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Effective number of different populations: a new concept and how to use it 1 

Abstract 2 

1. Widely used methods to assess population genetic structure and differentiation rely on 3 

independence of marker loci. Following the assumption, the common metrics, for example 4 

FST, evaluate genetic structure by averaging across loci. Common metrics do not use 5 

information in the associations among loci at the individual level and are often criticized for 6 

failing to measure true differentiation even when loci segregate independently. 7 

2. We introduce a new concept to measure β-variation (Effective Number of Different 8 

Populations, ENDP). It requires the following steps: (a) calculation of a proper dissimilarity 9 

between genetic profiles of all individuals; (b) calculation of suitable pairwise distances 10 

between the samples based on the dissimilarities between individuals; (c) calculation of 11 

diversity (in terms of Hill numbers) and dispersion of samples based on the pairwise 12 

distances between samples; (d) ENDP is then estimated as a combination of the diversity 13 

and dispersion. ENDP estimates β-variation independently of within-sample α-variation. 14 

This new concept differs from the existing standard where β-diversity is estimated based on 15 

the ‘partition of variation’ scheme (𝑏𝑒𝑡𝑎 = 𝑔𝑎𝑚𝑚𝑎 − 𝑎𝑙𝑝ℎ𝑎 or 𝑏𝑒𝑡𝑎 = 𝑔𝑎𝑚𝑚𝑎/𝑎𝑙𝑝ℎ𝑎). 16 

3. Estimates of ENDP are obtained by evaluating information in the available genetic profiles 17 

of individuals including association of loci. Therefore, ENDP can be used even in an 18 

absence of panmixia. 19 

4. We illustrate the use of this concept by analyzing the population genetic structure of a 20 

sexual species (a trematode parasite) occupying connected populations across a broad 21 

geographic area. Analysis is complicated by two coexisting cryptic sister clades and the 22 

potentially mixed-mating system of this hermaphroditic parasite. 23 
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Introduction 27 

Discovering the genetic structure of populations is one of the key applications of population genetic 28 

markers. Not surprisingly, methods aimed at assessing the extent of difference among subdivided 29 

populations are numerous and have nearly always been central part of the standard population 30 

genetics toolkits. Historically, the first 𝐹ୗ୘ measure (Wright, 1951), as its many later analogues, 31 

aimed at understanding the divergence of populations in relation to evolutionary processes (Nei, 32 

1973; Excoffier et al., 1992; Slatkin, 1995). Later, one of the specific applications has been to 33 

estimate the partitioning of genetic variation within and among subdivided populations (Nei & 34 

Chesser, 1983; Hedrick, 2005; Meirmans & Hedrick, 2011). A comprehensive review of methods 35 

aimed at differentiation of molecular diversity with an emphasis on information (entropy) analysis 36 

can be found in Sherwin et al. (2017). 37 

The 𝐹ୗ୘ measures were developed for single loci. Many of the commonly used multilocus 38 

estimates evaluate each locus independently with further averaging across loci ignoring information 39 

that is in the associations between loci (i.e., multilocus genotypes) and between alleles within a 40 

diploid (or polypoid) locus. Thus, 𝐹ୗ୘ and its relatives (𝐺ୗ୘, 𝐺ୗ୘
ᇱ , 𝐺ୗ୘

ᇱᇱ , 𝜑ୗ୘, 𝑅ୗ୘) are not sensitive to 41 

divergence among populations that exist only due to differences in association of alleles and/or loci 42 

(allele frequencies are equal in all populations). For example, two populations P1 and P2 consisting 43 

of individuals with different binary genotypes at four loci (1010 and 0101 in P1, and 1111, 1100, 44 

0011 and 0000 in P2) are indistinguishable with 𝐹ୗ୘ and its relatives, if frequencies of each binary 45 

allele 1 and 0 are equal in P1 and P2 (e.g. P1 and P2 consist of four individuals each with the above-46 

mentioned genotypes: 𝑃ଵ = {1010, 1010, 0101, 0101} and 𝑃ଶ = {1111, 1100, 0011, 0000}; 47 

frequencies of all binary alleles equal 0.5).   48 

The classical approach works best in a fully recombining panmictic sexual population. 49 

However, the classical approach may work less well in populations with clonal reproduction, a 50 
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mixed mating system or where unknown cryptic species coexist. To measure variation and 51 

divergence of such populations, new metrics that use information based on associations of loci have 52 

emerged during the last decades (Kosman, 1996; Gregorius et al., 2003; Gillet et al., 2004; Kosman 53 

& Leonard, 2007; Kosman, 2014). These metrics also include measures aimed at evaluating the 54 

extent and significance of differences among populations (Gillet & Gregorius, 2008; Gregorius, 55 

2010; Gillet, 2013; Kosman et al., 2014; Gultyaeva et al., 2020; Czajowski et al., 2021). 56 

Jost (2008) criticized shortcomings of the standard metrics that are commonly called 57 

measures of “differentiation” (𝐹ୗ୘, 𝐺ୗ୘, 𝜑ୗ୘, 𝑅ୗ୘) because they can provide unrealistic estimates of 58 

the differences in the structure of the populations, especially if the within-population variation is 59 

very high. Therefore, using the term “differentiation” for those measures seems inappropriate and 60 

confusing. Second, these estimates are unintuitive and can even be misleading (see Jost 2008). To 61 

be more specific, it is possible that these measures do not reach their maximum values, could be far 62 

away from maximum and approach zero (indication of no differentiation), even for populations that 63 

do not share any alleles. The latter problem was resolved to some extent by 𝐺ୗ୘
ᇱ  and 𝐺ୗ୘

ᇱᇱ  metrics 64 

(Hedrick, 2005; Meirmans & Hedrick, 2011), and solved for a separate locus with introduced by 65 

Jost (2008) measure of differentiation 𝐷 that reaches its maximum 1 when differentiation is 66 

complete. Nevertheless, new ideas are still needed for finding an intuitively acceptable approaches 67 

to measuring variation among populations especially in a case of multilocus genotypes. 68 

Variation within a population (below we refer to population as ‘OU’, i.e., Operational Unit) 69 

could be thought of and described in different ways. There are two major facets of variation – 70 

diversity and dispersion (Gregorius & Gillet, 2015). Diversity is about individual types within a 71 

given OU, when all nonidentical types are considered equally distant, while dispersion is about an 72 

overall relationship between individual types based on pairwise dissimilarities between them. These 73 

attributes of variation are independent in the sense that OUs can be equally diverse for a wide range 74 
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of dispersion estimates, and values of dispersion can vary from extremely small to extremely large 75 

for highly diverse OUs. However, when diversity is low, dispersion estimates are also small, 76 

whereas high dispersion estimates predetermine large values of diversity.  77 

Differentiation is a common but ambiguously used term. In a general context, 78 

differentiation is about the overall relationship among several OUs considered together as a group 79 

