat tolerance in plant
leaves . protocols.io. https://dx.doi.org/10.17504/protocols.io.29fgh3n
Leuzinger, S., & Körner, C. (2007). Tree species diversity affects
canopy leaf temperatures in a mature temperate forest.Agricultural and Forest Meteorology , 146 (1-2), 29-37.
https://doi.org/10.1016/j.agrformet.2007.05.007
Manishimwe, A., Ntirugulirwa, B., Zibera, E., Nyirambangutse, B.,
Mujawamariya, M., Dusenge, M. E., et al. (2022). Warming Responses of
Leaf Morphology Are Highly Variable among Tropical Tree Species.Forests , 13 (2), 219. https://doi.org/10.3390/f13020219
Marias, D. E., Meinzer, F. C., Woodruff, D. R., & Mcculloh, K. A.
(2016). Thermotolerance and heat stress responses of Douglas-fir and
ponderosa pine seedling populations from contrasting climates.Tree Physiology . https://doi.org/10.1093/treephys/tpw117
Mau, A. C., Reed, S. C., Wood, T. E., & Cavaleri, M. A. (2018).
Temperate and Tropical Forest Canopies are Already Functioning beyond
Their Thermal Thresholds for Photosynthesis. Forests ,9 (1), 24, Article 47. https://doi.org/10.3390/f9010047
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence - a
practical guide. Journal of Experimental Botany , 51 (345),
659-668. https://doi.org/10.1093/jexbot/51.345.659
Michaletz, S. T., Weiser, M. D., McDowell, N. G., Zhou, J. Z., Kaspari,
M., Helliker, B. R., & Enquist, B. J. (2016). The energetic and carbon
economic origins of leaf thermoregulation. Nature Plants ,2 (9), Article 16129. https://doi.org/10.1038/nplants.2016.129
Michaletz, S. T., Weiser, M. D., Zhou, J. Z., Kaspari, M., Helliker, B.
R., & Enquist, B. J. (2015). Plant Thermoregulation: Energetics,
Trait-Environment Interactions, and Carbon Economics. Trends in
Ecology & Evolution , 30 (12), 714-724.
https://doi.org/10.1016/j.tree.2015.09.006
Middleby, K. B., Cheesman, A. W., & Cernusak, L. A. (2024a). Impacts of
elevated temperature and vapour pressure deficit on leaf gas exchange
and plant growth across six tropical rainforest tree species. New
Phytologist . https://doi.org/10.1111/nph.19822
Middleby, K.B., Breed, M.F., Crayn, D.M., Laurance, S.G.W., Cernusak,
L.A., & Cheesman, A.W. (2024b) Ecotypic variation in growth and
survival across contrasting site conditions in 16 tropical tree species.
[Manuscript in preparation].
Murtha, G. G. (1989). Soils of the Mossman Cape Tribulation Area,
North Queensland. Division of Soils Divisional Report; no. 102.
O’Sullivan, O. S., Heskel, M. A., Reich, P. B., Tjoelker, M. G.,
Weerasinghe, L. K., Penillard, A., et al. (2017). Thermal limits of leaf
metabolism across biomes. Global Change Biology , 23 (1),
209-223. https://doi.org/10.1111/gcb.13477
Olsoy, P. J., Zaiats, A., Delparte, D. M., Germino, M. J., Richardson,
B. A., Roop, S., et al. (2023). High‐resolution thermal imagery reveals
how interactions between crown structure and genetics shape plant
temperature. Remote Sensing in Ecology and Conservation ,10 (1), 106-120. https://doi.org/10.1002/rse2.359
Perez, T. M., & Feeley, K. J. (2020). Photosynthetic heat tolerances
and extreme leaf temperatures. Functional Ecology , 34 (11),
2236-2245. https://doi.org/10.1111/1365-2435.13658
Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H.,
Jaureguiberry, P., et al. (2013). New handbook for standardised
measurement of plant functional traits worldwide. Australian
Journal of Botany , 61 (3), 167-234.
https://doi.org/10.1071/bt12225
Ponce De León, M. A., & Bailey, B. N. (2024). Quantifying water-use
efficiency in plant canopies with varying leaf angle and density
distribution. Annals of Botany, 133(4), 605-620 .
https://doi.org/10.1093/aob/mcae018
Posch, B. C., Hammer, J., Atkin, O. K., Bramley, H., Ruan, Y. L.,
Trethowan, R., & Coast, O. (2022). Wheat photosystem II heat tolerance
responds dynamically to short- and long-term warming. Journal of
Experimental Botany , 73 (10), 3268-3282.
https://doi.org/10.1093/jxb/erac039
Rehm, E. M., Olivas, P., Stroud, J., & Feeley, K. J. (2015). Losing
your edge: climate change and the conservation value of range‐edge
populations. Ecology and Evolution , 5 (19), 4315-4326.
https://doi.org/10.1002/ece3.1645
Rey-Sanchez, A. C., Slot, M., Posada, J. M., & Kitajima, K. (2017).
