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Effective number of different populations: a new concept and how to use it

Abstract

1.

Widely used methods to assess population genetic structure and differentiation rely on
independence of marker loci. Following the assumption, the common metrics, for example
Fst, evaluate genetic structure by averaging across loci. Common metrics do not use
information in the associations among loci at the individual level and are often criticized for
failing to measure true differentiation even when loci segregate independently.

We introduce a new concept to measure B-variation (Effective Number of Different
Populations, ENDP). It requires the following steps: (a) calculation of a proper dissimilarity
between genetic profiles of all individuals; (b) calculation of suitable pairwise distances
between the samples based on the dissimilarities between individuals; (c) calculation of
diversity (in terms of Hill numbers) and dispersion of samples based on the pairwise
distances between samples; (d) ENDP is then estimated as a combination of the diversity
and dispersion. ENDP estimates -variation independently of within-sample a-variation.
This new concept differs from the existing standard where B-diversity is estimated based on
the ‘partition of variation’ scheme (beta = gamma — alpha or beta = gamma/alpha).
Estimates of ENDP are obtained by evaluating information in the available genetic profiles
of individuals including association of loci. Therefore, ENDP can be used even in an
absence of panmixia.

We illustrate the use of this concept by analyzing the population genetic structure of a
sexual species (a trematode parasite) occupying connected populations across a broad
geographic area. Analysis is complicated by two coexisting cryptic sister clades and the

potentially mixed-mating system of this hermaphroditic parasite.
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Introduction

Discovering the genetic structure of populations is one of the key applications of population genetic
markers. Not surprisingly, methods aimed at assessing the extent of difference among subdivided
populations are numerous and have nearly always been central part of the standard population
genetics toolkits. Historically, the first FgT measure (Wright, 1951), as its many later analogues,
aimed at understanding the divergence of populations in relation to evolutionary processes (Nei,
1973; Excoffier et al., 1992; Slatkin, 1995). Later, one of the specific applications has been to
estimate the partitioning of genetic variation within and among subdivided populations (Nei &
Chesser, 1983; Hedrick, 2005; Meirmans & Hedrick, 2011). A comprehensive review of methods
aimed at differentiation of molecular diversity with an emphasis on information (entropy) analysis
can be found in Sherwin et al. (2017).

The Fgt measures were developed for single loci. Many of the commonly used multilocus
estimates evaluate each locus independently with further averaging across loci ignoring information
that is in the associations between loci (i.e., multilocus genotypes) and between alleles within a
diploid (or polypoid) locus. Thus, Fgr and its relatives (Gst, Gsr, Gst, @sT, RsT) are not sensitive to
divergence among populations that exist only due to differences in association of alleles and/or loci
(allele frequencies are equal in all populations). For example, two populations P; and P2 consisting
of individuals with different binary genotypes at four loci (1010 and 0101 in P;, and 1111, 1100,
0011 and 0000 in P>) are indistinguishable with Fgt and its relatives, if frequencies of each binary
allele 1 and 0 are equal in P; and P> (e.g. P; and P consist of four individuals each with the above-
mentioned genotypes: P; = {1010,1010,0101,0101} and P, = {1111,1100,0011,0000};
frequencies of all binary alleles equal 0.5).

The classical approach works best in a fully recombining panmictic sexual population.

However, the classical approach may work less well in populations with clonal reproduction, a

3
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mixed mating system or where unknown cryptic species coexist. To measure variation and
divergence of such populations, new metrics that use information based on associations of loci have
emerged during the last decades (Kosman, 1996; Gregorius et al., 2003; Gillet et al., 2004; Kosman
& Leonard, 2007; Kosman, 2014). These metrics also include measures aimed at evaluating the
extent and significance of differences among populations (Gillet & Gregorius, 2008; Gregorius,
2010; Gillet, 2013; Kosman et al., 2014; Gultyaeva et al., 2020; Czajowski et al., 2021).

Jost (2008) criticized shortcomings of the standard metrics that are commonly called
measures of “differentiation” (Fst, Gst, @sT, RsT) because they can provide unrealistic estimates of
the differences in the structure of the populations, especially if the within-population variation is
very high. Therefore, using the term “differentiation” for those measures seems inappropriate and
confusing. Second, these estimates are unintuitive and can even be misleading (see Jost 2008). To
be more specific, it is possible that these measures do not reach their maximum values, could be far
away from maximum and approach zero (indication of no differentiation), even for populations that
do not share any alleles. The latter problem was resolved to some extent by Ggr and G metrics
(Hedrick, 2005; Meirmans & Hedrick, 2011), and solved for a separate locus with introduced by
Jost (2008) measure of differentiation D that reaches its maximum 1 when differentiation is
complete. Nevertheless, new ideas are still needed for finding an intuitively acceptable approaches
to measuring variation among populations especially in a case of multilocus genotypes.

Variation within a population (below we refer to population as ‘OU’, i.e., Operational Unit)
could be thought of and described in different ways. There are two major facets of variation —
diversity and dispersion (Gregorius & Gillet, 2015). Diversity is about individual types within a
given OU, when all nonidentical types are considered equally distant, while dispersion is about an
overall relationship between individual types based on pairwise dissimilarities between them. These

attributes of variation are independent in the sense that OUs can be equally diverse for a wide range
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of dispersion estimates, and values of dispersion can vary from extremely small to extremely large
for highly diverse OUs. However, when diversity is low, dispersion estimates are also small,
whereas high dispersion estimates predetermine large values of diversity.