(e.g., a metapopulation defined as a group of populations) and refers to how a total variation of that 80 

group can be partitioned among and within those OUs. Classical measures of “differentiation” (𝐹ୗ୘, 81 

𝐺ୗ୘, 𝜑ୗ୘, 𝑅ୗ୘) are based on assessment of the extent to which variation of individuals within the 82 

group of OUs (e.g., all individuals of metapopulation) exceeds the corresponding average variation 83 

within each constituent OU. However, as we pointed out above, when diversity within each OU is 84 

very high (e.g. large number of equally frequent alleles), such “differentiation” measures are 85 

counterintuitive because they deliver very small scores even when OUs are completely different 86 

(e.g., populations share no alleles). Therefore, we would not recommend using the term 87 

“differentiation” in such a general context and suggest replacing it by “structural variation” 88 

among OUs. We propose to use the term “differentiation” for a much more specific context (see 89 

below) requesting that estimates of ‘true’ differentiation must increase with (i) a rise of an overall 90 

difference between OUs (dispersion of OUs), and (ii) a higher regularity of distribution of pairwise 91 

differences between OUs (diversity of OUs), provided that all other characteristics of relationships 92 

among OUs being identical.  93 

The measures of biological variation proposed in this paper combine the diversity and 94 

dispersion perspectives with the diversity component being conceptually similar to metrics 95 

developed by Hill (1973) and Jost (2007, 2008) advocating the use of numbers equivalents for 96 

estimating diversity. Such measures can be used, for example, to conclude and compare the 97 

effective numbers of different species within a community, or effective number of different 98 
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communities within a landscape. According to Jost (2008), the properties of the corresponding 99 

diversity measures, when applied to alleles of genotypes, satisfy the expectations for answering 100 

population genetic questions in providing intuitively correct answers to a series of practical and 101 

theoretical questions. The main idea of Hill’s approach is the multiplicative nature of diversity 102 

partitioning.  103 

(𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) = (𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑢𝑏𝑢𝑛𝑖𝑡𝑠) × (𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑎𝑚𝑜𝑛𝑔 𝑠𝑢𝑏𝑢𝑛𝑖𝑡𝑠) 104 

which allows independent estimates of within- and among-subunit components (Jost, 2007, 2008). 105 

In other words, the effective number of alleles, genotypes, or any chosen attribute in a set of OUs 106 

equals the product of the corresponding effective number per OU and the effective number of 107 

distinct OUs. Such diversity estimates are intuitive, easy to interpret and can be used in various 108 

applications (e.g., for management of populations and in conservation biology). The effective 109 

number of distinct populations is an absolute measure of population differentiation. Based on the 110 

proportion of total diversity that is contained in the average population in terms of effective 111 

numbers, Jost (2008) introduced a new non-negative measure of differentiation 𝐷 that reaches its 112 

maximum 1 when differentiation is complete. Conceptual aspects of diversity partitioning and 113 

measuring diversity components based on the most general definition of effective numbers (Hill 114 

numbers are a partial case) were thoroughly considered by Gregorius (2016). 115 

For multilocus genotypes, differentiation 𝐷 is obtained by averaging across all loci. Then 𝐷 116 

reflects the average differentiation within separate loci in a given set of populations rather than 117 

differentiation between the populations due to differences in distribution and association of alleles 118 

among loci in multilocus genotypes. If two populations have identical allele distributions at each 119 

locus but non-identical association of those alleles into the corresponding multilocus genotypes, 120 

then no differentiation is detected (𝐷 = 0). The same shortcoming characterizes all commonly used 121 

𝐹ୗ୘ related measures (𝐺ௌ், 𝐺ୗ୘
ᇱ , 𝐺ୗ୘

ᇱᇱ , 𝜑ୗ୘, 𝑅ୗ୘) that do not actually measure differentiation. Chao et 122 
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al. (2015) further demonstrated that the heterozygosity-based “differentiation” measures, such as 123 

𝐺ௌ் and Jost’s 𝐷, do not possess two of the essential monotonicity properties: differentiation never 124 

decrease when (i) a new unshared allele is added to a population, and (ii) when some copies of a 125 

shared allele are replaced by copies of an unshared allele. Thus, while being more intuitive, Jost’s 126 

“differentiation” metric 𝐷 is not free of the shortcomings of the standard measures (violation of 127 

monotonicity property, inability to take into account association between loci) and may deliver 128 

inadequate estimates and even miss the actual difference between populations. 129 

Nearly all papers cited above and many others (Heller & Siegismund, 2009; Ryman & 130 

Leimar, 2009) debate the pros and cons of a variety of “differentiation” measures considering 131 

numerous critical examples. A part of the problem is that there are two different perspectives to 132 

partitioning total genetic variation - differentiation and apportionment (Gregorius, 2009, 2010, 133 

2016; Gregorius & Gillet, 2015), although separation between them is not clearly made.  134 

Differentiation among populations describes a tendency of the same allele or genotype to 135 

occur in the same population reporting a maximum when all populations consist of unique alleles 136 

(genotypes) (i.e., populations do not share alleles, but each population may be polymorphic for each 137 

locus). Jost D is assumed to be an example of a differentiation measure although it has its own 138 

shortcomings.  139 

Apportionment, on the other hand, describes a tendency of individuals with different 140 

alleles or genotypes to occur in different populations. Maximum apportionment is reached when 141 

each population is fixed for a different allele (or genotype), i.e., populations are monomorphic but 142 

have different genotypes. This means that maximum of differentiation among populations is 143 

necessary but not sufficient condition of maximum apportionment (if all genotypes are considered 144 

equally dissimilar). Thus, apportionment metrics measure the extent of fixation of distinct alleles or 145 

genotypes among populations (e.g. fixation index 𝐹ୗ୘).  146 
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There are a few immediate consequences of theoretical and practical importance for 147 

geneticists for considering the dual perspectives of differentiation and apportionment. First, 𝐹ୗ୘-like 148 

indices (e.g., 𝐺ௌ், 𝐺ୗ୘
ᇱ , 𝐺ୗ୘

ᇱᇱ , 𝜑ୗ୘, 𝑅ୗ୘) provide a kind of apportionment (fixation) estimates based 149 

on variance partitions, even if they are commonly declared and used as measures of differentiation 150 

among populations. Second, Jost’s “differentiation” metric 𝐷 (Jost 2008) is actually closer to 151 

measuring differentiation among populations, not apportionment. This may explain, at least in part, 152 

inconsistency in some results obtained with 𝐷 and the 𝐹ୗ୘ based measures. Third, valid 153 

differentiation measures can reach their maximum (absolute differentiation) independently of the 154 

degree of genetic variation within populations, i.e., even if the populations are not fixed to 155 

alternative alleles or genotypes (such situation is impossible with 𝐹ୗ୘ and 𝐺ௌ்). 156 

