References

Anderegg, W. R. L., Martinez-Vilalta, J., Cailleret, M., Camarero, J. J., Ewers, B. E., Galbraith, D., et al. (2016). When a Tree Dies in the Forest: Scaling Climate-Driven Tree Mortality to Ecosystem Water and Carbon Fluxes. Ecosystems , 19 (6), 1133-1147. https://doi.org/10.1007/s10021-016-9982-1 Binks, O., Cernusak, L. A., Liddell, M., Bradford, M., Coughlin, I., Bryant, C., et al. (2023). Vapour pressure deficit modulates hydraulic function and structure of tropical rainforests under nonlimiting soil water supply. New Phytologist , 240 (4), 1405-1420. https://doi.org/10.1111/nph.19257 Bison, N. N., & Michaletz, S. T. (2024). Variation in leaf carbon economics, energy balance, and heat tolerance traits highlights differing timescales of adaptation and acclimation. New Phytologist, 242(5), 1919-1931 . https://doi.org/10.1111/nph.19702 Blasini, D. E., Koepke, D. F., Bush, S. E., Allan, G. J., Gehring, C. A., Whitham, T. G., et al. (2022). Tradeoffs between leaf cooling and hydraulic safety in a dominant arid land riparian tree species.Plant, Cell & Environment , 45 (6), 1664-1681. https://doi.org/10.1111/pce.14292 Blonder, B., & Michaletz, S. T. (2018). A model for leaf temperature decoupling from air temperature. Agricultural and Forest Meteorology , 262 , 354-360. https://doi.org/10.1016/j.agrformet.2018.07.012 Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., et al. (2015). Long-term decline of the Amazon carbon sink. Nature , 519 (7543), 344-348. https://doi.org/10.1038/nature14283 Chen, S. G., Yang, J., Zhang, M. S., Strasser, R. J., & Qiang, S. (2016). Classification and characteristics of heat tolerance inAgeratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. Environmental and Experimental Botany ,122 , 126-140. https://doi.org/10.1016/j.envexpbot.2015.09.011 Coast, O., Posch, B. C., Rognoni, B. G., Bramley, H., Gaju, O., Mackenzie, J., et al. (2022). Wheat photosystem II heat tolerance: evidence for genotype‐by‐environment interactions. The Plant Journal , 111 (5), 1368-1382. https://doi.org/10.1111/tpj.15894 Commander, L. E. (2021). Florabank Guidelines – best practice guidelines for native seed collection and use (L. E. Commander, Ed. 2nd ed.). Florabank Consortium: Australia. Cook, A. M., Berry, N., Milner, K. V., & Leigh, A. (2021). Water availability influences thermal safety margins for leaves.Functional Ecology , 35 (10), 2179-2189. https://doi.org/10.1111/1365-2435.13868 Corripio, J. G. (2021). insol: Solar Radiation. In (Vol. R Package 1.2.2). Crous, K. Y., Cheesman, A. W., Middleby, K., Rogers, E. I. E., Wujeska-Klause, A., Bouet, A. Y. M., et al. (2023). Similar patterns of leaf temperatures and thermal acclimation to warming in temperate and tropical tree canopies. Tree Physiology , 43 (8), 1383-1399. https://doi.org/10.1093/treephys/tpad054 Davies-Colley, R. J., Payne, G. W., & van Elswijk, M. (2000). Microclimate gradients across a forest edge. New Zealand Journal of Ecology , 24 (2), 111-121. Deva, C. R., Urban, M. O., Challinor, A. J., Falloon, P., & Svitakova, L. (2020). Enhanced Leaf Cooling Is a Pathway to Heat Tolerance in Common Bean. Frontiers in Plant Science , 11 , 17, Article 19. https://doi.org/10.3389/fpls.2020.00019 Doughty, C. E., Keany, J. M., Wiebe, B. C., Rey-Sanchez, C., Carter, K. R., Middleby, K. B., et al. (2023). Tropical forests are approaching critical temperature thresholds. Nature . https://doi.org/10.1038/s41586-023-06391-z Drake, J. E., Tjoelker, M. G., Varhammar, A., Medlyn, B. E., Reich, P. B., Leigh, A., et al. (2018). Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance.Global Change Biology , 24 (6), 2390-2402. https://doi.org/10.1111/gcb.14037 Duursma, R. A. (2015). Plantecophys - An R Package for Analysing and Modelling Leaf Gas Exchange Data. Plos One , 10 (11), 13, Article e0143346. https://doi.org/10.1371/journal.pone.0143346 Escribano‐Rocafort, A. G., Ventre‐Lespiaucq, A. B., Granado‐Yela, C., López‐Pintor, A., Delgado, J. A., Muñoz, V., et al. (2014). Simplifying data acquisition in plant canopies‐ Measurements of leaf angles with a cell phone. Methods in Ecology and Evolution , 5 (2), 132-140. https://doi.org/10.1111/2041-210x.12141 Fauset, S., Freitas, H. C., Galbraith, D. R., Sullivan, M. J. P., Aidar, M. P. M., Joly, C. A., et al. (2018). Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant Cell and Environment ,41 (7), 1618-1631. https://doi.org/10.1111/pce.13208 Gauthey, A., Bachofen, C., Deluigi, J., Didion‐Gency, M., D’Odorico, P., Gisler, J., et al. (2023). Absence of canopy temperature variation despite stomatal adjustment in Pinus sylvestris under multidecadal soil moisture manipulation. New Phytologist, 240(1), 127-137. https://doi.org/10.1111/nph.19136 Geange, S. R., Arnold, P. A., Catling, A. A., Coast, O., Cook, A. M., Gowland, K. M., et al. (2021). The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research.New Phytologist , 229 (5) 2497-2513. https://doi.org/10.1111/nph.17052 Gimeno, T. E., Pias, B., Lemos-Filho, J. P., & Valladares, F. (2008). Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold.Tree Physiology , 29 (1), 87-98. https://doi.org/10.1093/treephys/tpn007 Girardin, C. A. J., Jenkins, S., Seddon, N., Allen, M., Lewis, S. L., Wheeler, C. E., et al. (2021). Nature-based solutions can help cool the planet — if we act now. Nature , 593 (7858), 191-194. https://doi.org/10.1038/d41586-021-01241-2 Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., et al. (2017). Natural climate solutions.Proceedings of the National Academy of Sciences , 114 (44), 11645-11650. https://doi.org/10.1073/pnas.1710465114 Guo, Z. F., Yan, Z. B., Majcher, B. M., Lee, C. K. F., Zhao, Y. Y., Song, G. Q., et al. (2022). Dynamic biotic controls of leaf thermoregulation across the diel timescale [Article].Agricultural and Forest Meteorology , 315 , 11, Article 108827. https://doi.org/10.1016/j.agrformet.2022.108827 Hammond, W. M., Williams, A. P., Abatzoglou, J. T., Adams, H. D., Klein, T., López, R., et al. (2022). Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nature Communications , 13 (1). https://doi.org/10.1038/s41467-022-29289-2 Hultine, K. R., Allan, G. J., Blasini, D., Bothwell, H. M., Cadmus, A., Cooper, H. F., et al. (2020). Adaptive capacity in the foundation tree species Populus fremontii: implications for resilience to climate change and non-native species invasion in the American Southwest.Conservation Physiology , 8 (1). https://doi.org/10.1093/conphys/coaa061 IPCC. (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability (Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. , Issue. Jayalakshmy, M. S., & Philip, J. (2010). Thermophysical Properties of Plant Leaves and Their Influence on the Environment Temperature.International Journal of Thermophysics , 31 (11-12), 2295-2304. https://doi.org/10.1007/s10765-010-0877-7 Jones, H. G. (2013). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology (3 ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511845727 Jordan, R., Harrison, P., & Breed, M. (2023). The eco-evolutionary risks of not changing seed provenancing practices in changing environments . Authorea, Inc. Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., et al. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data , 4 (1), 170122. https://doi.org/10.1038/sdata.2017.122 Kitudom, N., Fauset, S., Zhou, Y. Y., Fan, Z. X., Li, M. R., He, M. J., et al. (2022). Thermal safety margins of plant leaves across biomes under a heatwave. Science of the Total Environment , 806 , Article 150416. https://doi.org/10.1016/j.scitotenv.2021.150416 Krause, G. H., Winter, K., Krause, B., Jahns, P., Garcia, M., Aranda, J., & Virgo, A. (2010). High-temperature tolerance of a tropical tree,Ficus insipida : methodological reassessment and climate change considerations. Functional Plant Biology , 37 (9), 890-900. https://doi.org/10.1071/fp10034 Kullberg, A. T., Coombs, L., Soria Ahuanari, R. D., Fortier, R. P., & Feeley, K. J. (2023). Leaf thermal safety margins decline at hotter