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Abstract

This paper investigates the formation composition and keeping problem for multi-
quadrotor systems under time-varying communication delays. First, a distributed
model predictive control (MPC) approach is employed to transform the formation
composition and keeping of multi-quadrotor systems into an online rolling opti-
mization issue, accompanied by the event-triggered mechanism to reduce solution
frequency and communication load. Second, to address the asynchrony and time-
varying communication delays introduced by event-triggered distributed MPC, a
set of constraints is designed to restrict deviations between the current predic-
tive state and previously broadcasted states. Consequently, based on the previ-
ously predicted states of neighbors, the cooperation of the multi-quadrotor systems
is achieved under asynchronous communication and time-varying delays. This
approach guarantees robust asymptotic stability and satisfactory formation per-
formance for multi-quadrotor systems under various delay scenarios. Finally, the
numerical and software-in-the-loop (SIL) simulations validate the effectiveness of
the proposed algorithm of multi-quadrotors under communication delays.

KEYWORDS:
Multi-quadrotor systems, distributed MPC, event-triggered mechanism, formation composition and keep-
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1 INTRODUCTION

Collaborative execution of diverse tasks by multi-quadrotor systems stands as a crucial trend in the application of unmanned
aerial vehicle systems, encompassing activities such as area reconnaissance, logistics delivery, synergy mapping, search and
rescue, etc.1–5 The latest advancements in the collaborative control of multiple unmanned aerial vehicle systems have been com-
prehensively reviewed.6 Formation control, particularly the composition and keeping of formation, constitutes a core element
in the collaborative operation of multi-quadrotor systems.7 However, during the execution of practical tasks, multi-quadrotor
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systems are susceptible to various physical and networked constraints, including state constraints, control saturation constraints,
communication delays, and packet loss.8–10

From the perspective of formation control, employing distributed control with local information is especially suitable
for multi-quadrotor systems with numerous autonomous nodes. However, the network communication characteristics of
multi-quadrotor systems based on distributed control strategies can lead to the following two key issues. 1) High-intensity
communication loads lead to a decrease in the precision performance of multi-quadrotor formation control. 2) Limited com-
munication bandwidth may result in phenomena such as communication delays and packet loss in multi-quadrotor systems. In
addressing the first problem, the distributed model predictive control (DMPC) strategy is considered to possess advantages com-
pared to existing control methods such as the linear quadratic regulator,11 sliding mode control,12 active disturbance rejection
control,13 etc. DMPC is recognized for its capability in handling constraints and enhancing system flexibility. It is regarded as
an effective approach for addressing both the physical and networked constraints in multi-quadcopter systems. For example,
a DMPC method based on the chaotic grey wolf optimization algorithm is proposed for coordinating the control of multiple
unmanned aerial vehicle systems.14 In practical applications, there are also solutions based on DMPC to address the collabo-
rative payload transport challenges in multi-quadrotor systems.15 For the communication problem, the utilization of a periodic
DMPC strategy in practical multi-quadrotors, where computational and network resources are typically limited, will result in
unnecessary computation and communication overhead. Therefore, the widespread adoption of event-triggered schemes, which
transmit data based on predefined triggering conditions, serves as an effective approach to reduce computational and communica-
tion costs.16–18 In addition, the proposed event-triggered mechanism (ETM) framework encompasses various strategies, namely,
a statistical learning-based ETM,19 a delay compensation-based ETM,20, and a dual-mode-based ETM.21 This framework aims
to ensure control performance by minimizing the occurrence of event triggers. This reduction is crucial for conserving network
resources and maintaining both recursive feasibility and stability through the inclusion of robustness constraints. Therefore, to
address the aforementioned challenges, the introduction of event-triggered distributed model predictive control (EDMPC) as a
necessary but challenging approach for the formation and keeping of multi-quadrotor systems is essential.

The formation and keeping control of multi-quadrotor systems with integrated distributed ETM faces challenges posed by
asynchronous communication networks. The asynchronous nature arises from the different triggering events and communicating
instants of various quadrotors, resulting in reduced real-time performance and stability of the overall system.22 It is noteworthy
that communication delays, as typical networked elements, exhibit more pronounced characteristics in asynchronous systems,
thereby posing a significant threat to the stability of multi-quadrotor systems. In response to communication latency issues, ini-
tial efforts have employed MPC methods to achieve formation flight control for multi-quadrotor systems with communication
delays.23 Additionally, a second-order multi-agent formation control method based on neighbor information feedback control
is proposed to mitigate the impact of communication delays between different agents.24 However, these studies do not delve
deeply into the asynchronous communication issues and system stability problems caused by delays. To mitigate communi-
cation latency issues in asynchronous systems, approaches such as self-triggered DMPC methods or the utilization of neural
networks for compressing data packets have been adopted.25–27 Despite these methods considering the effects of asynchronous
communication, they do not explicitly address the estimation error problem arising from asynchronous communication.

To address the aforementioned challenges and effectively manage state and input constraints in multi-quadrotor systems, this
paper introduces an EDMPC method. This strategy overcomes the limitations of traditional MPC, such as high computational
load and frequent communication requirements, while maintaining the advantages of handling system constraints, reducing
communication burden, and optimizing control performance. The key innovations and summarizations in this paper are outlined
as follows.

(1) A novel class of EDMPC strategy is implemented to mitigate the bandwidth usage in the communication topology of
multi-quadrotor systems while achieving high-precision formation and maintenance. Consideration is given to the limited
computational capacity of onboard devices and the reduced communication frequency within multi-quadrotor systems,
providing support for the stable formation composition and keeping control of multi-quadrotor systems.

(2) Addressing the challenge of bounded time-varying communication delays in real-time information exchange among multi-
quadrotor systems, a conceptual framework is proposed. This framework integrates predicted state information with
compensatory state information and combines them into a comprehensive information set transmitted to neighboring
quadrotors. Furthermore, a set of constraints on the transmitted states is designed to limit the deviation between the pre-
viously broadcasted state and the current predicted state. This ensures the stability of the formation configuration of the
multi-quadrotor systems in the presence of communication delays while reducing the risk of individual quadrotors in the
cluster losing connection or colliding.
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FIGURE 1 Directed graph  of multi-quadrotor systems and schematic diagram of the quadrotor.

The remainder of this paper is formulated as follows. Section 2 presents the modeling of the quadrotor system and control
objectives. Section 3 introduces the time-triggered mechanism and optimization problems. Theoretical analysis of recursive
feasibility and closed-loop stability are provided in Section 4. Section 5 conducts numerical simulations and SIL studies. Finally,
Section 6 presents the conclusions.