Differentiation is a common but ambiguously used term. In a general context,
differentiation is about the overall relationship among several OUs considered together as a group
(e.g., a metapopulation defined as a group of populations) and refers to how a total variation of that
group can be partitioned among and within those OUs. Classical measures of “differentiation” (Fsr,
Gst, Pst, Rs7) are based on assessment of the extent to which variation of individuals within the
group of OUs (e.g., all individuals of metapopulation) exceeds the corresponding average variation
within each constituent OU. However, as we pointed out above, when diversity within each OU is
very high (e.g. large number of equally frequent alleles), such “differentiation” measures are
counterintuitive because they deliver very small scores even when OUs are completely different
(e.g., populations share no alleles). Therefore, we would not recommend using the term
“differentiation” in such a general context and suggest replacing it by “structural variation”
among OUs. We propose to use the term “differentiation” for a much more specific context (see
below) requesting that estimates of ‘true’ differentiation must increase with (i) a rise of an overall
difference between OUs (dispersion of OUs), and (ii) a higher regularity of distribution of pairwise
differences between OUs (diversity of OUs), provided that all other characteristics of relationships
among OUs being identical.

The measures of biological variation proposed in this paper combine the diversity and
dispersion perspectives with the diversity component being conceptually similar to metrics
developed by Hill (1973) and Jost (2007, 2008) advocating the use of numbers equivalents for
estimating diversity. Such measures can be used, for example, to conclude and compare the
effective numbers of different species within a community, or effective number of different
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communities within a landscape. According to Jost (2008), the properties of the corresponding
diversity measures, when applied to alleles of genotypes, satisfy the expectations for answering
population genetic questions in providing intuitively correct answers to a series of practical and
theoretical questions. The main idea of Hill’s approach is the multiplicative nature of diversity
partitioning.

(total diversity) = (diversity within subunits) X (diversity among subunits)
which allows independent estimates of within- and among-subunit components (Jost, 2007, 2008).
In other words, the effective number of alleles, genotypes, or any chosen attribute in a set of OUs
equals the product of the corresponding effective number per OU and the effective number of
distinct OUs. Such diversity estimates are intuitive, easy to interpret and can be used in various
applications (e.g., for management of populations and in conservation biology). The effective
number of distinct populations is an absolute measure of population differentiation. Based on the
proportion of total diversity that is contained in the average population in terms of effective
numbers, Jost (2008) introduced a new non-negative measure of differentiation D that reaches its
maximum 1 when differentiation is complete. Conceptual aspects of diversity partitioning and
measuring diversity components based on the most general definition of effective numbers (Hill
numbers are a partial case) were thoroughly considered by Gregorius (2016).

For multilocus genotypes, differentiation D is obtained by averaging across all loci. Then D
reflects the average differentiation within separate loci in a given set of populations rather than
differentiation between the populations due to differences in distribution and association of alleles
among loci in multilocus genotypes. If two populations have identical allele distributions at each
locus but non-identical association of those alleles into the corresponding multilocus genotypes,
then no differentiation is detected (D = 0). The same shortcoming characterizes all commonly used

Fgr related measures (Ggr, Ggt, GsT, @st, Rst) that do not actually measure differentiation. Chao et
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al. (2015) further demonstrated that the heterozygosity-based “differentiation” measures, such as
Ggr and Jost’s D, do not possess two of the essential monotonicity properties: differentiation never
decrease when (i) a new unshared allele is added to a population, and (ii) when some copies of a
shared allele are replaced by copies of an unshared allele. Thus, while being more intuitive, Jost’s
“differentiation” metric D is not free of the shortcomings of the standard measures (violation of
monotonicity property, inability to take into account association between loci) and may deliver
inadequate estimates and even miss the actual difference between populations.

Nearly all papers cited above and many others (Heller & Siegismund, 2009; Ryman &
Leimar, 2009) debate the pros and cons of a variety of “differentiation” measures considering
numerous critical examples. A part of the problem is that there are two different perspectives to
partitioning total genetic variation - differentiation and apportionment (Gregorius, 2009, 2010,
2016; Gregorius & Gillet, 2015), although separation between them is not clearly made.

Differentiation among populations describes a tendency of the same allele or genotype to
occur in the same population reporting a maximum when all populations consist of unique alleles
(genotypes) (i.e., populations do not share alleles, but each population may be polymorphic for each
locus). Jost D is assumed to be an example of a differentiation measure although it has its own
shortcomings.

Apportionment, on the other hand, describes a tendency of individuals with different
alleles or genotypes to occur in different populations. Maximum apportionment is reached when
each population is fixed for a different allele (or genotype), i.e., populations are monomorphic but
have different genotypes. This means that maximum of differentiation among populations is
necessary but not sufficient condition of maximum apportionment (if all genotypes are considered
equally dissimilar). Thus, apportionment metrics measure the extent of fixation of distinct alleles or
genotypes among populations (e.g. fixation index Fgr).