In this paper our purpose is to further expand the differentiation perspective for studies of 157 

population structure. The idea is to express diversity of populations in terms of the effective 158 

number of equally distant populations. This allows estimation of differentiation in a way that is 159 

independent of both total diversity (γ-diversity) of a given metapopulation and diversity within its 160 

constituents (α-diversity). Determining the effective number is based on pairwise genetic distances 161 

between populations, though only the proportional contributions of those distances to the total sum 162 

of distances are utilized. Such diversity index depends only on the relative position of populations 163 

to each other in the given genetic landscape and measures regularity of relationships among 164 

populations. Therefore, an identical value of diversity index is returned for any metapopulation 165 

consisting of the same number of populations, even if all pairwise genetic distances (magnitudes of 166 

genetic differences) change proportionally (e.g., for two sets of three populations with relationships 167 

among the populations represented geometrically by two similar shaped but different size triangles). 168 

For example, if each of three populations is fixed to a single binary genotype at six loci in two 169 

metapopulations 𝐴 = {(100000), (001000), (000010)} and 𝐵 = {(110000), (001100), (000011)}, 170 
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then A and B are of identical diversity among their constituent populations, although pairwise 171 

genetic differences between the three populations in A are two times smaller than those in B. 172 

To distinguish between two different metapopulations with the same diversity (as measured 173 

in terms of effective number of equally distant populations), the diversity concept must be 174 

integrated with the dispersion concept. The dispersion component of variability is expressed in 175 

terms of genetic distances between populations. Combined metrics of diversity and dispersion 176 

components will be then called the Effective Number of Different Populations (ENDP). Such 177 

metrics are completely predetermined by pairwise genetic distances between populations, their 178 

magnitudes and regularity of distribution, and deliver exhaustive estimates of variation among 179 

populations within the corresponding metapopulation. Basic principles of our approach are similar 180 

to those developed by Scheiner et al. (2017) for ecological communities (Gregorius and Kosman 181 

(2018) considered a more general case of integration of the diversity and dispersion concepts). 182 

We test the relevance of the suggested metrics with two empirical data sets. First, we use 183 

data published by Feijen et al. (2022) describing population and species structure of the New 184 

Zealand trematode parasite species in the genus Atriophallophorus spp. using nuclear SNP markers 185 

and mitochondrial haplotypes based on a part of the NADH5 gene. This parasite uses the snail 186 

Potamopyrgus antipodarum as its intermediate host and waterfowl as the definitive host. The 187 

parasite has a sexual stage in the definitive host while the reproduction in the snail host is clonal. 188 

Feijen et al. (2022) found support for cryptic species structure in the parasite populations by 189 

applying computationally demanding multispecies coalescent models on a subset of individual 190 

parasites (N = 52) [Bayes Factor Delimitation (Leache et al., 2014)]. They further used regression 191 

analyses on pairwise genetic distances among individuals (N=462). Both analyses supported the 192 

conclusion that the samples represent at least two distinct species that coexist in broad geographic 193 

range (see figure 2 in Feijen et al., 2022). Here we use the same subset of genotypes and the full set 194 
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of genotypes as in the two analysis by Feijen et al. (2022) to calculate both the effective number of 195 

equally distant populations and the ENDP in samples that are known to represent two coexisting 196 

cryptic species. 197 

Second, we applied the new metric to assess population genetic structure of the common 198 

species, Atriophallophorus winterbourni. We asked what the effective number of equally distant 199 

and different populations is in these locations which cover the geographic regions of South Island of 200 

New Zealand. We contrast our results to a more detailed analysis of connectedness of these 201 

populations presented in Feijen et al (2022). 202 

We use these data to raise the question whether it would be reasonable to incorporate 203 

estimates of ENDP into analyses aiming to understand diversity and structure of populations using 204 

genetic markers. An important reason for selection of those data was the fact that they were already 205 

analyzed with other state-of-the-art tools that allow a direct and effective comparison of the new 206 

delivered results with those reported previously. We also discuss the rationale and applicability of 207 

these metrics. 208 

Materials and methods 209 

We develop metrics for measuring structural variation in a metapopulation based on a matrix of 210 

pairwise genetic distances between the populations. Distances between the populations are 211 

measured using the dissimilarity-based approaches (Kosman & Leonard, 2007; Kosman, 2014) 212 

although other distances can also be applied. This approach requires a proper assessment of 213 

dissimilarity between individual genotypes.  214 

Dissimilarity between individual genotypes 215 

Choice of a suitable dissimilarity measure is a key factor for valid analysis of genetic variation. The 216 

selection depends on ploidy of a given organism and the type of molecular markers used for 217 
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estimating genetic variation (Kosman & Leonard, 2005; Kosman & Jokela, 2019). Here, we use 218 

nuclear SNP polymorphism of Atriophallophorus spp. (Feijen et al., 2022) to examine population 219 

genetic structure. Since SNPs are codominant markers and Atriophallophorus spp. is a diploid 220 

organism, we calculated dissimilarity between the SNP genotypes (𝛿) according to eqn. 3 in 221 

Kosman and Leonard (2005) or eqn. 6 in Kosman and Jokela (2019). Here, the dissimilarity 222 

between two genotypes at one diploid locus equals 1, 0.5 and 0, if the genotypes do not share any 223 

allele, share one allele, or have identical pair of alleles, respectively. Then the average across all 224 

loci delivers dissimilarity 𝛿 between the two multilocus genotypes. 225 

Distance between populations 226 

The most used genetic distance measures between populations are based on allele frequencies, 227 

averaging independent estimates at each locus over all loci [e.g. Nei's genetic distances (Nei, 228 

1972)]. Allele-frequency based measures do not consider possible associations between different 229 

loci, so that two populations with no shared genotypes can be declared identical if they share the 230 

same alleles at equal frequencies. Therefore, considering associations between loci would be 231 

important for metrics of genetic distances between populations. 232 

The two types of distances based on dissimilarities between individuals are calculated by 233 

averaging individual dissimilarities (both between and within populations) and by assignment of 234 

individuals from two populations based on their dissimilarities without the effect of dissimilarities 235 

within populations (Kosman, 2014). The average-based approach (distance of average differences, 236 