2 PRELIMINARIES AND CONTROL OBJECTIVE

2.1 Quadrotor modeling
Consider multi-quadrotor systems composed of 𝑁 quadrotors. The communication topology among quadrotors is described by
a directed graph (,) with  ∶= {(𝑖, 𝑗)|𝑖, 𝑗 ∈ , 𝑖 ≠ 𝑗} and  ∶= {1, 2, ..., 𝑁}. Let 𝑖 = {𝑗 | (𝑖, 𝑗) ∈ } denotes the set
of indices representing the neighbors of quadrotor 𝑖. An edge (𝑖, 𝑗) ∈  means that quadrotor 𝑖 can send a message to quadrotor
𝑗. To elucidate the dynamics of a singular quadrotor,28 it is imperative to define two distinct coordinate systems: the geodetic
coordinate system, denoted as 𝐸(𝑋𝑒, 𝑌𝑒, 𝑍𝑒), and the fuselage coordinate system, denoted as 𝐵(𝑋𝑏, 𝑌𝑏, 𝑍𝑏). As illustrated in
Figure 1, the dynamics of the 𝑖-th quadrotor (𝑖 = 1, 2, ..., 𝑁) can be formally articulated in the following manner:
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𝑥̈𝑖 = −𝑈𝑖,4
𝑚
(cos𝜓𝑖 sin 𝜃𝑖 cos𝜙𝑖 + sin𝜓𝑖 sin𝜙𝑖)

𝑦̈𝑖 = −𝑈𝑖,4
𝑚
(sin𝜓𝑖 sin 𝜃𝑖 cos𝜙𝑖 − cos𝜓𝑖 sin𝜙𝑖)

𝑧̈𝑖 = 𝑔 − 𝑈𝑖,4
𝑚

cos𝜙𝑖 cos 𝜃𝑖
𝜙̈𝑖 =

1
𝐼𝑥𝑥

(𝑈𝑖,1 + 𝑞𝑖𝑟𝑖(𝐼𝑦𝑦 − 𝐼𝑧𝑧))
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𝜓̈𝑖 =
1
𝐼𝑧𝑧

(𝑈𝑖,3 + 𝑝𝑖𝑞𝑖(𝐼𝑥𝑥 − 𝐼𝑦𝑦))

(1)

where (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) represent the positional coordinates of the 𝑖-th quadrotor, (𝜃𝑖, 𝜙𝑖, 𝜓𝑖) represent the pitch, roll, and yaw angles of
the 𝑖-th quadrotor, respectively. Moreover, the term (𝑝𝑖, 𝑞𝑖, 𝑟𝑖) represents the angular velocities of the 𝑖-th quadrotor in the body
coordinate system. The parameter 𝑚 represents the mass of the 𝑖-th quadrotor, while 𝑔 denotes the gravitational acceleration.
The input variables 𝑈𝑖,1, 𝑈𝑖,2, and 𝑈𝑖,3 are the driving torques in the roll, pitch, and yaw direction, respectively. Additionally,
𝑈𝑖,4 demonstrates a linear relationship with the lift force. The rotational inertia about the 𝑥, 𝑦, and 𝑧 axes in the body coordinate
system is denoted by 𝐼𝑥𝑥, 𝐼𝑦𝑦, and 𝐼𝑧𝑧, respectively. The horizontal and vertical movement of quadrotor 𝑖 is achieved by the
thrust and torque generated from the rotation of the propellers. The torque vector that drives the quadrotor is defined as follows:
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where 𝐹𝑖,1, ..., 𝐹𝑖,4 and 𝑀𝑖,1, ...,𝑀𝑖,4 represent the thrust and counter-rotating torque of the propellers, respectively. 𝑑 represents
the arm length of the quadrotor. The values of 𝐹𝑖,𝑛 and 𝑀𝑖,𝑛 can be approximately expressed as:

{

𝐹𝑖,𝑛 = 𝑐𝑡Ω2
𝑛, 𝑛 = 1, 2, 3, 4

𝑀𝑖,𝑛 = 𝑐𝜏Ω2
𝑛, 𝑛 = 1, 2, 3, 4

(3)

where Ω𝑛 represents the rotational speed of the 𝑛-th motor, 𝑐𝑡 and 𝑐𝜏 denote the thrust coefficient and the drag coefficient,
respectively.

Assumption 1: The permissible angles for maneuvering are notably constrained to values significantly smaller than those con-
ducive to gimbal locking under practical conditions during quadrotor attitude control. Consequently, the attitude control system
is consistently upheld with minor perturbations. Hence, the quadrotor flight can be effectively approximated under conditions
of small perturbations, governed by the following relationships: 𝜙̇𝑖 = 𝑝𝑖, 𝜃̇𝑖 = 𝑞𝑖, and 𝜓̇𝑖 = 𝑟𝑖.

An EMPC algorithm is proposed for the quadrotor system.29 The algorithm is integrated into multi-quadrotor systems, with
each rotor controlled to follow its corresponding reference quadrotor. The position of the reference quadrotor is determined
by combining the position information of the leader quadrotor with a predefined formation. The state vector and input vector
are defined as 𝜉𝑖 = [𝑥𝑖 𝑥̇𝑖 𝑦𝑖 𝑦̇𝑖 𝑧𝑖 𝑧̇𝑖 𝜙𝑖 𝜙̇𝑖 𝜃𝑖 𝜃̇𝑖 𝜓𝑖 𝜓̇𝑖]𝑇 and 𝑢𝑖 = [𝑈𝑖,1 𝑈𝑖,2 𝑈𝑖,3 𝑈𝑖,4]𝑇 , respectively. The quadrotor system can be
expressed by the following system:

𝜉̇𝑖(𝑡) = 𝑓𝑖(𝜉𝑖(𝑡), 𝑢𝑖(𝑡)) + 𝜔𝑖(𝑡) = 𝑓𝑖(𝜉𝑖(𝑡), 𝑢𝑖(𝑡), 𝜔𝑖(𝑡)) (4)

where 𝜔𝑖(𝑡) represents the additive disturbance experienced by the 𝑖-th quadrotor system.
Assumption 2: Within the individual channels corresponding to distinct facets of flight control, encompassing considerations

for external perturbations such as the influence of airflow on flight speed or uncertainties in the intrinsic characteristics of the
quadrotor, all such effects are constrained within predefined known upper limits. This constraint is mathematically articulated
through the conditions ||𝜔𝑖(𝑡)|| ≤ 𝜔.

Assumption 3: There exist constants 𝐿𝑝, 𝜈 ∈ ℝ≥0 such that the conditions ||𝑓 (𝜉, 𝑢)−𝑓 (𝜄, 𝑢)|| ≤ 𝐿𝑝||𝜉− 𝜄|| and ||𝑓 (𝑥, 𝑢, 𝜔)−
𝑓 (𝑥, 𝑢, 𝜔0)|| ≤ 𝜈||𝜔 − 𝜔0|| hold for all 𝜉, 𝜄 ∈ Ω, 𝑢 ∈  , 𝑖 ∈ .

Assumption 4: For quadrotor 𝑖, the local sampling instant 𝑡𝑖𝑘 and the communication delays 𝜏 𝑖𝑗𝑘 , satisfy: 1 ≤ 𝑡𝑖𝑘+1 − 𝑡
𝑖
𝑘 ≤ 𝐻̄

and 0 < 𝜏 𝑖𝑗𝑘 ≤ 𝜏. The largest admissible sampling interval 𝐻̄ and the largest communication delay 𝜏 are constrained within
predefined known upper limits. There is no disordering transmission among quadrotors.

2.2 Control objective
The control objective is to design a novel EDMPC strategy for the formation and keeping of multi-quadrotor systems, con-
sidering parameter uncertainties and external disturbances. The strategy aims to achieve the following two goals without the
need for high-frequency optimization solutions and intense information exchange, despite the presence of external disturbances,
communication delays, and input constraints.

R1) Formation and keeping of the multi-quadrotor systems according to a predetermined formation is achieved to accomplish
the assigned task, with the formation error below a specified threshold.

R2) It is guaranteed that the EDMPC scheme in the multi-quadrotor systems is recursively feasible and stable.