temperatures in a natural warming ‘experiment’ in the Amazon. New Phytologist . https://doi.org/10.1111/nph.19413 Lancaster, L. T., & Humphreys, A. M. (2020). Global variation in the thermal tolerances of plants. Proceedings of the National Academy of Sciences , 117 (24), 13580-13587. https://doi.org/10.1073/pnas.1918162117 Leigh, A., Sevanto, S., Ball, M. C., Close, J. D., Ellsworth, D. S., Knight, C. A., et al. (2012). Do thick leaves avoid thermal damage in critically low wind speeds?. New Phytologist , 194 (2), 477-487. https://doi.org/10.1111/j.1469-8137.2012.04058.x Lenth, R. (2022). EMMEANS: Estimated Marginals Means, aka Least-Square Means. In (Version R package v.1.8.3.) https://CRAN.R-project.org/package=emmeans Leon-Garcia, I. V., & Lasso, E. (2019). Heat tolerance in plant leaves . protocols.io. https://dx.doi.org/10.17504/protocols.io.29fgh3n Leuzinger, S., & Körner, C. (2007). Tree species diversity affects canopy leaf temperatures in a mature temperate forest.Agricultural and Forest Meteorology , 146 (1-2), 29-37. https://doi.org/10.1016/j.agrformet.2007.05.007 Manishimwe, A., Ntirugulirwa, B., Zibera, E., Nyirambangutse, B., Mujawamariya, M., Dusenge, M. E., et al. (2022). Warming Responses of Leaf Morphology Are Highly Variable among Tropical Tree Species.Forests , 13 (2), 219. https://doi.org/10.3390/f13020219 Marias, D. E., Meinzer, F. C., Woodruff, D. R., & Mcculloh, K. A. (2016). Thermotolerance and heat stress responses of Douglas-fir and ponderosa pine seedling populations from contrasting climates.Tree Physiology . https://doi.org/10.1093/treephys/tpw117 Mau, A. C., Reed, S. C., Wood, T. E., & Cavaleri, M. A. (2018). Temperate and Tropical Forest Canopies are Already Functioning beyond Their Thermal Thresholds for Photosynthesis. Forests ,9 (1), 24, Article 47. https://doi.org/10.3390/f9010047 Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany , 51 (345), 659-668. https://doi.org/10.1093/jexbot/51.345.659 Michaletz, S. T., Weiser, M. D., McDowell, N. G., Zhou, J. Z., Kaspari, M., Helliker, B. R., & Enquist, B. J. (2016). The energetic and carbon economic origins of leaf thermoregulation. Nature Plants ,2 (9), Article 16129. https://doi.org/10.1038/nplants.2016.129 Michaletz, S. T., Weiser, M. D., Zhou, J. Z., Kaspari, M., Helliker, B. R., & Enquist, B. J. (2015). Plant Thermoregulation: Energetics, Trait-Environment Interactions, and Carbon Economics. Trends in Ecology & Evolution , 30 (12), 714-724. https://doi.org/10.1016/j.tree.2015.09.006 Middleby, K. B., Cheesman, A. W., & Cernusak, L. A. (2024a). Impacts of elevated temperature and vapour pressure deficit on leaf gas exchange and plant growth across six tropical rainforest tree species. New Phytologist . https://doi.org/10.1111/nph.19822 Middleby, K.B., Breed, M.F., Crayn, D.M., Laurance, S.G.W., Cernusak, L.A., & Cheesman, A.W. (2024b) Ecotypic variation in growth and survival across contrasting site conditions in 16 tropical tree species. [Manuscript in preparation]. Murtha, G. G. (1989). Soils of the Mossman Cape Tribulation Area, North Queensland. Division of Soils Divisional Report; no. 102. O’Sullivan, O. S., Heskel, M. A., Reich, P. B., Tjoelker, M. G., Weerasinghe, L. K., Penillard, A., et al. (2017). Thermal limits of leaf metabolism across biomes. Global Change Biology , 23 (1), 209-223. https://doi.org/10.1111/gcb.13477 Olsoy, P. J., Zaiats, A., Delparte, D. M., Germino, M. J., Richardson, B. A., Roop, S., et al. (2023). High‐resolution thermal imagery reveals how interactions between crown structure and genetics shape plant temperature. Remote Sensing in Ecology and Conservation ,10 (1), 106-120. https://doi.org/10.1002/rse2.359 Perez, T. M., & Feeley, K. J. (2020). Photosynthetic heat tolerances and extreme leaf temperatures. Functional Ecology , 34 (11), 2236-2245. https://doi.org/10.1111/1365-2435.13658 Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany , 61 (3), 167-234. https://doi.org/10.1071/bt12225 Ponce De León, M. A., & Bailey, B. N. (2024). Quantifying