𝐷𝐴𝐷ఘ, eqn. 2 in Kosman and Leonard (2007)) may have undesirable mathematical properties for 237 

some dissimilarity measures 𝜌 as 𝐷𝐴𝐷ఘ can be negative or zero for distinct populations. For 238 

example, 𝐷𝐴𝐷௠, which is the distance of average differences for the simple mismatch coefficient 239 

𝑚, can be zero for distinct populations as it is identical to Nei’s minimum genetic distance (Kosman 240 

& Leonard, 2007). Therefore, the distance of average differences does not properly work in the case 241 
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of association between loci. An alternative, the assignment-based genetic distance (KB) developed 242 

by Kosman (1996) and Gregorius et al. (2003), is a generalization of the mathematical notion of 243 

distance between two sets of scattered points (Kosman, 2014). Kosman distance (KB) can 244 

distinguish between populations where linkage of markers is variable for a same set of alleles, and it 245 

is suitable for comparison of populations with strong linkage patterns as is the case for asexual or 246 

mixed mode of reproduction, or with cryptic structure due to unidentified coexisting species. 247 

One strength of dissimilarity-based methods is the ability to deal with missing data. 248 

Dissimilarity between a given pair of genotypes can be calculated using all the data that are 249 

available for both individuals (only loci with missing genotypes are excluded). 250 

We applied the dissimilarity-based distances 𝐷𝐴𝐷ఋ  and 𝐾𝐵ఋ to measure genetic differences 251 

between the parasite populations Atriophallophorus spp. (SNP markers), where 𝛿 is dissimilarity 252 

between the multilocus SNP genotypes mentioned beforehand in the previous section. Since the 253 

mode of parasite reproduction is mixed with prevailing outcrossing, we used the 𝐷𝐴𝐷ఋ  distance as 254 

the benchmark for calculations assuming that association between loci is minimal, if any. As Feijen 255 

et al. (2022) also discovered a cryptic species structure in their Atriophallophorus spp. samples, we 256 

also calculated effective numbers based on 𝐾𝐵ఋ distances. This is to show how dissimilarity-based 257 

distances, 𝐷𝐴𝐷ఋ  and 𝐾𝐵ఋ, can be used to study structural variation in cases where it is not known if 258 

there are groups within-populations that differ in their linkage structure. 259 

Metrics of variation 260 

Diversity 261 

We first construct metrics of variability similarly to Scheiner et al. (2017). For a set of S 262 

Operational Units (OUs; single populations in our analysis), let 𝑑௜௝ be any distance between ith and 263 

jth OUs (0 ≤ 𝑑௜௝ ≤ 1, 𝑑௜௝ = 𝑑௝௜, 𝑑௜௜ = 0; 𝑖, 𝑗 = 1, 2, … , 𝑆). For any non-negative parameter 𝑞 ≠ 1, 264 
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we calculate an extent of homogeneity of pairwise distances as effective number of ordered pairs of 265 

OUs according to Hill (1973):  266 

𝐻
௤

 = ൫∑ ∑ 𝑓௜௝
௤ௌ

௝ஷ௜ୀଵ
ௌ
௜ୀଵ ൯

ଵ/(ଵି௤)
,     (1) 267 

whereas for 𝑞 = 1 268 

𝐻ଵ = lim
௤→ଵ

𝐻
௤

= exp ൫− ∑ ∑ 𝑓௜௝ log 𝑓௜௝
ௌ
௝ஷ௜ୀଵ

ௌ
௜ୀଵ ൯,   (2) 269 

where 𝑓௜௝ =  𝑑௜௝ ∑ ∑ 𝑑௜௝
ௌ
௝ஷ௜ୀଵ

ௌ
௜ୀଵ⁄  is the proportional contribution of the ordered pair (𝑖, 𝑗) into the 270 

total distance between all pairs of OUs (we assume that 𝑓௜௝ log 𝑓௜௝ = 0 by definition. if 𝑓௜௝ = 0). 𝐻
௤  271 

equals a hypothetical number of ordered equally distant pairs of different OUs (𝑑௜௝ > 0, 𝑖 ≠ 𝑗) that 272 

generate the same Hill number as the given set of 𝑆ଶ − 𝑆 pairs. This measure increases when 273 

variability in distances decreases, and range of 𝐻
௤  is between 0, if all 𝑑௜௝ = 0 (by definition), and 274 

its maximum 𝑆ଶ − 𝑆, when all 𝑑௜௝ ≠ 0 are equal for 𝑖 ≠ 𝑗 (S values 𝑑௜௜ = 0). Then diversity within 275 

the given set of OUs is obtained as solution of quadratic equation ൫ 𝐷
௤

൯
ଶ

− 𝐷
௤

= 𝐻
௤  : 276 

𝐷
௤

=
ଵାටଵାସ ு

೜

ଶ
,       (3) 277 

and expressed in terms of effective number of equally distant types of OUs (Scheiner et al., 2017). 278 

Values of 𝐷
௤  range from 1 to S, when all OUs are “identical” (all 𝑑௜௝ = 0) and all non-identical 279 

OUs are equidistant (𝑑௜௝ = 𝑐𝑜𝑛𝑠𝑡 ≠ 0), respectively. Note, 𝐷
௤  gets smaller for larger 𝑞, and equal 280 

effect of all pairwise distances on the effective numbers is obtained just for 𝑞 = 1. 281 

A kind of evenness of the OUs distribution is determined as 282 

𝐸
௤

= 𝐷
௤

𝑆⁄       (4) 283 

with a range [1 𝑆⁄ , 1]. It is useful to transform this estimate onto the unit interval for comparison of 284 

sets with different numbers of OUs: 285 

𝐸′
௤

= ൫ 𝐷
௤

− 1൯ (𝑆 − 1)⁄     (4′) 286 
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with a range [0, 1]. So, diversity 𝐷
௤  increases with evenness and can be decomposed to the product 287 

of evenness and richness (number of OUs): 288 

𝐷
௤

= 𝐸
௤

× 𝑆   or     (5) 289 

𝐷
௤

= 1 + 𝐸′
௤

× (𝑆 − 1).    (5′) 290 

More accurately, 𝐷
௤  and 𝐸

௤  ( 𝐸′
௤ ) should be called diversity (effective number of equally 291 

distant populations (OUs)) and evenness of order q, respectively.  292 

Diversity 𝐷
௤  reflects regularity of OUs distribution in a relevant space. It is determined by 293 

proportions 𝑓௜௝ and does not depend on actual distances 𝑑௜௝ between OUs in a sense that if all 294 

distances are subject to enlargement to the same extent, 𝐷
௤  remains unchanged since 𝐻