7



147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

There are a few immediate consequences of theoretical and practical importance for
geneticists for considering the dual perspectives of differentiation and apportionment. First, Fgp-like
indices (e.g., Gsr, Gst, GST, Qst, Rer) provide a kind of apportionment (fixation) estimates based
on variance partitions, even if they are commonly declared and used as measures of differentiation
among populations. Second, Jost’s “differentiation” metric D (Jost 2008) is actually closer to
measuring differentiation among populations, not apportionment. This may explain, at least in part,
inconsistency in some results obtained with D and the Fgt based measures. Third, valid
differentiation measures can reach their maximum (absolute differentiation) independently of the
degree of genetic variation within populations, i.e., even if the populations are not fixed to
alternative alleles or genotypes (such situation is impossible with Fgr and Ggr).

In this paper our purpose is to further expand the differentiation perspective for studies of
population structure. The idea is to express diversity of populations in terms of the effective
number of equally distant populations. This allows estimation of differentiation in a way that is
independent of both total diversity (y-diversity) of a given metapopulation and diversity within its
constituents (a-diversity). Determining the effective number is based on pairwise genetic distances
between populations, though only the proportional contributions of those distances to the total sum
of distances are utilized. Such diversity index depends only on the relative position of populations
to each other in the given genetic landscape and measures regularity of relationships among
populations. Therefore, an identical value of diversity index is returned for any metapopulation
consisting of the same number of populations, even if all pairwise genetic distances (magnitudes of
genetic differences) change proportionally (e.g., for two sets of three populations with relationships
among the populations represented geometrically by two similar shaped but different size triangles).
For example, if each of three populations is fixed to a single binary genotype at six loci in two

metapopulations A = {(100000), (001000), (000010)} and B = {(110000), (001100), (000011)},
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then 4 and B are of identical diversity among their constituent populations, although pairwise
genetic differences between the three populations in 4 are two times smaller than those in B.

To distinguish between two different metapopulations with the same diversity (as measured
in terms of effective number of equally distant populations), the diversity concept must be
integrated with the dispersion concept. The dispersion component of variability is expressed in
terms of genetic distances between populations. Combined metrics of diversity and dispersion
components will be then called the Effective Number of Different Populations (ENDP). Such
metrics are completely predetermined by pairwise genetic distances between populations, their
magnitudes and regularity of distribution, and deliver exhaustive estimates of variation among
populations within the corresponding metapopulation. Basic principles of our approach are similar
to those developed by Scheiner et al. (2017) for ecological communities (Gregorius and Kosman
(2018) considered a more general case of integration of the diversity and dispersion concepts).

We test the relevance of the suggested metrics with two empirical data sets. First, we use
data published by Feijen et al. (2022) describing population and species structure of the New
Zealand trematode parasite species in the genus Atriophallophorus spp. using nuclear SNP markers
and mitochondrial haplotypes based on a part of the NADHS5 gene. This parasite uses the snail
Potamopyrgus antipodarum as its intermediate host and waterfowl as the definitive host. The
parasite has a sexual stage in the definitive host while the reproduction in the snail host is clonal.
Feijen et al. (2022) found support for cryptic species structure in the parasite populations by
applying computationally demanding multispecies coalescent models on a subset of individual
parasites (N = 52) [Bayes Factor Delimitation (Leache et al., 2014)]. They further used regression
analyses on pairwise genetic distances among individuals (N=462). Both analyses supported the
conclusion that the samples represent at least two distinct species that coexist in broad geographic

range (see figure 2 in Feijen et al., 2022). Here we use the same subset of genotypes and the full set
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of genotypes as in the two analysis by Feijen et al. (2022) to calculate both the effective number of
equally distant populations and the ENDP in samples that are known to represent two coexisting
cryptic species.

Second, we applied the new metric to assess population genetic structure of the common
species, Atriophallophorus winterbourni. We asked what the effective number of equally distant
and different populations is in these locations which cover the geographic regions of South Island of
New Zealand. We contrast our results to a more detailed analysis of connectedness of these
populations presented in Feijen et al (2022).

We use these data to raise the question whether it would be reasonable to incorporate
estimates of ENDP into analyses aiming to understand diversity and structure of populations using
genetic markers. An important reason for selection of those data was the fact that they were already
analyzed with other state-of-the-art tools that allow a direct and effective comparison of the new
delivered results with those reported previously. We also discuss the rationale and applicability of

these metrics.

Materials and methods

We develop metrics for measuring structural variation in a metapopulation based on a matrix of
pairwise genetic distances between the populations. Distances between the populations are
measured using the dissimilarity-based approaches (Kosman & Leonard, 2007; Kosman, 2014)
although other distances can also be applied. This approach requires a proper assessment of

dissimilarity between individual genotypes.

Dissimilarity between individual genotypes
Choice of a suitable dissimilarity measure is a key factor for valid analysis of genetic variation. The

selection depends on ploidy of a given organism and the type of molecular markers used for
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estimating genetic variation (Kosman & Leonard, 2005; Kosman & Jokela, 2019). Here, we use
nuclear SNP polymorphism of Atriophallophorus spp. (Feijen et al., 2022) to examine population
genetic structure. Since SNPs are codominant markers and Atriophallophorus spp. is a diploid
organism, we calculated dissimilarity between the SNP genotypes (&) according to eqn. 3 in
Kosman and Leonard (2005) or eqn. 6 in Kosman and Jokela (2019). Here, the dissimilarity
between two genotypes at one diploid locus equals 1, 0.5 and 0, if the genotypes do not share any
allele, share one allele, or have identical pair of alleles, respectively. Then the average across all

loci delivers dissimilarity § between the two multilocus genotypes.