3 EDMPC FOR MULTI-QUADROTOR SYSTEMS WITH COMMUNICATION DELAYS

This section introduces an EDMPC framework designed for multi-quadrotor systems. The primary goal is to guide the formation
error of the entire multi-quadrotor systems toward predefined regions proximate to the origin while concurrently ensuring system
stability. In Section 3.1, the exploration of time-varying communication delays among multi-quadrotor systems is explained,
providing an impartial analysis of this phenomenon. Section 3.2 delves into the formulation of the optimization problem intrinsic
to MPC. Subsequently, an ETM is outlined to describe the procedure for identifying optimal time instances for solving the
relevant optimization problem.
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3.1 Asynchronous communication with time-varying delays
Define the sequence 𝑡𝑖𝑘 as the optimization time, quadrotor 𝑖 broadcasts the latest predicted position state sequence to its
neighbors, which is constructed as:

𝜉𝑏𝑖 (𝑠|𝑡
𝑖
𝑘) =

{

𝜉∗𝑖 (𝑠|𝑡
𝑖
𝑘), 𝑠 ∈ [𝑡𝑖𝑘, 𝑡

𝑖
𝑘 + 𝑇 )

𝜉∗𝑖 (𝑡
𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘), 𝑠 ∈ [𝑡𝑖𝑘 + 𝑇 , 𝑡

𝑖
𝑘+1 + 𝜏]

(5)

where 𝜉∗𝑖 (𝑠|𝑡
𝑖
𝑘) denotes the optimal predicted position state, and 𝜉∗𝑖 (𝑡

𝑖
𝑘 + 𝑇 |𝑡𝑖𝑘) denotes the final optimal predicted state. The

relationship between the triggering interval and the triggering time is given by 𝑡𝑖𝑘+1 = 𝑡𝑖𝑘 +𝐻
𝑖(𝑡𝑖𝑘).

In asynchronous multi-quadrotor systems, the concept of bounded time-varying communication delays is illustrated. Here,
𝜉𝑏𝑗 (𝑡

𝑖𝑗
𝑘 ) represents the latest message broadcasted by quadrotor 𝑗, where 𝑗 ∈ 𝑖 at the timestamp 𝑡𝑖𝑗𝑘 . The temporal reference 𝑡𝑖𝑗𝑘

is formally defined as 𝑡𝑖𝑗𝑘 = max{𝑡𝑗𝑙 ∈ 𝐼 ∣ 𝑡𝑗𝑙 < 𝑡
𝑖
𝑘}. The communication delays can be classified into two distinct types:

CASE 1 : 𝑡𝑖𝑘 − 𝑡
𝑖𝑗
𝑘 < 𝜏

𝑖𝑗
𝑘 ≤ 𝜏. This case indicates that quadrotor 𝑖, when solving the optimization problem at time 𝑡𝑖𝑘, does not

receive the latest state message from quadrotor 𝑗. Therefore, it is necessary to use the historical state message from quadrotor 𝑗.
CASE 2 : 0 ≤ 𝜏 𝑖𝑗𝑘 ≤ 𝑡𝑖𝑘 − 𝑡

𝑖𝑗
𝑘 . This case represents quadrotor 𝑖, when solving the optimization problem at time 𝑡𝑖𝑘, has already

received the latest state message from quadrotor 𝑗.
Therefore, when constructing the local optimization problem for quadrotor 𝑖, based on the communication topology graph

, the predicted state message 𝜉𝑏𝑗 (𝑡
𝑗
𝑘) is obtained from its neighboring quadrotor 𝑗. Utilizing the preloaded desired formation

information 𝑒𝑖𝑗𝑟 , where ‖𝑒𝑖𝑗‖ < 𝛼, the solution for its own desired state trajectory is obtained through the following process:

𝜉𝑖,𝑟(𝑡
𝑖𝑗
𝑘 ) =

(

𝜉𝑏𝑗 (𝑡
𝑖
𝑘|𝑡

𝑖
𝑘) + 𝑒

𝑖𝑗
𝑟 ,⋯ , 𝜉𝑏𝑗 (𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘) + 𝑒

𝑖𝑗
𝑟

)

(6)

Therefore, the objective function for formulating the EDMPC optimization problem is provided as follows:

𝐽𝑖(𝑡𝑖𝑘) =

𝑡𝑖𝑘+𝑇

∫
𝑡𝑖𝑘

𝐿𝑖(𝑠|𝑡𝑖𝑘)𝑑𝑠 + 𝑔𝑖(𝑡
𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘)

where 𝐽𝑖(𝑡𝑖𝑘) = 𝐽𝑖(𝜉𝑖(𝑡𝑖𝑘), 𝜉𝑖,𝑟(𝑡
𝑖
𝑘), 𝑢𝑖(𝑡

𝑖
𝑘)), 𝐿𝑖(𝑡

𝑖
𝑘) = 𝐿𝑖(𝜉𝑖(𝑡𝑖𝑘), 𝜉𝑖,𝑟(𝑡

𝑖
𝑘), 𝑢𝑖(𝑡

𝑖
𝑘)), 𝑔(𝑡

𝑖
𝑘 + 𝑇 |𝑡𝑖𝑘) = 𝑔(𝜉𝑖(𝑡𝑖𝑘 + 𝑇 |𝑡𝑖𝑘)), with the system

sampling time Δ𝑡, the prediction horizon 𝑁 , and 𝑇 = 𝑁 ⋅Δ𝑡 representing the prediction time. 𝐻 𝑖(𝑡𝑘𝑖 ) denotes the time interval
between two optimizations for quadrotor 𝑖. The term 𝜉𝑖(𝑡𝑖𝑘) =

(

𝜉𝑖(𝑡𝑖𝑘|𝑡
𝑖
𝑘),… , 𝜉𝑖(𝑡𝑖𝑘 + 𝑇 |𝑡

𝑖
𝑘)
)

denotes the collection of the predicted
state sequence, and 𝑢𝑖(𝑡𝑖𝑘) =

(

𝑢𝑖(𝑡𝑖𝑘|𝑡
𝑖
𝑘),… , 𝑢𝑖(𝑡𝑖𝑘 + 𝑇 |𝑡

𝑖
𝑘)
)

denotes the input sequence for quadrotor 𝑖.
The local stage cost of quadrotor 𝑖 is designed as:

𝐿𝑖(𝑠|𝑡𝑖𝑘) =||𝑢𝑖(𝑠|𝑡
𝑖
𝑘)||

2
𝑃 + ||𝜉𝑖(𝑠|𝑡𝑖𝑘) − 𝜉𝑖,𝑟(𝑠|𝑡

𝑖
𝑘)||

2
𝑄

The local terminal cost is designed as 𝑔𝑖(𝜉𝑖(𝑡𝑖𝑘 + 𝑇 |𝑡
𝑖
𝑘)) = ||𝜉𝑖(𝑡𝑖𝑘 + 𝑇 |𝑡

𝑖
𝑘)||

2
𝑅, where the weighting matrices 𝑃 , 𝑄, and 𝑅 are all

symmetric and positive definite. Additionally, the formation composition and keeping of quadrotors are achieved based on the
coupling cost term ||𝜉𝑖(𝑠|𝑡𝑖𝑘) − 𝜉𝑖,𝑟(𝑠|𝑡

𝑖
𝑘)||

2
𝑄.