water-use efficiency in plant canopies with varying leaf angle and density distribution. Annals of Botany, 133(4), 605-620 . https://doi.org/10.1093/aob/mcae018 Posch, B. C., Hammer, J., Atkin, O. K., Bramley, H., Ruan, Y. L., Trethowan, R., & Coast, O. (2022). Wheat photosystem II heat tolerance responds dynamically to short- and long-term warming. Journal of Experimental Botany , 73 (10), 3268-3282. https://doi.org/10.1093/jxb/erac039 Rehm, E. M., Olivas, P., Stroud, J., & Feeley, K. J. (2015). Losing your edge: climate change and the conservation value of range‐edge populations. Ecology and Evolution , 5 (19), 4315-4326. https://doi.org/10.1002/ece3.1645 Rey-Sanchez, A. C., Slot, M., Posada, J. M., & Kitajima, K. (2017). Spatial and seasonal variation in leaf temperature within the canopy of a tropical forest. Climate Research , 71 (1), 75-89. https://doi.org/10.3354/cr01427 Slot, M., Cala, D., Aranda, J., Virgo, A., Michaletz, S. T., & Winter, K. (2021). Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny.Plant, Cell & Environment, 44(7), 2414-2427. https://doi.org/doi:10.1111/pce.14060 Slot, M., Krause, G. H., Krause, B., Hernandez, G. G., & Winter, K. (2019). Photosynthetic heat tolerance of shade and sun leaves of three tropical tree species. Photosynthesis Research , 141 (1), 119-130. https://doi.org/10.1007/s11120-018-0563-3 Song, Q. H., Zhang, Y. P., Sha, L. Q., Deng, X. B., Deng, Y., Wu, C. S., et al. (2017). Canopy temperature variability in a tropical rainforest, subtropical evergreen forest, and savanna forest in Southwest China.Iforest-Biogeosciences and Forestry , 10(3) , 611-617. https://doi.org/10.3832/ifor2223-010 Still, C. J., Page, G., Rastogi, B., Griffith, D. M., Aubrecht, D. M., Kim, Y., et al. (2022). No evidence of canopy-scale leaf thermoregulation to cool leaves below air temperature across a range of forest ecosystems. Proceedings of the National Academy of Sciences , 119 (38). https://doi.org/10.1073/pnas.2205682119 Tiwari, R., Gloor, E., da Cruz, W. J. A., Marimon, B. S., Marimon, B., Reis, S. M., et al. (2020). Photosynthetic quantum efficiency in south-eastern Amazonian trees may be already affected by climate change.Plant Cell and Environment, 44(7), 2428-2439 . https://doi.org/10.1111/pce.13770 Tserej, O., & Feeley, K. J. (2021). Variation in leaf temperatures of tropical and subtropical trees are related to leaf thermoregulatory traits and not geographic distributions. Biotropica ,53 (3), 868-878. https://doi.org/10.1111/btp.12919 Woods, H. A., Saudreau, M., & Pincebourde, S. (2018). Structure is more important than physiology for estimating intracanopy distributions of leaf temperatures. Ecology and Evolution , 8 (10), 5206-5218. https://doi.org/10.1002/ece3.4046 Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Diaz, S., et al. (2017). Global climatic drivers of leaf size. Science ,357 (6354), 917-921. https://doi.org/10.1126/science.aal4760 Yang, X., Li, R., Jablonski, A., Stovall, A., Kim, J., Yi, K., et al. (2023). Leaf angle as a leaf and canopy trait: Rejuvenating its role in ecology with new technology. Ecology Letters , 26 (6), 1005-1020. https://doi.org/10.1111/ele.14215 Zhou, Y. Y., Kitudom, N., Fauset, S., Slot, M., Fan, Z. X., Wang, J. P., et al. (2023). Leaf thermal regulation strategies of canopy species across four vegetation types along a temperature and precipitation gradient. Agricultural and Forest Meteorology , 343 , Article 109766. https://doi.org/10.1016/j.agrformet.2023.109766 Zhu, L. L., Bloomfield, K. J., Hocart, C. H., Egerton, J. J. G., O’Sullivan, O. S., Penillard, A., et al. (2018). Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. Plant Cell and Environment , 41 (6), 1251-1262. https://doi.org/10.1111/pce.13133 Zimmermann, N. E., Yoccoz, N. G., Edwards, T. C., Meier, E. S., Thuiller, W., Guisan, A., et al. (2009). Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences of the United States of America ,106 , 19723-19728. https://doi.org/10.1073/pnas.0901643106