Distance between populations

The most used genetic distance measures between populations are based on allele frequencies,
averaging independent estimates at each locus over all loci [e.g. Nei's genetic distances (Nei,
1972)]. Allele-frequency based measures do not consider possible associations between different
loci, so that two populations with no shared genotypes can be declared identical if they share the
same alleles at equal frequencies. Therefore, considering associations between loci would be
important for metrics of genetic distances between populations.

The two types of distances based on dissimilarities between individuals are calculated by
averaging individual dissimilarities (both between and within populations) and by assignment of
individuals from two populations based on their dissimilarities without the effect of dissimilarities
within populations (Kosman, 2014). The average-based approach (distance of average differences,

DAD,, eqn. 2 in Kosman and Leonard (2007)) may have undesirable mathematical properties for
some dissimilarity measures p as DAD,, can be negative or zero for distinct populations. For
example, DAD,,, which is the distance of average differences for the simple mismatch coefficient

m, can be zero for distinct populations as it is identical to Nei’s minimum genetic distance (Kosman

& Leonard, 2007). Therefore, the distance of average differences does not properly work in the case
11
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of association between loci. An alternative, the assignment-based genetic distance (KB) developed
by Kosman (1996) and Gregorius et al. (2003), is a generalization of the mathematical notion of
distance between two sets of scattered points (Kosman, 2014). Kosman distance (KB) can
distinguish between populations where linkage of markers is variable for a same set of alleles, and it
is suitable for comparison of populations with strong linkage patterns as is the case for asexual or
mixed mode of reproduction, or with cryptic structure due to unidentified coexisting species.

One strength of dissimilarity-based methods is the ability to deal with missing data.
Dissimilarity between a given pair of genotypes can be calculated using all the data that are
available for both individuals (only loci with missing genotypes are excluded).

We applied the dissimilarity-based distances DADs and K Bs to measure genetic differences
between the parasite populations Atriophallophorus spp. (SNP markers), where ¢ is dissimilarity
between the multilocus SNP genotypes mentioned beforehand in the previous section. Since the
mode of parasite reproduction is mixed with prevailing outcrossing, we used the DADg distance as
the benchmark for calculations assuming that association between loci is minimal, if any. As Feijen
et al. (2022) also discovered a cryptic species structure in their Atriophallophorus spp. samples, we
also calculated effective numbers based on KBy distances. This is to show how dissimilarity-based
distances, DADg and KBg, can be used to study structural variation in cases where it is not known if

there are groups within-populations that differ in their linkage structure.

Metrics of variation
Diversity
We first construct metrics of variability similarly to Scheiner et al. (2017). For a set of §

Operational Units (OUs; single populations in our analysis), let d;; be any distance between ith and

JjthOUs (0 < d;; <1,d;; =dj;,d; =0;i,j =1,2,...,5). For any non-negative parameter q # 1,
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we calculate an extent of homogeneity of pairwise distances as effective number of ordered pairs of

OUs according to Hill (1973):

1/(1-q)
H = (Zf=1215'¢i=1 i? > (1)

whereas forg = 1

'H = lim “H = exp(= X1 Xfvim1 fiy 08 fiy), 2
where f;; = d;;/Yi- Zfii:l d;j is the proportional contribution of the ordered pair (i, ) into the
total distance between all pairs of OUs (we assume that f;; log f;; = 0 by definition. if f;; = 0). 0
equals a hypothetical number of ordered equally distant pairs of different OUs (d;; > 0, i # j) that
generate the same Hill number as the given set of S? — S pairs. This measure increases when
variability in distances decreases, and range of ?H is between 0, if all d; ; = 0 (by definition), and

its maximum S% — S, when all d; j # 0 are equal for i # j (S values d;; = 0). Then diversity within

the given set of OUs is obtained as solution of quadratic equation ( qD)Z — 9p = 9H:

1+ /1+4 Iy
qD —

— 3)
and expressed in terms of effective number of equally distant types of OUs (Scheiner et al., 2017).
Values of D range from 1 to S, when all OUs are “identical” (all d; ; = 0) and all non-identical
OUs are equidistant (d;; = const # 0), respectively. Note, 1D gets smaller for larger q, and equal
effect of all pairwise distances on the effective numbers is obtained just for g = 1.

A kind of evenness of the OUs distribution is determined as
g = 9p/s 4)
with a range [1/S, 1]. It is useful to transform this estimate onto the unit interval for comparison of

sets with different numbers of OUs:

“E=(D-1)/(S-1) (4"
13
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with a range [0, 1]. So, diversity ?D increases with evenness and can be decomposed to the product
of evenness and richness (number of OUs):

i9p=9E xS or (5)

D=1+ TE"x(S-1). (5"

More accurately, YD and E ( “E") should be called diversity (effective number of equally
distant populations (OUs)) and evenness of order g, respectively.

Diversity 7D reflects regularity of OUs distribution in a relevant space. It is determined by
proportions f;; and does not depend on actual distances d;; between OUs in a sense that if all
distances are subject to enlargement to the same extent, ?D remains unchanged since ?H does so.
Thus, the effective number of equidistant OUs serves as an invariant of configuration of the given
set in space (diversity perspective), while the degree to which OUs are similar to each other is not
considered (dispersion perspective). Therefore, the diversity reveals an important component of
biological variation, but not the complete structure of the metapopulation. Next, we will
complement the diversity with dispersion perspective for a comprehensive description of variability
within a set of OUs.