௤  does so. 295 

Thus, the effective number of equidistant OUs serves as an invariant of configuration of the given 296 

set in space (diversity perspective), while the degree to which OUs are similar to each other is not 297 

considered (dispersion perspective). Therefore, the diversity reveals an important component of 298 

biological variation, but not the complete structure of the metapopulation. Next, we will 299 

complement the diversity with dispersion perspective for a comprehensive description of variability 300 

within a set of OUs. 301 

Integration of diversity and dispersion 302 

Theoretical aspects of dispersion and its relationship to diversity were broadly considered in 303 

Gregorius and Kosman (2017, 2018). To develop overall metrics of variation, we incorporate two of 304 

the most basic and tangible dispersion estimates. The first one is the Average Distance Within 305 

(𝐴𝐷𝑊) a set of OUs 306 

𝐴𝐷𝑊 = ∑ ∑ 𝑑௜௝
ௌ
௝

ௌ
௜ 𝑆ଶ⁄       (6) 307 

with a range from 0 to (𝑆 − 1) 𝑆⁄ , or its derivative 𝐴𝐷𝑊′ obtained by transformation of 𝐴𝐷𝑊 onto 308 

the unit interval (0 ≤ 𝐴𝐷𝑊′ ≤ 1) 309 
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𝐴𝐷𝑊ᇱ =
ௌ

ௌିଵ
× 𝐴𝐷𝑊 =

ௌ

ௌିଵ
× ∑ ∑ 𝑑௜௝

ௌ
௝

ௌ
௜ 𝑆ଶ⁄ .   (6′) 310 

The second metric of dispersion is Kosman’s assignment-based measure KW (Kosman, 311 

1996, 2014; Kosman & Leonard, 2007) that has a range [0, 1] and can be considered as 312 

generalization of the mathematical definition of the diameter of a set of scattered points. 313 

Finally, we combine diversity ( 𝐷
௤ ) and dispersion (𝐴𝐷𝑊 or 𝐴𝐷𝑊′, and 𝐾𝑊) estimates into 314 

integrated metrics of overall structural variation that we call the effective number of different 315 

populations (ENDP), or OUs: 316 

𝐷(𝐴𝐷𝑊)
௤

= 1 + 𝐷
௤

× 𝐴𝐷𝑊 = 1 + 𝑆 × 𝐸
௤

× 𝐴𝐷𝑊 = 1 + (𝑆 − 1) × 𝐸
௤

× 𝐴𝐷𝑊′,  (7) 317 

𝐷(𝐾𝑊)
௤

= 1 +
ௌିଵ

ௌ
× 𝐷

௤
× 𝐾𝑊 = 1 + (𝑆 − 1) × 𝐸

௤
× 𝐾𝑊  (8) 318 

with a range from 1 to S. A general form of eqns. 7-8 is  319 

𝐷(𝑀)
௤

= 1 + (𝑆 − 1) × 𝐸
௤

× 𝑀      (9) 320 

for any dispersion metrics 𝑀 with [0,1] range. The immediate consequence is that even if diversity 321 

is maximal ( 𝐷
௤

= 𝑆), i.e., all OUs are equally distant (evenly distributed), the effective number of 322 

different OUs 𝐷(𝑀)
௤  decreases and approaches to 1 when OUs are closer to each other (dispersion 323 

decreases and tends to 0). According to (9), the effective numbers of different OUs 𝐷(𝑀)
௤  can be 324 

represented as a decomposition of the three generally independent basic components: simple 325 

richness of a given set (S), evenness ( 𝐸
௤ ), and dispersion (𝑀). The effective number of different 326 

OUs could be conceived as the number of equidistant OUs needed to obtain the same dispersion 327 

and variability in pairwise distances as those observed in the given set of OUs (where OUs may not 328 

be equally distant). 329 

The suggested approaches to estimating variation can be thought of as reducing the actual 330 

number of OUs (richness) in two steps. Analyzing regularity of OUs distribution, richness (S) 331 

decreases to the effective number of distinct equidistant OUs ( 𝐷
௤ ) due to deviations from a perfect 332 
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evenness. Then, considering a magnitude of similarity between OUs (dispersion) results in further 333 

richness decline from 𝐷
௤  to the effective number of different OUs ( 𝐷(𝑀)

௤  for dispersion 𝑀). 334 

Thus, combining both the diversity and dispersion perspectives, overall variation of a set of OUs is 335 

expressed in terms of reduction of its simple estimate (richness) to perhaps the most exhaustive one 336 

– the effective number of different units. The effective numbers of different and equidistant units 337 

are equal only in two extreme cases: for a set consisting of one unit (trivial situation), and when all 338 

units are maximally distant. 339 

To make a comparison of structural variation of sets with different numbers of OUs, relative 340 

estimates of the effective numbers (1 ≤ 𝐸𝑁 ≤ 𝑆) are useful and reached by the linear 341 

transformation of 𝐸𝑁 onto the unit interval 342 

𝑛𝐸𝑁 = (𝐸𝑁 − 1) (𝑆 − 1)⁄ .     (10) 343 

𝑛𝐸𝑁 increases with increasing variation 𝐸𝑁 and can be considered the metric of structural 344 

differentiation of OUs. The relative effective number of equally distant OUs (𝑛𝐷) is obtained for 345 

𝐸𝑁 = 𝐷
௤  from (10), i.e. 𝑛𝐷

௤
= 𝐸′

௤  is evenness from (4′), while the relative effective number of 346 

different OUs 𝑛𝐷(𝑀)
௤  is attained with 𝐸𝑁 from the absolute estimate 𝐷(𝑀)

௤  (eqn 9). These 347 

relative estimates (𝑛𝐸𝑁) range from 0 (no differentiation) to 1 (completely structured set of OUs) 348 

when the corresponding effective number equals 1 and 𝑆, respectively. Both the metrics 𝐸𝑁 and 349 

𝑛𝐸𝑁 of variation among populations are totally independent of variability within the populations 350 

because the latter was not even involved in generation these metrics of differentiation. This 351 

independence is reached using conceptually different approach comparing with those of Jost (2008, 352 

eqns. 8 and 10, p. 4021), which could be referred to as approaches based on the partitioning of 353 

diversity within and among OUs. Thus, the suggested metrics of structural differentiation 𝑛𝐸𝑁 (10) 354 

are completely different from classical measures of differentiation. 355 
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Data and differentiation among parasite populations 356 