3.2 Disturbance-based EDMPC design
In this section, an ETM is applied to a quadrotor system, aiming to reduce the computational load on the onboard device and
determine the next time 𝑡𝑖𝑘+1 for solving an optimization problem. This mechanism operates on the principle of identifying the
discrepancy between the actual trajectory and the optimally predicted trajectory. Recalculating the control input sequence is
imperative once the discrepancy exceeds the predefined threshold. To formulate the ETM, a time instant 𝑡𝑖𝑘+1 is defined as:

𝑡𝑖𝑘+1 ≜ inf
𝑠>𝑡𝑖𝑘

{

𝑠 ∶ ||𝜉𝑖
(

𝑠|𝑡𝑖𝑘
)

− 𝜉𝑖
(

𝑠|𝑡𝑖𝑘
)

|| > 
}

(7)

where 𝑠 ∈ (𝑡𝑖𝑘, 𝑡
𝑖
𝑘 + 𝑇 ),  = 𝜔̄𝜁𝑇 𝑒𝐿𝑝𝜁𝑇 is trigger level, 𝜁 ∈ (0, 1) is an adjustment parameter, 𝐿𝑝 is tepshe Lipschitz constant,

and 𝜔̄ is the disturbance bound. It is assumed that the optimization problem is automatically initiated at the initial time 𝑡0.
Additionally, the ETM is activated at each time instant. Define the iteration interval 𝐻 𝑖(𝑡𝑖𝑘) = 𝑇 . This means that the error
between the actual state and the optimal state of the quadrotor within the prediction time has not reached the threshold. Then,
the optimal control sequence is fully executed. Thus, the triggering time 𝑡𝑖𝑘+1 is defined as:

𝑡𝑖𝑘+1 = min{𝑡𝑖𝑘+1, 𝑡
𝑖
𝑘 + 𝑇 } (8)
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Theorem 1. Consider that the quadrotor system (4) with Assumptions 1-4 are satisfied and the triggered mechanisms (7) and
(8) are employed. Then, the lower and upper bounds of the event-triggered inter-execution time are given by inf

𝑘∈ℕ
{𝑡𝑖𝑘+1−𝑡

𝑖
𝑘 ≥ 𝜁𝑇 }

and sup
𝑘∈ℕ

{𝑡𝑖𝑘+1 − 𝑡
𝑖
𝑘 ≤ 𝑇 }, respectively.

Proof. The upper bound of the inter-execution time directly follows from (8). To prove the result on the lower bound, ||𝜉𝑖(𝑠) −
𝜉∗𝑖 (𝑠)|| is considered at the time instant 𝑡𝑖𝑘. By applying the triangle inequality, ||𝜉𝑖(𝑠) − 𝜉∗𝑖 (𝑠|𝑡

𝑖
𝑘)|| ≤ 𝜔̄(𝑠 − 𝑡𝑖𝑘) + 𝐿𝑝 ∫

𝑠
𝑡𝑖𝑘
||𝜉𝑖(𝑡) −

𝜉∗𝑖 (𝑡|𝑡
𝑖
𝑘)||𝑑𝑡 is obtained. By using the Gronwall–Bellman inequality, it is derived that ||𝜉𝑖(𝑠) − 𝜉∗𝑖 (𝑠|𝑡

𝑖
𝑘)|| ≤ 𝜔̄(𝑠 − 𝑡𝑖𝑘)𝑒

𝐿𝑝(𝑠−𝑡𝑖𝑘).
According to (7), 𝑡𝑖𝑘+1 ≥ 𝑡𝑖𝑘 + 𝜁𝑇 is obtained. By using (8), it follows that inf

𝑘∈ℕ
{𝑡𝑖𝑘+1 − 𝑡

𝑖
𝑘 ≥ 𝜁𝑇 }. The proof is completed.

The aforementioned ETM is deployed to each quadrotor to implement the EDMPC algorithm. For quadrotor 𝑖 at 𝑡𝑖𝑘, the
optimization problem 𝑖(𝑡𝑖𝑘) to be solved is formulated as:

min
𝑢𝑖(𝑠|𝑡𝑘)

𝐽𝑖(𝑡𝑖𝑘) = 𝐽𝑖(𝜉𝑖(𝑡𝑖𝑘), 𝜉𝑖,𝑟(𝑡
𝑖
𝑘), 𝑢𝑖(𝑡

𝑖
𝑘)) (9)

s.t.

𝜉𝑖(0|𝑡𝑖𝑘) = 𝜉𝑖(𝑡𝑖𝑘),

‖𝜉𝑖((𝑠|𝑡𝑘))‖ ⩽ 𝜀𝑇
𝑠 − 𝑡𝑘

,

𝑢𝑖(𝑠|𝑡𝑖𝑘) ∈  ,
𝜉̇𝑖(𝑠|𝑡𝑖𝑘) = 𝑓𝑖(𝜉𝑖(𝑠|𝑡𝑖𝑘), 𝑢𝑖(𝑠|𝑡

𝑖
𝑘)),

||𝜉𝑖(𝑠|𝑡𝑖𝑘) − 𝜉
𝑏
𝑖 (𝑠 + 𝑡

𝑖
𝑘 − 𝑡

𝑖
𝑘−1|𝑡

𝑖
𝑘−1)|| ≤ Δ𝑖,

𝜉𝑖(𝑡𝑘 + 𝑇 |𝑡𝑘) ∈ Ω𝜖 .

(10)

where Ω𝜖 =
{

𝜉𝑖(𝑡𝑖𝑘 + 𝑇 ) ∶ ||𝜉𝑖(𝑡𝑖𝑘 + 𝑇 )|| ≤ 𝜖
}

as the terminal region. The term Δ𝑖 = 𝐿𝑇−𝜁𝑇𝑝 is a designed parameter and  is
the control input constraint. The proposed event-triggered asynchronous DMPC method is concisely delineated in Algorithm 1.

Remark 1. It is imperative to emphasize that the system involved in the optimization problem (9) is presumed to be nominal,
implying that the model within the controller remains undisturbed. By resolving the optimization problem 𝑖(𝑡𝑖𝑘) subject to (10)
over the interval 𝑠 ∈ (𝑡𝑖𝑘, 𝑡

𝑖
𝑘+𝑇 ], it is possible to ascertain the optimal predictive control sequence 𝑢∗𝑖 (𝑠|𝑡

𝑖
𝑘) and the corresponding

optimal state 𝜉∗𝑖 (𝑠|𝑡
𝑖
𝑘). However, due to the deployment of the EDMPC strategy by each quadrotor, which is subject to different

disturbances, resulting in asynchronous communication instants, the effects caused by communication delays are amplified.
Hence, to ensure that multi-quadrotor systems can complete tasks with high precision in such a complex environment, recursive
feasibility and stability analysis must be conducted.

4 FEASIBILITY AND STABILITY ANALYSIS

To evaluate the feasibility of the EDMPC strategy and confirm the stability of multi-quadrotor systems, the analysis commences
with the formulation of a local feedback controller 𝑢𝜅𝑖 = [𝑈𝑖,1𝜅𝑓 , 𝑈𝑖,2𝜅𝑓 , 𝑈𝑖,3𝜅𝑓 , 𝑈𝑖,4𝜅𝑓 ]

𝑇 and the establishment of a terminal region
Ω for the nominal quadrotor system of the followers. The terminal region Ω =

{

𝜉𝑖(𝑠|𝑡𝑖𝑘) ∶ ||𝜉𝑖(𝑠|𝑡𝑖𝑘)|| ≤ 𝑟
}

for the nominal
system is selected to maintain invariance through the application of the local control law 𝑢𝜅𝑖 . Thereafter, a robust terminal region
Ω𝜖 ⊆ Ω is used to address disturbances in multi-quadrotor systems. In the end, the proposed algorithm is analyzed for recursive
feasibility and stability based on two types of communication delay scenarios.

4.1 Feasibility analysis
Theorem 2. Consider the quadrotor system described by (4), and suppose that the optimization problem solver is triggered by
mechanism (7), and the triggering time is defined as (8). By implementing the EDMPC scheme, the optimization problem (9)
under constraints (10) is recursively feasible when the following two conditions are satisfied.