Integration of diversity and dispersion

Theoretical aspects of dispersion and its relationship to diversity were broadly considered in
Gregorius and Kosman (2017, 2018). To develop overall metrics of variation, we incorporate two of
the most basic and tangible dispersion estimates. The first one is the Average Distance Within
(ADW) a set of OUs

ADW =33 %3 d;;/S? (6)

with a range from 0 to (§ — 1)/S, or its derivative ADW' obtained by transformation of ADW onto

the unit interval (0 < ADW' < 1)
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ADW' = 2= X ADW = ——x Y5 %5 d;; /S, (6)

The second metric of dispersion is Kosman’s assignment-based measure K (Kosman,
1996, 2014; Kosman & Leonard, 2007) that has a range [0, 1] and can be considered as
generalization of the mathematical definition of the diameter of a set of scattered points.

Finally, we combine diversity ( ?D) and dispersion (ADW or ADW’, and KW) estimates into
integrated metrics of overall structural variation that we call the effective number of different
populations (ENDP), or OUs:

IDADW) =1+ D x ADW =1+ Sx YEXADW =1+ (S—1) x 9Ex ADW’, (7)

S-1
S

IDIKW)=1+"=x IDXxKW =1+(S—1) x 1EXKW (8)
with a range from 1 to S. A general form of eqns. 7-8 is
IDM)=1+(S-1)x ‘ExM 9)
for any dispersion metrics M with [0,1] range. The immediate consequence is that even if diversity
is maximal (1D = S), i.e., all OUs are equally distant (evenly distributed), the effective number of
different OUs 7D (M) decreases and approaches to 1 when OUs are closer to each other (dispersion
decreases and tends to 0). According to (9), the effective numbers of different OUs 9D (M) can be
represented as a decomposition of the three generally independent basic components: simple
richness of a given set (S), evenness ( “E), and dispersion (M). The effective number of different
OUs could be conceived as the number of equidistant OUs needed to obtain the same dispersion
and variability in pairwise distances as those observed in the given set of OUs (where OUs may not
be equally distant).

The suggested approaches to estimating variation can be thought of as reducing the actual

number of OUs (richness) in two steps. Analyzing regularity of OUs distribution, richness (.S)

decreases to the effective number of distinct equidistant OUs ( D) due to deviations from a perfect
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evenness. Then, considering a magnitude of similarity between OUs (dispersion) results in further
richness decline from D to the effective number of different OUs ( YD (M) for dispersion M).
Thus, combining both the diversity and dispersion perspectives, overall variation of a set of OUs is
expressed in terms of reduction of its simple estimate (richness) to perhaps the most exhaustive one
— the effective number of different units. The effective numbers of different and equidistant units
are equal only in two extreme cases: for a set consisting of one unit (trivial situation), and when all
units are maximally distant.

To make a comparison of structural variation of sets with different numbers of OUs, relative
estimates of the effective numbers (1 < EN < S) are useful and reached by the linear
transformation of EN onto the unit interval
nEN = (EN —-1)/(S - 1). (10)
nEN increases with increasing variation EN and can be considered the metric of structural
differentiation of OUs. The relative effective number of equally distant OUs (nD) is obtained for
EN = D from (10), i.e. ‘"nD = 9E’ is evenness from (4"), while the relative effective number of

different OUs “nD(M) is attained with EN from the absolute estimate “D(M) (eqn 9). These

relative estimates (nEN) range from 0 (no differentiation) to 1 (completely structured set of OUs)
when the corresponding effective number equals 1 and S, respectively. Both the metrics EN and
nEN of variation among populations are totally independent of variability within the populations
because the latter was not even involved in generation these metrics of differentiation. This
independence is reached using conceptually different approach comparing with those of Jost (2008,
eqns. 8 and 10, p. 4021), which could be referred to as approaches based on the partitioning of
diversity within and among OUs. Thus, the suggested metrics of structural differentiation nEN (10)

are completely different from classical measures of differentiation.
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Data and differentiation among parasite populations
We tested the new metrics with a published dataset on genetic structure of a diploid trematode
parasite Atriophallophorus spp. (Feijen et al., 2022). Atriophallophorus has a snail-bird life cycle. It
reproduces sexually in the bird definitive host. The adult worms are hermaphrodites but evidence
supports outcrossing as main mode of reproduction (Feijen, 2020). The parasite reproduces
asexually in the snail intermediate host. Feijen et al. (2022) reports a phylogeographic analysis of
the most common Atriophallophorus species, A. winterbourni, but the study also revealed a
previously unknown sister species coexisting with 4. winterbourni (Feijen et al., 2022). This
putative species remains undescribed. The study covered a wide geographic range (South Island of
New Zealand) and applied both nuclear and mitochondrial markers in a detailed phylogeographic
analysis of the studied populations. Here, we use these data to ask what the ENDP is when
calculated with the new metrics we present. We first test how the new method performs when we
apply it to samples representing the two main species. In our analyses we mainly refer to figure 2,
figure 3, and figure S4 of the publication (Feijen et al., 2022). We use the same data that they
analyzed for species delimitation among Atriophallophorus spp. We then limit the analysis to the
most common species 4. winterbourni and contrast effective numbers of equally distant populations
(D ) to ENDP ( ’D(M)). Only polymorphic SNP loci were used in the analysis.
We estimated the variation among these parasite populations as follows:
1. We calculated the dissimilarity between the SNP genotypes (&) according to eqn. 3 and the

corresponding algorithm on p. 421 in Kosman and Leonard (2005) or eqn. 6 in Kosman and

Jokela (2019). In the case of missing data, the corresponding loci were ignored for each

pair, and a dissimilarity value was obtained on the reduced number of loci with available

data for both individuals in the pair.
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2. We computed the average-based and assignment-based distances using the §-dissimilarity
(DADgs and K Bg, respectively) between all pairs of populations.