We tested the new metrics with a published dataset on genetic structure of a diploid trematode 357 

parasite Atriophallophorus spp. (Feijen et al., 2022). Atriophallophorus has a snail-bird life cycle. It 358 

reproduces sexually in the bird definitive host. The adult worms are hermaphrodites but evidence 359 

supports outcrossing as main mode of reproduction (Feijen, 2020). The parasite reproduces 360 

asexually in the snail intermediate host. Feijen et al. (2022) reports a phylogeographic analysis of 361 

the most common Atriophallophorus species, A. winterbourni, but the study also revealed a 362 

previously unknown sister species coexisting with A. winterbourni (Feijen et al., 2022). This 363 

putative species remains undescribed. The study covered a wide geographic range (South Island of 364 

New Zealand) and applied both nuclear and mitochondrial markers in a detailed phylogeographic 365 

analysis of the studied populations. Here, we use these data to ask what the ENDP is when 366 

calculated with the new metrics we present. We first test how the new method performs when we 367 

apply it to samples representing the two main species. In our analyses we mainly refer to figure 2, 368 

figure 3, and figure S4 of the publication (Feijen et al., 2022). We use the same data that they 369 

analyzed for species delimitation among Atriophallophorus spp. We then limit the analysis to the 370 

most common species A. winterbourni and contrast effective numbers of equally distant populations 371 

( 𝐷
௤  ) to ENDP ( 𝐷(𝑀)

௤ ). Only polymorphic SNP loci were used in the analysis. 372 

We estimated the variation among these parasite populations as follows: 373 

1. We calculated the dissimilarity between the SNP genotypes (𝛿) according to eqn. 3 and the 374 

corresponding algorithm on p. 421 in Kosman and Leonard (2005) or eqn. 6 in Kosman and 375 

Jokela (2019). In the case of missing data, the corresponding loci were ignored for each 376 

pair, and a dissimilarity value was obtained on the reduced number of loci with available 377 

data for both individuals in the pair. 378 
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2. We computed the average-based and assignment-based distances using the 𝛿-dissimilarity 379 

(𝐷𝐴𝐷ఋ  and 𝐾𝐵ఋ, respectively) between all pairs of populations.  380 

3. We calculated the effective number of equally distant populations (diversity 𝐷ଵ ) according 381 

to eqns. 2–3 for distances 𝑑 = 𝐷𝐴𝐷ఋ  and 𝑑 = 𝐾𝐵ఋ, and 𝑞 = 1. Then the diversity-based 382 

estimates of differentiation (𝑛𝐸𝑁) were obtained for 𝐸𝑁 = 𝐷ଵ  from eqn 10. 383 

4. We calculated the dispersion of the parasite populations (𝐴𝐷𝑊஽஺஽ഃ
 and 𝐴𝐷𝑊௄஻ഃ

) using 384 

eqn. 6 (𝐴𝐷𝑊 based on distances 𝑑 = 𝐷𝐴𝐷ఋ  and 𝑑 = 𝐾𝐵ఋ). 385 

5. We calculated the ENDP (structural variation 𝐷(𝐴𝐷𝑊)ଵ ) according to (7) for 𝑞 = 1 for 386 

the corresponding pairs of diversity 𝐷ଵ  and dispersion ADW estimated with distances 𝑑 =387 

𝐷𝐴𝐷ఋ  and 𝑑 = 𝐾𝐵ఋ Then the corresponding assessments of structural differentiation (𝑛𝐸𝑁) 388 

were obtained according to (10) with 𝐸𝑁 = 𝐷(𝐴𝐷𝑊)ଵ . 389 

Results 390 

Application of effective numbers of populations to mixed populations of cryptic species 391 

Based on the species delimitation analysis, Feijen et al (2022) concluded that at least two species of 392 

Atriophallophorus parasites were found in the studied populations. We calculated that the ENDP 393 

( 𝐷(𝐴𝐷𝑊஽஺஽)ଵ , 𝐷(𝐴𝐷𝑊௄஻)ଵ ) in the set of samples grouped by the six major mitochondrial 394 

haplotype groups was 1.40 when based on the distance of average differences (𝐷𝐴𝐷ఋ) and 2.05 for 395 

the assignment-based genetic distance (𝐾𝐵ఋ) (Table 1). While the difference between these metrics 396 

is 32%, here the assignment-based distance seems to match the expectation of at least two species 397 

particularly well and average-based distance seems to underestimate the number of inferred OUs. 398 

As the calculation of these metrics does not demand as many computational resources as the 399 

Bayes Factor Delimitation models that Feijen et al., (2022) used, we were able to expand the analysis 400 

to a larger dataset used in the regression analysis in Feijen et al., (2022). Our results are very similar 401 
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to the results reported by Feijen et al. (Figure 1, Table 1). Interestingly, the ENDP was not affected 402 

by the sample size (Table 1). This indicates that these metrics are robust to variation in sample size 403 

assuming the samples still represent the different OUs (here, haplotype groups). 404 

Our results illustrate that the ENDP captures the underlying genetic structure in 405 

Atriophallophorus clade (Figure 1). Although the species is sexual, it seems that in this case the 406 

association-based KB distance was more strongly in agreement with previous analyses than distance 407 

of average differences (DAD). This may be due to low gene flow between the species emphasizing 408 

the differences between the species that appear as strong linkage (association between loci) when 409 

haplotype groups are compared. Note also that the effective number of equally distant populations, 410 

which reflects the diversity, was close to maximum defined by the six haplotype groups (Table 1). 411 

Interestingly, when diversity was calculated based on average (DAD) or association-based (KB) 412 

distance the estimates only differed by 6% (Table 1). Analysis of number of equally distant 413 

populations does not capture the cryptic species structure in the clade, probably because it treats all 414 

haplotype groups independently of the magnitude of differences between them. In this case using the 415 

additional information from dispersion was therefore essential to describe the previously inferred 416 

structural variation among the haplotype groups.   417 
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 418 

 419 

Figure 1. UPGMA dendrograms and NMDS plots of the two datasets (A, B: 52 individuals; C, D: 420 

212 individuals). Panels A and C are based on pairwise KB (left) and DAD (right) distances between 421 

the six major mitochondrial haplotype groups reported in Feijen et al. (2022). Note that DAD topology 422 

in A is congruent with the tree shown in figure 2c in Feijen et al. (2022), while the top clade (haplotype 423 

groups B, C, A) show a different structure obtained with the DAD and KB distances in A and C. 424 

Panels B and D show NMDS plots calculated based on pairwise distances between individuals. The 425 

haplotype group for each sample is indicated in the label.   426 
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Table 1. Variability among the trematode Atriophallophorus spp. collections. 427 

Type of variation Variation parameters 

 

“cryptic” species/populations 

identified based on mt-haplotype 

groups (Feijen et al., 2022) 

Atriophallophorus 

populations (natural 

lakes) 