Spatial and seasonal variation in leaf temperature within the canopy of
a tropical forest. Climate Research , 71 (1), 75-89.
https://doi.org/10.3354/cr01427
Slot, M., Cala, D., Aranda, J., Virgo, A., Michaletz, S. T., & Winter,
K. (2021). Leaf heat tolerance of 147 tropical forest species varies
with elevation and leaf functional traits, but not with phylogeny.Plant, Cell & Environment, 44(7), 2414-2427. https://doi.org/doi:10.1111/pce.14060
Slot, M., Krause, G. H., Krause, B., Hernandez, G. G., & Winter, K.
(2019). Photosynthetic heat tolerance of shade and sun leaves of three
tropical tree species. Photosynthesis Research , 141 (1),
119-130. https://doi.org/10.1007/s11120-018-0563-3
Song, Q. H., Zhang, Y. P., Sha, L. Q., Deng, X. B., Deng, Y., Wu, C. S.,
et al. (2017). Canopy temperature variability in a tropical rainforest,
subtropical evergreen forest, and savanna forest in Southwest China.Iforest-Biogeosciences and Forestry , 10(3) , 611-617.
https://doi.org/10.3832/ifor2223-010
Still, C. J., Page, G., Rastogi, B., Griffith, D. M., Aubrecht, D. M.,
Kim, Y., et al. (2022). No evidence of canopy-scale leaf
thermoregulation to cool leaves below air temperature across a range of
forest ecosystems. Proceedings of the National Academy of
Sciences , 119 (38). https://doi.org/10.1073/pnas.2205682119
Tiwari, R., Gloor, E., da Cruz, W. J. A., Marimon, B. S., Marimon, B.,
Reis, S. M., et al. (2020). Photosynthetic quantum efficiency in
south-eastern Amazonian trees may be already affected by climate change.Plant Cell and Environment, 44(7), 2428-2439 .
https://doi.org/10.1111/pce.13770
Tserej, O., & Feeley, K. J. (2021). Variation in leaf temperatures of
tropical and subtropical trees are related to leaf thermoregulatory
traits and not geographic distributions. Biotropica ,53 (3), 868-878. https://doi.org/10.1111/btp.12919
Woods, H. A., Saudreau, M., & Pincebourde, S. (2018). Structure is more
important than physiology for estimating intracanopy distributions of
leaf temperatures. Ecology and Evolution , 8 (10),
5206-5218. https://doi.org/10.1002/ece3.4046
Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Diaz,
S., et al. (2017). Global climatic drivers of leaf size. Science ,357 (6354), 917-921. https://doi.org/10.1126/science.aal4760
Yang, X., Li, R., Jablonski, A., Stovall, A., Kim, J., Yi, K., et al.
(2023). Leaf angle as a leaf and canopy trait: Rejuvenating its role in
ecology with new technology. Ecology Letters , 26 (6),
1005-1020. https://doi.org/10.1111/ele.14215
Zhou, Y. Y., Kitudom, N., Fauset, S., Slot, M., Fan, Z. X., Wang, J. P.,
et al. (2023). Leaf thermal regulation strategies of canopy species
across four vegetation types along a temperature and precipitation
gradient. Agricultural and Forest Meteorology , 343 ,
Article 109766. https://doi.org/10.1016/j.agrformet.2023.109766
Zhu, L. L., Bloomfield, K. J., Hocart, C. H., Egerton, J. J. G.,
O’Sullivan, O. S., Penillard, A., et al. (2018). Plasticity of
photosynthetic heat tolerance in plants adapted to thermally contrasting
biomes. Plant Cell and Environment , 41 (6), 1251-1262.
https://doi.org/10.1111/pce.13133
Zimmermann, N. E., Yoccoz, N. G., Edwards, T. C., Meier, E. S.,
Thuiller, W., Guisan, A., et al. (2009). Climatic extremes improve
predictions of spatial patterns of tree species. Proceedings of
the National Academy of Sciences of the United States of America ,106 , 19723-19728. https://doi.org/10.1073/pnas.0901643106