3. We calculated the effective number of equally distant populations (diversity D) according
to eqns. 2—3 for distances d = DADgs and d = KBg, and ¢ = 1. Then the diversity-based
estimates of differentiation (nEN) were obtained for EN = D from eqn 10.

4. We calculated the dispersion of the parasite populations (ADW), 4p, and ADWyp ) using
eqn. 6 (ADW based on distances d = DADg and d = KBy).

5. We calculated the ENDP (structural variation D(ADW)) according to (7) for ¢ = 1 for
the corresponding pairs of diversity D and dispersion ADW estimated with distances d =
DADg and d = KBg Then the corresponding assessments of structural differentiation (nEN)

were obtained according to (10) with EN = *D(ADW).

Results

Application of effective numbers of populations to mixed populations of cryptic species
Based on the species delimitation analysis, Feijen et al (2022) concluded that at least two species of
Atriophallophorus parasites were found in the studied populations. We calculated that the ENDP
('D(ADW,4p), D (ADWyp)) in the set of samples grouped by the six major mitochondrial
haplotype groups was 1.40 when based on the distance of average differences (DADg) and 2.05 for
the assignment-based genetic distance (KBg) (Table 1). While the difference between these metrics
is 32%, here the assignment-based distance seems to match the expectation of at least two species
particularly well and average-based distance seems to underestimate the number of inferred OUs.
As the calculation of these metrics does not demand as many computational resources as the
Bayes Factor Delimitation models that Feijen et al., (2022) used, we were able to expand the analysis

to a larger dataset used in the regression analysis in Feijen et al., (2022). Our results are very similar
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to the results reported by Feijen et al. (Figure 1, Table 1). Interestingly, the ENDP was not affected
by the sample size (Table 1). This indicates that these metrics are robust to variation in sample size
assuming the samples still represent the different OUs (here, haplotype groups).

Our results illustrate that the ENDP captures the underlying genetic structure in
Atriophallophorus clade (Figure 1). Although the species is sexual, it seems that in this case the
association-based KB distance was more strongly in agreement with previous analyses than distance
of average differences (DAD). This may be due to low gene flow between the species emphasizing
the differences between the species that appear as strong linkage (association between loci) when
haplotype groups are compared. Note also that the effective number of equally distant populations,
which reflects the diversity, was close to maximum defined by the six haplotype groups (Table 1).
Interestingly, when diversity was calculated based on average (DAD) or association-based (KB)
distance the estimates only differed by 6% (Table 1). Analysis of number of equally distant
populations does not capture the cryptic species structure in the clade, probably because it treats all
haplotype groups independently of the magnitude of differences between them. In this case using the
additional information from dispersion was therefore essential to describe the previously inferred

structural variation among the haplotype groups.
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Figure 1. UPGMA dendrograms and NMDS plots of the two datasets (A, B: 52 individuals; C, D:
212 individuals). Panels A and C are based on pairwise KB (left) and DAD (right) distances between
the six major mitochondrial haplotype groups reported in Feijen et al. (2022). Note that DAD topology
in A is congruent with the tree shown in figure 2c in Feijen et al. (2022), while the top clade (haplotype
groups B, C, A) show a different structure obtained with the DAD and KB distances in A and C.
Panels B and D show NMDS plots calculated based on pairwise distances between individuals. The

haplotype group for each sample is indicated in the label.
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427  Table 1. Variability among the trematode Atriophallophorus spp. collections.

Type of variation Variation parameters  “cryptic” species/populations Atriophallophorus
identified based on mt-haplotype populations (natural

groups (Feijen et al., 2022) lakes)

52 genotypes 212 genotypes 306 genotypes
24 loci 24 loci 24 loci
6 hapl. groups 6 hapl. groups 10 lakes

Effective ~ number of lp -2 5.544 5.445 9.783
equally distant populations 1 D 5974 5971 9990
KB : : .