       52 genotypes 

24 loci 

6 hapl. groups 

212 genotypes 

24 loci 

6 hapl. groups 

306 genotypes 

24 loci 

10 lakes 

     Effective number of 

equally distant populations

(Diversity) 

𝐷஽஺஽
ଵ  a 5.544 5.445 9.783 

𝐷௄஻
ଵ     5.914 5.911 9.990 

     Dispersion 𝐴𝐷𝑊஽஺஽ b    0.071 0.058 0.015 

 𝐴𝐷𝑊′஽஺஽ b 0.085 0.070 0.017 

 𝐴𝐷𝑊௄஻ 0.178 0.169 0.171 

 𝐴𝐷𝑊′௄஻ 0.217 0.203 0.190 

     Evenness 𝐸஽஺஽
ଵ  c   0.924 0.908 0.978 

 𝐸௄஻
ଵ  0.986 0.985 0.999 

 𝐸′஽஺஽
ଵ = 𝑛𝐷஽஺஽

ଵ  c 0.909 0.889 0.976 

 𝐸′௄஻
ଵ = 𝑛𝐷௄஻

ଵ  0.983 0.985 0.999 

     
ENDP, effective number 

of different populations

(Structural variation) 

𝐷(𝐴𝐷𝑊஽஺஽)ଵ  a  1.396 1.316 1.146 

𝐷(𝐴𝐷𝑊௄஻)ଵ  2.053 1.999 2.698 

     Extent of differentiation  𝑛𝐷(𝐴𝐷𝑊஽஺஽)ଵ  e  0.079 0.063 0.016 

 𝑛𝐷(𝐴𝐷𝑊௄஻)ଵ  0.211 0.200 0.189 

a effective number (eqns. 3, 7 - 9); 428 
b dispersion (eqns. 6, 6′; Kosman, 1996; Kosman & Leonard, 2007); 429 
c evenness (eqns. 4, 4′); 430 
e extent of differentiation - normalized ENDP (eqn. 10).  431 
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 432 

Figure 2. UPGMA trees of Atriophallophorus winterbourni populations from 10 lakes on the South 433 

Island of New Zealand. Data are the same as presented in the Table S4.1 of Feijen et al. (2022), with 434 

the exception that the lakes with small samples (less than 10 individuals) were excluded from the 435 

analyses. The colors of the branches correspond to two main clusters identified in the Structure 436 

analysis presented in Feijen et al. (2022; Figure 3d). Effective numbers of different populations based 437 

on the DAD and KB distances are 1.15 and 2.70, respectively.  438 
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Application of effective number of populations to geographically separate populations of single 439 

species, Atriophallophorus winterbourni 440 

Feijen et al. (2022) presented genetic pairwise 𝐹ୗ୘ and structure analyses for 15 lake populations of 441 

Atriophallophorus winterbourni. Their first discovery was that the nuclear marker-based estimates 442 

for population structure were much less than mitochondrial marker-based estimates. Their main 443 

conclusion was that in the past the populations were likely separated in glacial refugia in the north 444 

and south of the Island and that the present population differentiation in nuclear and mitochondrial 445 

markers is maintained due to low level of cross-alpine migration. Average nuclear 𝐹ୗ୘ was low, and 446 

together with analysis of migration patterns using isolation by distance tests and marginal 447 

approximation of structured coalescence (phylogeographic analysis based on mitochondrial markers 448 

applying Mascot 2.1.2. in BEAST 2.6.5. [see details in Feijen et al. (2022)], the conclusion was that 449 

even if the mitochondrial 𝐹ୗ୘ estimates were high, there is a considerable nuclear geneflow among 450 

all populations at present.  451 

Our analysis using the DAD distance suggested that the ENDP in these data is 1.15 452 

supporting the view that there may have been two distinct glacial refugia, but the nuclear 453 

marker-based differentiation among the population is currently weak. However, using the 454 

association-based KB distance the ENDP was 2.70 (Table 1). Figure 2 illustrates differences in 455 

relationships among the populations between the two estimates. In this case analysis based on the 456 

distance of average differences DAD reflects the expected structural variation better than the 457 

association-based KB distance. This may be expected as the data represent large outbred sexual 458 

populations that are in HW equilibrium showing no signal of linkage disequilibrium (Feijen et al., 459 

2022). 460 
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Discussion 461 

Assessing genetic structure of populations requires that the chosen measures reflect the biological 462 

processes that affect local genetic variability and divergence among populations (Bohonak, 1999). 463 

Relevant processes shaping population genetic structure are well understood but capturing these 464 

processes to a single metric is difficult. For example, species mating system has consequences for 465 

the expected genetic variability of populations (Holsinger, 1992; Rieseberg & Burke, 2001), 466 

variation in population size affects the strength of genetic drift (Wang et al., 2016), and local 467 

adaptation may promote divergence of genes under selection (Yeaman & Whitlock, 2011). 468 

Metapopulations consist of local populations of different sizes, which may be connected by highly 469 

asymmetric geneflow (Harrison & Hastings, 1996; Morrissey & de Kerckhove, 2009). Recently 470 

evolved mating barriers may also lead to cryptic species structure that is yet unnoticed and further 471 

complicates the analysis of population genetic structure (Baker et al., 1995). Ideally, the chosen 472 

metric would be robust in the sense that there is no unrecognizable bias by specific biological 473 

processes or possible sampling errors. It would be very valuable if the metrics recorded would 474 

guide the inclusion and exclusion of alternative hypotheses to explain the observed patterns. It is 475 

unlikely that a single metric can capture all aspects of population structure, processes defining 476 

divergence of populations and methodological caveats that handicap our conclusions. Inference 477 

from several alternative metrics might allow concluding how the populations are structured, which 478 

processes are relevant and how the analyses can be refined to address specific follow-up questions. 479 

We aimed to show how beta variation among populations can be estimated independently of 480 

alpha variation within populations, to evaluate how metrics incorporating both the diversity (based 481 

on Hill numbers) and dispersion facets of variation can be used as beta variation estimates, and how 482 

they are best constructed to evaluate population genetic data from natural populations that differ in 483 

the processes that shape the population genetic structure. We focused on evaluating both diversity 484 
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and dispersion emphasizing that both are important. The second aspect that we examined is the 485 

difference between average (𝐷𝐴𝐷) and association-based (𝐾𝐵) distance measures (Kosman & 486 