(1) The optimization problem (9) can be solved at the initial time 𝑡0 with zero communication delay.
(2) The upper bound of disturbance 𝜔̄ and positive constants 𝛿 exist such that 𝜔̄ ⩽ 𝑒−𝐿𝑝𝑇

𝛿
(𝑟 − 𝜖), 𝛿 ⩾ 1

𝐿𝑝
ln 𝑟

𝜖
and 𝛽𝑟 ⩽ 𝜖 < 𝑟,

where 𝛿 = 𝜁𝑇 and 𝛽 = 𝑇−𝛿
𝑇

.
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Algorithm 1 Event-triggered asynchronous DMPC algorithm
Require: For quadrotor 𝑖, 𝑖 ∈ , the weighting matrices 𝑃 , 𝑄, 𝑅, the prediction horizon 𝑁 , the sampling period Δ𝑡, the

terminal set Ω,the parameter Δ𝑖, the initial state 𝜉𝑖(𝑡𝑖𝑘), and other related parameters. Set 𝑘 = 0, 𝑡𝑖𝑘 = 0.
1: while The control action is not stopped do
2: if Update condition (7) is triggered then
3: Solve Problem 𝑖(𝑡𝑖𝑘) and sample local system state;
4: if Obtain neighboring quadrotors information then
5: Update the predicted state sequence 𝜉𝑏𝑗 (𝑠|𝑡

𝑗
𝑘);

6: else
7: Use the historical predicted state sequence 𝜉𝑏𝑗 (𝑠|𝑡

𝑗
𝑘−1);

8: end if
9: Construct the state sequence 𝜉𝑖,𝑟(𝑠|𝑡

𝑗
𝑘) as in (6);

10: Solve the Problem 𝑖(𝑡𝑖𝑘) to generate 𝑢∗𝑖 (𝑠|𝑡
𝑖
𝑘);

11: Broadcast 𝜉𝑏𝑖 (𝑠|𝑡
𝑖
𝑘) as in (5) to its neighbors;

12: Apply the first input in the control sequence 𝑢∗𝑖 (𝑠|𝑡
𝑖
𝑘) to quadrotor 𝑖 and update the control sequence;

13: 𝑘 = 𝑘 + 1;
14: else
15: Apply the optimal historical input in the control sequence 𝑢∗𝑖 (𝑠|𝑡

𝑖
𝑘) to quadrotor 𝑖 and update the control sequence;

16: end if
17: end while

Proof. At time 𝑡𝑖𝑘, the optimal solution for problem 𝑖(𝑡𝑖𝑘) is 𝑢∗𝑖 (𝑡
𝑖
𝑘) = {𝑢∗𝑖 (𝑡

𝑖
𝑘|𝑡

𝑖
𝑘), 𝑢

∗
𝑖 (𝑡

𝑖
𝑘+Δ𝑡|𝑡𝑖𝑘),… , 𝑢∗𝑖 (𝑡

𝑖
𝑘+𝑇 |𝑡

𝑖
𝑘)}, corresponding

to the optimal state trajectory of the system 𝜉∗𝑖 (𝑡
𝑖
𝑘) = {𝜉∗𝑖 (𝑡

𝑖
𝑘|𝑡

𝑖
𝑘), 𝜉

∗
𝑖 (𝑡

𝑖
𝑘 + Δ𝑡|𝑡𝑖𝑘),… , 𝜉∗𝑖 (𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘)}. All components of the afore-

mentioned optimal solution and corresponding state trajectory satisfy the constraint conditions (10). At time 𝑡𝑖𝑘+1, the solution
to problem 𝑖(𝑡𝑖𝑘) is constructed as:

𝑢̄𝑖(𝑠|𝑡𝑖𝑘+1) =
{

𝑢∗𝑖 (𝑠|𝑡
𝑖
𝑘), 𝑠 ∈ [𝑡𝑖𝑘+1, 𝑡

𝑖
𝑘 + 𝑇 )

𝑢𝜅𝑖 (𝑠|𝑡
𝑖
𝑘), 𝑠 ∈ [𝑡𝑖𝑘 + 𝑇 , 𝑡

𝑖
𝑘+1 + 𝑇 ]

(11)

Consider the time interval 𝑠 ∈ [𝑡𝑖𝑘+1, 𝑡
𝑖
𝑘 + 𝑇 ). The difference between the feasible states 𝜉𝑖(𝑠|𝑡𝑖𝑘+1) and the optimal states

𝜉∗𝑖 (𝑠|𝑡
𝑖
𝑘) satisfies:

||𝜉𝑖(𝑠|𝑡𝑖𝑘+1) − 𝜉
∗
𝑖 (𝑠|𝑡

𝑖
𝑘)||

= ||𝜉𝑖(𝑡𝑖𝑘+1) − 𝜉𝑖(𝑡
𝑖
𝑘+1|𝑡

𝑖
𝑘) − 𝐿𝑝

𝛾

∫
𝑡𝑖𝑘+1

||𝜉𝑖(𝑠|𝑡𝑖𝑘+1) − 𝜉
∗
𝑖 (𝑠|𝑡

𝑖
𝑘)||𝑑𝛾

≤  + 𝐿𝑝

𝛾

∫
𝑡𝑖𝑘+1

||𝜉𝑖(𝑠|𝑡𝑖𝑘+1) − 𝜉
∗
𝑖 (𝑠|𝑡

𝑖
𝑘)||𝑑𝛾

≤ 𝑒𝐿𝑝(𝑠−𝑡𝑖𝑘+1) (12)

Substitute the time instant 𝑠 = 𝑡𝑖𝑘 + 𝑇 and  = 𝜔̄𝛿𝑒𝐿𝑝𝛿 , where 𝛿 = 𝜁𝑇 . The following expression is obtained:

||𝜉𝑖(𝑡𝑖𝑘 + 𝑇 |𝑡
𝑖
𝑘+1)|| ≤ ||𝜉∗𝑖 (𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘)|| + 𝜔̄𝛿𝑒

𝐿𝑝𝑇 (13)

Since ||𝜉∗𝑖 (𝑡
𝑖
𝑘 + 𝑇 |𝑡𝑘)|| ≤ 𝜖 and 𝜔̄ ⩽ 𝑒−𝐿𝑝𝑇

𝛿
(𝑟 − 𝜖), the following expression is obtained:

||𝜉𝑖(𝑡𝑖𝑘 + 𝑇 |𝑡
𝑖
𝑘+1)|| ≤ 𝑟 (14)

which infers that 𝜉𝑖(𝑡𝑖𝑘 + 𝑇 |𝑡
𝑖
𝑘+1) ∈ Ω holds. Subsequently, to demonstrate the validity of the state constraint within the interval

𝑠 ∈ [𝑡𝑖𝑘+1, 𝑡
𝑖
𝑘 + 𝑇 ) from (12), the following expression can be derived:

||𝜉𝑖(𝑠|𝑡𝑖𝑘+1)|| ≤
𝜖𝑇
𝑠 − 𝑡𝑖𝑘

+ (𝑟 − 𝜖) (15)
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One has that 𝑟 − 𝜖 ⩽ 𝛿
𝑇−𝛿

𝜖 ⩽ 𝑡𝑖𝑘+1−𝑡
𝑖
𝑘

(𝑠−𝑡𝑖𝑘)(𝑠−𝑡
𝑖
𝑘+1)
𝑇 𝜖. By substituting this condition to (15), the following expression is derived:

||𝜉𝑖(𝑠|𝑡𝑖𝑘+1)|| ≤
𝑇

𝑠 − 𝑡𝑖𝑘+1
𝜖 (16)

Hence, it can be concluded that the controller (11) can drive the terminal state into the set Ω𝜖 . By mathematical induction,
this ensures that the optimization problem 𝑖(𝑡𝑖𝑘) has an iterative feasibility at every triggering moment 𝑡𝑖𝑘.