(Diversity)

Dispersion ADWp,p ° 0.071 0.058 0.015
ADW'pap ® 0.085 0.070 0.017
ADWgpg 0.178 0.169 0.171
ADW'kg 0.217 0.203 0.190

Evenness YEpap © 0.924 0.908 0.978
'Exs 0.986 0.985 0.999
YE oap = mDpspc 0.909 0.889 0.976
1B s = Dyg 0.983 0.985 0.999

ENDP, effective number D(ADW) ;) * 1.396 1.316 1.146

of different populations 1D(ADWyp) 2.053 1.999 2.698

(Structural variation)

Extent of differentiation  nD(ADW, 4p) © 0.079 0.063 0.016
"nD(ADWyp) 0.211 0.200 0.189

428  “effective number (eqns. 3, 7 - 9);

429 " dispersion (eqns. 6, 6'; Kosman, 1996; Kosman & Leonard, 2007);
430  ©evenness (eqns. 4, 4');

431  ©extent of differentiation - normalized ENDP (eqn. 10).
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Figure 2. UPGMA trees of Atriophallophorus winterbourni populations from 10 lakes on the South
Island of New Zealand. Data are the same as presented in the Table S4.1 of Feijen et al. (2022), with
the exception that the lakes with small samples (less than 10 individuals) were excluded from the
analyses. The colors of the branches correspond to two main clusters identified in the Structure
analysis presented in Feijen et al. (2022; Figure 3d). Effective numbers of different populations based

on the DAD and KB distances are 1.15 and 2.70, respectively.
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Application of effective number of populations to geographically separate populations of single
species, Atriophallophorus winterbourni

Feijen et al. (2022) presented genetic pairwise Fgr and structure analyses for 15 lake populations of
Atriophallophorus winterbourni. Their first discovery was that the nuclear marker-based estimates
for population structure were much less than mitochondrial marker-based estimates. Their main
conclusion was that in the past the populations were likely separated in glacial refugia in the north
and south of the Island and that the present population differentiation in nuclear and mitochondrial
markers is maintained due to low level of cross-alpine migration. Average nuclear Fgp was low, and
together with analysis of migration patterns using isolation by distance tests and marginal
approximation of structured coalescence (phylogeographic analysis based on mitochondrial markers
applying Mascot 2.1.2. in BEAST 2.6.5. [see details in Feijen et al. (2022)], the conclusion was that
even if the mitochondrial Fgr estimates were high, there is a considerable nuclear geneflow among
all populations at present.

Our analysis using the DAD distance suggested that the ENDP in these data is 1.15
supporting the view that there may have been two distinct glacial refugia, but the nuclear
marker-based differentiation among the population is currently weak. However, using the
association-based KB distance the ENDP was 2.70 (Table 1). Figure 2 illustrates differences in
relationships among the populations between the two estimates. In this case analysis based on the
distance of average differences DAD reflects the expected structural variation better than the
association-based KB distance. This may be expected as the data represent large outbred sexual
populations that are in HW equilibrium showing no signal of linkage disequilibrium (Feijen et al.,

2022).
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461 Discussion

462  Assessing genetic structure of populations requires that the chosen measures reflect the biological
463  processes that affect local genetic variability and divergence among populations (Bohonak, 1999).
464  Relevant processes shaping population genetic structure are well understood but capturing these
465  processes to a single metric is difficult. For example, species mating system has consequences for
466  the expected genetic variability of populations (Holsinger, 1992; Rieseberg & Burke, 2001),

467  variation in population size affects the strength of genetic drift (Wang et al., 2016), and local

468  adaptation may promote divergence of genes under selection (Yeaman & Whitlock, 2011).

469  Metapopulations consist of local populations of different sizes, which may be connected by highly
470  asymmetric geneflow (Harrison & Hastings, 1996; Morrissey & de Kerckhove, 2009). Recently
471  evolved mating barriers may also lead to cryptic species structure that is yet unnoticed and further
472  complicates the analysis of population genetic structure (Baker et al., 1995). Ideally, the chosen
473 metric would be robust in the sense that there is no unrecognizable bias by specific biological

474  processes or possible sampling errors. It would be very valuable if the metrics recorded would

475  guide the inclusion and exclusion of alternative hypotheses to explain the observed patterns. It is
476  unlikely that a single metric can capture all aspects of population structure, processes defining

477  divergence of populations and methodological caveats that handicap our conclusions. Inference
478  from several alternative metrics might allow concluding how the populations are structured, which
479  processes are relevant and how the analyses can be refined to address specific follow-up questions.
480 We aimed to show how beta variation among populations can be estimated independently of
481  alpha variation within populations, to evaluate how metrics incorporating both the diversity (based
482  on Hill numbers) and dispersion facets of variation can be used as beta variation estimates, and how
483  they are best constructed to evaluate population genetic data from natural populations that differ in

484  the processes that shape the population genetic structure. We focused on evaluating both diversity
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and dispersion emphasizing that both are important. The second aspect that we examined is the
difference between average (DAD) and association-based (K B) distance measures (Kosman &
Leonard, 2007) when deriving effective numbers estimates. We showed that estimates of the ENDP
based on the DAD distance are well suited for situations where studied OUs have low compatibility
barriers generating association due to assortative mating (or fertility) patterns. If compatibility
barriers (i.e., cryptic species) exist, then the KB distance used in calculating the ENDP capture the
structural variation better.

We argue that the analysis of population genetic structure, genetic variability of populations
and assessment of the conservation value of local populations would benefit from inclusion of both
the diversity and dispersion aspect of structural variation when estimating genetic relationships of
populations in a metapopulation (beta variation). We use examples from population genetics, but
these same approaches can be utilized in study of biological communities using functional traits
(Scheiner et al., 2017; Kosman et al., 2019). We believe that in this sense the recognition of
diversity and dispersion perspective to variation is integrative and common to both genetics and
ecology. It would be important to examine how such integration is best achieved and if there is a
link between genetic and functional diversity, or genetic and functional dispersion. Here, we
recognize the debate on the link between biodiversity and ecosystem function (Grime, 1997;
deLaplante & Picasso, 2011). Maybe the anomalous results from the tests of this central hypothesis
are actually due to lack of consideration of diversity and dispersion aspects of the taken measures.
Are the used measures of diversity also capturing the dispersion of taxa that would best map on
dispersion of ecosystem function? In other words, the metrics that measure dispersion (or metrics
that combine both dispersion and diversity) might be closer to the objectives for testing the

biodiversity-ecosystem function hypothesis.