Leonard, 2007) when deriving effective numbers estimates. We showed that estimates of the ENDP 487 

based on the 𝐷𝐴𝐷 distance are well suited for situations where studied OUs have low compatibility 488 

barriers generating association due to assortative mating (or fertility) patterns. If compatibility 489 

barriers (i.e., cryptic species) exist, then the 𝐾𝐵 distance used in calculating the ENDP capture the 490 

structural variation better. 491 

We argue that the analysis of population genetic structure, genetic variability of populations 492 

and assessment of the conservation value of local populations would benefit from inclusion of both 493 

the diversity and dispersion aspect of structural variation when estimating genetic relationships of 494 

populations in a metapopulation (beta variation). We use examples from population genetics, but 495 

these same approaches can be utilized in study of biological communities using functional traits 496 

(Scheiner et al., 2017; Kosman et al., 2019). We believe that in this sense the recognition of 497 

diversity and dispersion perspective to variation is integrative and common to both genetics and 498 

ecology. It would be important to examine how such integration is best achieved and if there is a 499 

link between genetic and functional diversity, or genetic and functional dispersion. Here, we 500 

recognize the debate on the link between biodiversity and ecosystem function (Grime, 1997; 501 

deLaplante & Picasso, 2011). Maybe the anomalous results from the tests of this central hypothesis 502 

are actually due to lack of consideration of diversity and dispersion aspects of the taken measures. 503 

Are the used measures of diversity also capturing the dispersion of taxa that would best map on 504 

dispersion of ecosystem function? In other words, the metrics that measure dispersion (or metrics 505 

that combine both dispersion and diversity) might be closer to the objectives for testing the 506 

biodiversity-ecosystem function hypothesis. 507 
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Our main interest was to ask how we best characterize structural variation in populations 508 

using population genetic markers. The classical approach in population genetics relies on a kind of 509 

apportionment (not differentiation!) measures (like 𝐹ୗ୘ and its relatives) that strictly deal with the 510 

diversity aspect of variation and are blind to dispersion. This does not seem a limitation when 511 

considering only one locus and assuming that all alleles are equally dissimilar. However, the 512 

limitations of the classical approach become real when one considers markers where the extent of 513 

similarity between different alleles at one locus may vary (e.g., microsatellites, Kosman & Jokela, 514 

2019). At present, most genetic data consist of multilocus genotypes (e.g., any sequence of any 515 

kind). When examining such data, it is very easy to agree that not all genotypes are equally 516 

dissimilar; therefore, an analysis using information on variation in dissimilarity to support 517 

conclusions on structural variation of populations may be a useful addition. Using dissimilarity is 518 

implicit in coalescence models of evolution where evaluation of the shortest approach to ancestral 519 

type requires understanding of evolutionary distances of the derived types (Rosenberg & Nordborg, 520 

2002). Evident power of coalescence-based models is one of the reasons why we argue that also 521 

studies on structural variation of populations (population genetic structure/diversity) would greatly 522 

benefit from incorporation of the dispersion component into measuring of overall variation.  523 

Another known shortcoming of applying the classical (apportionment) metrics to measuring 524 

differentiation among populations is the dependence of those metrics on variation within the 525 

populations (this is why they do not assess the differentiation) (Jost, 2008; Gregorius, 2014). The 526 

great advantage of using numbers equivalents to estimate variation within (alpha) and among units 527 

(beta) is that those estimates are independent (Jost, 2007). However, even the modified metrics 528 

developed for measuring differentiation (e.g., Jost’s D) still depend on diversity within populations 529 

(e.g., counterintuitively Jost’s D cannot reach its maximum value 1 even if two populations do not 530 

share any alleles, but at least one of them is not fixed). The approach we advocate here (combining 531 
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diversity and dispersion) to derive differentiation measures based on effective numbers of different 532 

OUs, provides efficient and tangible tools for analyzing relationships among populations, and 533 

allows comparisons across studies. 534 

Our two examples illustrate how the effective numbers approach can be used in ecological 535 

genetics evaluating structural variation in natural populations. We emphasize the difference 536 

between assessments of the effective numbers of different OUs with average-based and association-537 

based distance measures between the OUs. In some cases, where populations are large, outcrossing 538 

and not under strong selection or drift, metrics based on the distance of average differences are 539 

capturing the processes affecting structural variation among populations. This was the situation in 540 

our second example where geographically widespread species was inferred to have been divided 541 

into two major regions that had somewhat less geneflow between regions than within regions. In 542 

our first example, what was long assumed a single species in fact consisted of coexisting cryptic 543 

species that were morphologically similar but evolutionarily diverged (Feijen et al., 2022). Such 544 

cases are very demanding to discover with data that are collected to test hypotheses assuming a 545 

single species. Here, the proxy we used to construct evolutionary prior groups was the 546 

mitochondrial haplotype memberships. Finding such a prior grouping factor requires collection of 547 

additional data and processes such as incomplete lineage sorting may complicate matters further 548 

(Maddison & Knowles, 2006; Pedraza-Marrón et al., 2019). For this case we showed that 549 

association-based ENDP captured the assumed cryptic species structure and could have been used 550 

to motivate further species delimitation studies with high confidence. Of course, here we have the 551 

advantage of hindsight as such analyses were already done (Feijen et al., 2022).  552 

The analyses we present require that it is possible to have prior assumptions of OUs. We 553 

believe that collecting data with assumed a prior structure in mind is a much more productive 554 

approach than assuming no structure. Everything in biology speaks for assuming memberships of 555 
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groups for observed individuals even if everything in statistics is based on constructing null models 556 

for assuming such groups/structures do not exist. For example, membership in the population can 557 

be assumed by spatial location, or by mitochondrial haplotype identity, as we show in our 558 

examples. Both spatial priors and haplotype identities can cross species boundaries, but they might 559 

still be useful starting points for structural analysis. Here, our first example relied on using priors 560 

based on haplotype groups, and the second relied on population membership. We believe that the 561 

power of using the suggested approach is that one can reduce the priors to the most likely number 562 

of different (genetically, functionally etc.) groups among the OUs in question thus providing 563 

important information about the structure in the data based on the corresponding estimate of 564 

effective number of different OUs. This is a philosophically different approach than asking the data 565 

(blindly) how many groups emerge when some clustering algorithm is applied. We think it is rare 566 

not to have a good candidate for prior grouping. Most data are collected assuming population 567 

membership. Therefore, asking about the effective number is a logical thing to do when analyzing 568 

the data. Most data are assigned to more populations than in fact are there since for most species the 569 

migration patterns and effective geneflow are not known partly due to the lack of conceptually 570 

sound methods of population delineation. This is an issue that is like the inference we receive from 571 

population size (number of individuals) and effective population size (number of individuals 572 

contributing to the next generation). We see value in assigning population memberships a priori and 573 

validating that count post hoc with effective numbers metrics and suggest this should be part of our 574 

routine beta diversity estimates when conducting studies on biodiversity, genetic diversity or 575 

functional diversity of populations.  576 
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