25



508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

Our main interest was to ask how we best characterize structural variation in populations
using population genetic markers. The classical approach in population genetics relies on a kind of
apportionment (not differentiation!) measures (like Fgr and its relatives) that strictly deal with the
diversity aspect of variation and are blind to dispersion. This does not seem a limitation when
considering only one locus and assuming that all alleles are equally dissimilar. However, the
limitations of the classical approach become real when one considers markers where the extent of
similarity between different alleles at one locus may vary (e.g., microsatellites, Kosman & Jokela,
2019). At present, most genetic data consist of multilocus genotypes (e.g., any sequence of any
kind). When examining such data, it is very easy to agree that not all genotypes are equally
dissimilar; therefore, an analysis using information on variation in dissimilarity to support
conclusions on structural variation of populations may be a useful addition. Using dissimilarity is
implicit in coalescence models of evolution where evaluation of the shortest approach to ancestral
type requires understanding of evolutionary distances of the derived types (Rosenberg & Nordborg,
2002). Evident power of coalescence-based models is one of the reasons why we argue that also
studies on structural variation of populations (population genetic structure/diversity) would greatly
benefit from incorporation of the dispersion component into measuring of overall variation.

Another known shortcoming of applying the classical (apportionment) metrics to measuring
differentiation among populations is the dependence of those metrics on variation within the
populations (this is why they do not assess the differentiation) (Jost, 2008; Gregorius, 2014). The
great advantage of using numbers equivalents to estimate variation within (alpha) and among units
(beta) is that those estimates are independent (Jost, 2007). However, even the modified metrics
developed for measuring differentiation (e.g., Jost’s D) still depend on diversity within populations
(e.g., counterintuitively Jost’s D cannot reach its maximum value 1 even if two populations do not
share any alleles, but at least one of them is not fixed). The approach we advocate here (combining
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diversity and dispersion) to derive differentiation measures based on effective numbers of different
OUs, provides efficient and tangible tools for analyzing relationships among populations, and
allows comparisons across studies.

Our two examples illustrate how the effective numbers approach can be used in ecological
genetics evaluating structural variation in natural populations. We emphasize the difference
between assessments of the effective numbers of different OUs with average-based and association-
based distance measures between the OUs. In some cases, where populations are large, outcrossing
and not under strong selection or drift, metrics based on the distance of average differences are
capturing the processes affecting structural variation among populations. This was the situation in
our second example where geographically widespread species was inferred to have been divided
into two major regions that had somewhat less geneflow between regions than within regions. In
our first example, what was long assumed a single species in fact consisted of coexisting cryptic
species that were morphologically similar but evolutionarily diverged (Feijen et al., 2022). Such
cases are very demanding to discover with data that are collected to test hypotheses assuming a
single species. Here, the proxy we used to construct evolutionary prior groups was the
mitochondrial haplotype memberships. Finding such a prior grouping factor requires collection of
additional data and processes such as incomplete lineage sorting may complicate matters further
(Maddison & Knowles, 2006; Pedraza-Marron et al., 2019). For this case we showed that
association-based ENDP captured the assumed cryptic species structure and could have been used
to motivate further species delimitation studies with high confidence. Of course, here we have the
advantage of hindsight as such analyses were already done (Feijen et al., 2022).

The analyses we present require that it is possible to have prior assumptions of OUs. We
believe that collecting data with assumed a prior structure in mind is a much more productive
approach than assuming no structure. Everything in biology speaks for assuming memberships of
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groups for observed individuals even if everything in statistics is based on constructing null models
for assuming such groups/structures do not exist. For example, membership in the population can
be assumed by spatial location, or by mitochondrial haplotype identity, as we show in our
examples. Both spatial priors and haplotype identities can cross species boundaries, but they might
still be useful starting points for structural analysis. Here, our first example relied on using priors
based on haplotype groups, and the second relied on population membership. We believe that the
power of using the suggested approach is that one can reduce the priors to the most likely number
of different (genetically, functionally etc.) groups among the OUs in question thus providing
important information about the structure in the data based on the corresponding estimate of
effective number of different OUs. This is a philosophically different approach than asking the data
(blindly) how many groups emerge when some clustering algorithm is applied. We think it is rare
not to have a good candidate for prior grouping. Most data are collected assuming population
membership. Therefore, asking about the effective number is a logical thing to do when analyzing
the data. Most data are assigned to more populations than in fact are there since for most species the
migration patterns and effective geneflow are not known partly due to the lack of conceptually
sound methods of population delineation. This is an issue that is like the inference we receive from
population size (number of individuals) and effective population size (number of individuals
contributing to the next generation). We see value in assigning population memberships a priori and
validating that count post hoc with effective numbers metrics and suggest this should be part of our
routine beta diversity estimates when conducting studies on biodiversity, genetic diversity or

functional diversity of populations.
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