4.2 Stability analysis
Theorem 3. The multi-quadrotor systems employing the proposed EDMPC scheme are input-state practical stable (ISpS)
under communication delays when constant 𝑙 > 0 is satisfied, where 𝑙 = 4𝜆(𝑄)𝜖2 − 2𝜆̄(𝑄)𝜔̄(2𝜖+𝛼)

√

2𝐿𝑝
( 𝑇

2

𝛿
− 𝑇 )

1
2 (𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

1
2 −

𝜆̄(𝑄)𝜔̄2𝛿
2𝐿𝑝

(𝑒2𝐿𝑝𝑇 −𝑒2𝐿𝑝𝛿)− (3𝑟+𝜖)𝜆̄(𝑅)𝜔̄𝑒𝐿𝑝𝑇 −(𝜆̄(𝑄)(𝑇 −𝛿)+ 𝜆̄(𝑅))𝜔̄2𝑒2𝐿𝑝𝛿𝐿2(𝑇−𝛿)
𝑝 𝛿−2𝜔̄𝑒𝐿𝑝𝛿𝐿𝑇−𝛿𝑝 ((𝛼(𝑇 −𝛿)+2𝜖𝑇 ln( 𝑇

𝛿
))𝜆̄(𝑄)+

2𝜖𝜆̄(𝑅)).
The formation error finally converges to the set 𝕊 as follows:

𝕊 = {𝜉𝑖 − 𝜉𝑖,𝑟 ∶ ||𝜉𝑖 − 𝜉𝑖,𝑟||2 ≤ 𝜔̄2𝛿2𝑒2𝐿𝑝𝛿 + 2𝜖𝜔̄𝛿𝑒𝐿𝑝𝛿 + 1
𝜆(𝑄)

(
2𝜆̄(𝑄)𝜔̄𝜖
𝐿𝑝

(𝑒𝐿𝑝𝑇 − 𝑒𝐿𝑝𝛿) +
𝜆̄(𝑄)𝜔̄2𝛿
2𝐿𝑝

(𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

+
2𝜆̄(𝑄)𝜔̄(𝜖 + 𝛼)

√

2𝐿𝑝
(𝑇

2

𝛿
− 𝑇 )

1
2 (𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

1
2 + (3𝑟 + 𝜖)𝜆̄(𝑅)𝜔̄𝑒𝐿𝑝𝑇 + (𝜆̄(𝑄)(𝑇 − 𝛿)

+ 𝜆̄(𝑅))𝜔̄2𝑒2𝐿𝑝𝛿𝐿2(𝑇−𝛿)
𝑝 𝛿 + 2𝜔̄𝑒𝐿𝑝𝛿𝐿𝑇−𝛿𝑝 ((𝛼(𝑇 − 𝛿) + 2𝜖𝑇 ln(𝑇

𝛿
))𝜆̄(𝑄) + 2𝜖𝜆̄(𝑅))))} (17)

where 𝜆̄(𝑄) and 𝜆(𝑄) denote the largest and smallest eigenvalues of the matrix 𝑄.

Proof. Select a Lyapunov function:

𝑉 (𝑡𝑘) = 𝐽 (𝜉∗𝑖 (𝑡
𝑖
𝑘), 𝑢

∗
𝑖 (𝑡

𝑖
𝑘)) (18)

Consider the difference in the values of the Lyapunov function at 𝑡𝑖𝑘 and 𝑡𝑖𝑘+1,

Δ𝑉 = 𝑉 (𝑡𝑖𝑘+1) − 𝑉 (𝑡𝑖𝑘) ≤ 𝐽 (𝜉𝑖(𝑡𝑖𝑘+1), 𝑢̄𝑖(𝑡
𝑖
𝑘+1)) − 𝐽 (𝜉

∗
𝑖 (𝑡

𝑖
𝑘), 𝑢

∗
𝑖 (𝑡

𝑖
𝑘)) (19)

According to 𝑢̄𝑖(𝑠|𝑡𝑖𝑘+1) = 𝑢∗𝑖 (𝑠|𝑡
𝑖
𝑘), split the terms (19) into Δ𝑉 =

∑3
𝑖=1 Δ𝑉𝑖, such that Δ𝑉𝑖, 𝑖 = 1, 2, 3 as follows:

Δ𝑉1 =

𝑡𝑖𝑘+𝑇

∫
𝑡𝑖𝑘+1

(

||𝜉𝑖(𝑠|𝑡𝑖𝑘+1) − 𝜉𝑖,𝑟(𝑠|𝑡
𝑖
𝑘+1)||

2
𝑄 − ||𝜉∗𝑖 (𝑠|𝑡

𝑖
𝑘) − 𝜉𝑖,𝑟(𝑠|𝑡

𝑖
𝑘)||

2
𝑄

)

𝑑𝑠 (20)

Δ𝑉2 =

𝑡𝑖𝑘+1+𝑇

∫
𝑡𝑖𝑘+𝑇

(

(||𝜉𝑖(𝑠|𝑡𝑖𝑘+1) − 𝜉𝑖,𝑟(𝑠|𝑡
𝑖
𝑘+1)||

2
𝑄 + ||𝑢̄𝑖(𝑠|𝑡𝑖𝑘+1)||

2
𝑃

)

𝑑𝑠 + ||𝜉𝑖(𝑡𝑖𝑘+1 + 𝑇 |𝑡
𝑖
𝑘+1)||

2
𝑅 − ||𝜉∗𝑖 (𝑡

𝑖
𝑘 + 𝑇 |𝑡𝑘)||

2
𝑅 (21)

Δ𝑉3 = −

𝑡𝑖𝑘+1

∫
𝑡𝑖𝑘

(

||𝜉∗𝑖 (𝑠|𝑡
𝑖
𝑘) − 𝜉𝑖,𝑟(𝑠|𝑡

𝑖
𝑘)||

2
𝑄 + ||𝑢∗𝑖 (𝑠|𝑡

𝑖
𝑘)||

2
𝑃

)

𝑑𝑠 (22)

The scenario where ||𝜉𝑖(𝑡𝑖𝑘|𝑡
𝑖
𝑘)|| ≥ 𝜖 and time-varying communication delays in CASE 1 are considered first. In this case, the

predicted states of neighbors transmitted at the previously triggering time instant 𝜉𝑏𝑗 (𝑡
𝑖
𝑘+1) = (𝜉𝑏𝑗 (𝐻

𝑖+𝑡𝑖𝑘|𝑡
𝑖
𝑘),⋯ , 𝜉𝑏𝑗 (𝐻

𝑖+𝑡𝑖𝑘+𝑇 |𝑡
𝑖
𝑘))

will be used. For Δ𝑉1, the following expression can be derived:

Δ𝑉1 ≤

𝑡𝑖𝑘+𝑇

∫
𝑡𝑖𝑘+1

((||𝜉𝑖(𝑠|𝑡𝑖𝑘+1) − 𝜉
∗
𝑖 (𝑠|𝑡

𝑖
𝑘)||𝑄) × ((||𝜉𝑖(𝑠|𝑡𝑖𝑘+1)||𝑄 + ||𝜉∗𝑖 (𝑠|𝑡

𝑖
𝑘)||𝑄 + 2||𝜉𝑖,𝑟(𝑠|𝑡𝑖𝑘)||𝑄))𝑑𝑠 (23)

According to term (5) and Theorem 2, it is known that ||𝜉𝑏𝑗 (𝑠|𝑡
𝑖
𝑘)|| < 𝑟. Furthermore, based on (7), it can be inferred that

𝜉𝑖(𝑠|𝑡𝑖𝑘) − 𝜉
∗
𝑖 (𝑠|𝑡

𝑖
𝑘) ≤ . By substituting this result and employing the triangle inequality and Hölder’s inequality, the following
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expression can be derived:

Δ𝑉1 ≤

𝑡𝑖𝑘+𝑇

∫
𝑡𝑖𝑘+1

[𝜆̄(𝑄)𝜔̄𝛿𝑒𝐿𝑝(𝑠+𝛿−𝑡
𝑖
𝑘+1)(2||𝜉∗𝑖 (𝑠|𝑡

𝑖
𝑘)|| + 𝜔̄𝛿𝑒

𝐿𝑝(𝑠+𝛿−𝑡𝑖𝑘+1) + 2||𝜉𝑖,𝑟(𝑠|𝑡𝑖𝑘)||)]𝑑𝑠

≤ (

𝑡𝑖𝑘+𝑇

∫
𝑡𝑖𝑘+1

||𝜉∗𝑖 (𝑠|𝑡
𝑖
𝑘)||

2 + ||𝜉𝑖,𝑟(𝑠|𝑡𝑖𝑘)||
2𝑑𝑠)

1
2 ×

2𝜆̄(𝑄)𝜔̄𝛿
√

2𝐿𝑝
(𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

1
2 +

𝜆̄(𝑄)𝜔̄2𝛿2

2𝐿𝑝
(𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

≤ 2𝜆̄(𝑄)𝜔̄𝛿(2𝜖 + 𝛼)
√

2𝐿𝑝
(𝑇

2

𝛿
− 𝑇 )

1
2 (𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

1
2 +

𝜆̄(𝑄)𝜔̄2𝛿2

2𝐿𝑝
(𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿) (24)

For Δ𝑉2, after taking the derivative concerning constraint (10) and substituting, the following expression can be derived:

Δ𝑉2 ≤ ||𝜉𝑖(𝑡𝑖𝑘 + 𝑇 |𝑡
𝑖
𝑘+1) − 𝜉𝑖,𝑟(𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘)||

2
𝑅 − ||𝜉∗𝑖 (𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘) − 𝜉𝑖,𝑟(𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘)||

2
𝑅

≤ 𝜆̄(𝑅)(||𝜉𝑖(𝑡𝑖𝑘 + 𝑇 |𝑡
𝑖
𝑘+1) − 𝜉

∗
𝑖 (𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘)||) × ((||𝜉𝑖(𝑡𝑖𝑘 + 𝑇 |𝑡

𝑖
𝑘+1)|| + ||𝜉∗𝑖 (𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘)|| + 2||𝜉𝑖,𝑟(𝑡𝑖𝑘 + 𝑇 |𝑡

𝑖
𝑘)||))

≤ (3𝑟 + 𝜖)𝜆̄(𝑅)𝜔̄𝛿𝑒𝐿𝑝𝑇 (25)

For Δ𝑉3, ||𝜉(𝑡𝑖𝑘+1|𝑡
𝑖
𝑘)|| > 𝜖 is considered. This indicates that for 𝑠 ∈ [𝑡𝑖𝑘, 𝑡

𝑖
𝑘+1), ||𝜉(𝑠|𝑡

𝑖
𝑘)|| > 𝜖, the following expression can

be derived:

Δ𝑉3 ≤ −

𝑡𝑖𝑘+1

∫
𝑡𝑖𝑘

||𝜉∗𝑖 (𝑠|𝑡
𝑖
𝑘) − 𝜉𝑖,𝑟(𝑠|𝑡

𝑖
𝑘)||

2
𝑄𝑑𝑠 ≤ −4𝜆(𝑄)𝛿𝜖2 (26)

For Δ𝑉 =
∑3
𝑖=1 Δ𝑉𝑖, the following expression can be derived:

Δ𝑉 ≤ 2𝜆̄(𝑄)𝜔̄𝛿(2𝜖 + 𝛼)
√

2𝐿𝑝
(𝑇

2

𝛿
− 𝑇 )

1
2 (𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

1
2 +

𝜆̄(𝑄)𝜔̄2𝛿2

2𝐿𝑝
(𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

+ (3𝑟 + 𝜖)𝜆̄(𝑅)𝜔̄𝛿𝑒𝐿𝑝𝑇 − 4𝜆(𝑄)𝛿𝜖2 (27)

According to equation (27), Δ𝑉 < −𝑙𝛿 is obtained. Let 𝜇 = 𝑉 (0)−𝛿𝓁
𝑉 (0)

, 𝑉 (𝑡𝑖𝑘+1) < 𝜇𝑉 (𝑡𝑖𝑘), where 𝜇 ∈ (0, 1) as a decreasing
rate. This implies that the multi-quadrotor systems asymptotically converge to the desired velocity and desired formation within
a finite time. When the state enters the terminal set, i.e., 𝜉(𝑡𝑖𝑘|𝑡

𝑖
𝑘) ∈ Ω𝜖 , Δ𝑉1 are re-scaled as:

Δ𝑉1 ≤

𝑡𝑖𝑘+𝑇

∫
𝑡𝑖𝑘+1

[𝜆̄(𝑄)𝜔̄𝛿𝑒𝐿𝑝(𝑠+𝛿−𝑡
𝑖
𝑘+1)(2||𝜉𝑖(𝑠|𝑡𝑖𝑘)|| + 𝜔̄𝛿𝑒

𝐿𝑝(𝑠+𝛿−𝑡𝑖𝑘+1) + 2||𝜉𝑖,𝑟(𝑠|𝑡𝑖𝑘)||)]𝑑𝑠

≤ 2𝜆̄(𝑄)𝜔̄𝛿(𝜖)
𝐿𝑝

(𝑒𝐿𝑝𝑇 − 𝑒𝐿𝑝𝛿) +
𝜆̄(𝑄)𝜔̄2𝛿2

2𝐿𝑝
(𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿) +

2𝜆̄(𝑄)𝜔̄𝛿(𝜖 + 𝛼)
√

2𝐿𝑝
(𝑇

2

𝛿
− 𝑇 )

1
2 (𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

1
2 (28)

For Δ𝑉3, suppose that the local controller 𝑢𝜅𝑖 (𝑠|𝑡
𝑖
𝑘) is applied to the system. Then, ||𝜉∗𝑖 (𝑠|𝑡

𝑖
𝑘)− 𝜉𝑖,𝑟(𝑠|𝑡

𝑖
𝑘)||𝑄 obviously decreases

with respect to time 𝑠. Furthermore, since 𝑢𝜅𝑖 (𝑠|𝑡
𝑖
𝑘) is an optimal solution, the following expression can be derived:

Δ𝑉3 ≤ −

𝑡𝑖𝑘+1

∫
𝑡𝑖𝑘

(||𝜉∗𝑖 (𝑠|𝑡
𝑖
𝑘) − 𝜉𝑖,𝑟(𝑠|𝑡

𝑖
𝑘)||

2
𝑄 + ||𝑢∗𝑖 (𝑠|𝑡

𝑖
𝑘)||

2
𝑃 )𝑑𝑠

≤ −𝜆(𝑄)𝛿||𝜉∗𝑖 (𝑡
𝑖
𝑘+1|𝑡

𝑖
𝑘) − 𝜉𝑖,𝑟(𝑡

𝑖
𝑘+1|𝑡

𝑖
𝑘)||

2

≤ −𝜆(𝑄)𝛿||𝜉𝑖(𝑡𝑖𝑘+1) − 𝜉𝑖,𝑟(𝑡
𝑖
𝑘+1|𝑡

𝑖
𝑘)||

2 + 𝜆(𝑄)𝜔̄2𝛿3𝑒2𝐿𝑝𝛿 + 2𝜆(𝑄)𝜖𝜔̄𝛿2𝑒𝐿𝑝𝛿 (29)
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The summation Δ𝑉 =
∑3
𝑖=1 Δ𝑉𝑖 yields the following expression:

Δ𝑉 ≤ 2𝜆̄(𝑄)𝜔̄𝛿𝜖
𝐿𝑝

(𝑒𝐿𝑝𝑇 − 𝑒𝐿𝑝𝛿) +
𝜆̄(𝑄)𝜔̄2𝛿2

2𝐿𝑝
(𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿) +

2𝜆̄(𝑄)𝜔̄𝛿(𝜖 + 𝛼)
√

2𝐿𝑝
(𝑇

2

𝛿
− 𝑇 )

1
2 (𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

1
2

− 𝜆(𝑄)𝛿||𝜉𝑖(𝑡𝑖𝑘+1) − 𝜉𝑖,𝑟(𝑡
𝑖
𝑘+1|𝑡

𝑖
𝑘)||

2 + 𝜆(𝑄)𝜔̄2𝛿3𝑒2𝐿𝑝𝛿 + 2𝜆(𝑄)𝜖𝜔̄𝛿2𝑒𝐿𝑝𝛿 + (3𝑟 + 𝜖)𝜆̄(𝑅)𝜔̄𝛿𝑒𝐿𝑝𝑇

≤ −𝜆(𝑄)𝛿||𝜉𝑖(𝑡𝑖𝑘+1) − 𝜉𝑖,𝑟(𝑡
𝑖
𝑘+1|𝑡

𝑖
𝑘)||

2 + 𝐹 (𝜔̄) (30)

where 𝐹 (𝜔̄) = 2𝜆̄(𝑄)𝜔̄𝛿𝜖
𝐿𝑝

(𝑒𝐿𝑝𝑇 − 𝑒𝐿𝑝𝛿) + 𝜆̄(𝑄)𝜔̄2𝛿2

2𝐿𝑝
(𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿) + 2𝜆̄(𝑄)𝜔̄𝛿(𝜖+𝛼)

√

2𝐿𝑝
( 𝑇

2

𝛿
− 𝑇 )

1
2 (𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

1
2 + (3𝑟 + 𝜖)𝜆̄(𝑅)𝜔̄𝛿𝑒𝐿𝑝𝑇 +

𝜆(𝑄)𝜔̄2𝛿3𝑒2𝐿𝑝𝛿 + 2𝜆(𝑄)𝜖𝜔̄𝛿2𝑒𝐿𝑝𝛿 . It is a class of K-class functions concerning 𝜔̄. Subsequently, the case is considered where
||𝜉∗𝑖 (𝑠|𝑡𝑘)|| ≥ 𝜖 and time-varying communication delays in CASE 2. The latest predicted states of neighbors, denoted as
𝜉𝑏𝑗 (𝑡

𝑖
𝑘+1) = (𝜉𝑏𝑗 (𝑡

𝑖
𝑘+1|𝑡

𝑖
𝑘+1), . . . , 𝜉𝑏𝑗 (𝑡

𝑖
𝑘+1 + 𝑇 |𝑡

𝑖
𝑘+1)), will be received and used by quadrotor 𝑖. For Δ𝑉1, applying the consistency

constraint (10) and triangle inequality, the following relationship is established:

||𝜉𝑖(𝑠|𝑡𝑖𝑘+1) − 𝜉𝑖,𝑟(𝑠|𝑡
𝑖
𝑘+1)||

2
𝑄 ≤ ||𝜉𝑖(𝑠|𝑡𝑖𝑘+1) − 𝜉𝑖,𝑟(𝑠|𝑡

𝑖
𝑘)||

2
𝑄 + 2||𝜉𝑖(𝑠|𝑡𝑖𝑘+1) − 𝜉𝑖,𝑟(𝑠|𝑡

𝑖
𝑘)||𝜆̄(𝑄)Δ𝑗 + 𝜆̄(𝑄)Δ2

𝑗 . (31)

where Δ𝑗 = 𝜔̄𝛿𝑒𝐿𝑝𝛿𝐿𝑇−𝛿𝑝 .
For Δ𝑉1, the following expression is obtained:

Δ𝑉1 ≤

𝑡𝑖𝑘+𝑇

∫
𝑡𝑖𝑘+1

(||𝜉𝑖(𝑠|𝑡𝑖𝑘+1) − 𝜉𝑖,𝑟(𝑠|𝑡
𝑖
𝑘)||

2
𝑄 − ||𝜉∗𝑖 (𝑠|𝑡

𝑖
𝑘) − 𝜉𝑖,𝑟(𝑠|𝑡

𝑖
𝑘)||

2
𝑄) 𝑑𝑠

+ (𝛼(𝑇 − 𝛿) + 2𝜖𝑇 ln(𝑇
𝛿
))𝜆̄(𝑄)Δ𝑗 + (𝑇 − 𝛿)𝜆̄(𝑄)Δ2

𝑗

≤ 2𝜆̄(𝑄)𝜔̄𝛿(2𝜖 + 𝛼)
√

2𝐿𝑝
(𝑇

2

𝛿
− 𝑇 )

1
2 (𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

1
2 +

𝜆̄(𝑄)𝜔̄2𝛿2

2𝐿𝑝
(𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

+ (𝛼(𝑇 − 𝛿) + 2𝜖𝑇 ln(𝑇
𝛿
))𝜆̄(𝑄)Δ𝑗 + (𝑇 − 𝛿)𝜆̄(𝑄)Δ2

𝑗 (32)

For Δ𝑉2, after taking the derivative concerning constraint (10) and substituting, the result can be expressed as:

Δ𝑉2 ≤ ||𝜉𝑖(𝑡𝑖𝑘 + 𝑇 |𝑡
𝑖
𝑘+1) − 𝜉𝑖,𝑟(𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘+1)||

2
𝑅 − ||𝜉∗𝑖 (𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘) − 𝜉𝑖,𝑟(𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘)||

2
𝑅

≤ ||𝜉𝑖(𝑡𝑖𝑘 + 𝑇 |𝑡
𝑖
𝑘+1) − 𝜉𝑖,𝑟(𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘)||

2
𝑅 − ||𝜉∗𝑖 (𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘) − 𝜉𝑖,𝑟(𝑡

𝑖
𝑘 + 𝑇 |𝑡

𝑖
𝑘)||

2
𝑅

+ 2𝜖𝜆̄(𝑅)Δ𝑗 + 𝜆̄(𝑅)Δ2
𝑗

≤ (3𝑟 + 𝜖)𝜆̄(𝑅)𝜔̄𝛿𝑒𝐿𝑝𝑇 + 2𝜖𝜆̄(𝑅)Δ𝑗 + 𝜆̄(𝑅)Δ2
𝑗 (33)

For Δ𝑉3, the result can be expressed as:

Δ𝑉3 ≤ −4𝜆(𝑄)𝛿𝜖2 (34)

It follows from the results of (32), (33), and (34) that the following expression is obtained:

Δ𝑉 ≤ 2𝜆̄(𝑄)𝜔̄𝛿(2𝜖 + 𝛼))
√

2𝐿𝑝
(𝑇

2

𝛿
− 𝑇 )

1
2 (𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

1
2 +

𝜆̄(𝑄)𝜔̄2𝛿2

2𝐿𝑝
(𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

+ (3𝑟 + 𝜖)𝜆̄(𝑅)𝜔̄𝛿𝑒𝐿𝑝𝑇 − 4𝜆(𝑄)𝛿𝜖2 + (𝛼(𝑇 − 𝛿) + 2𝜖𝑇 ln(𝑇
𝛿
))𝜆̄(𝑄)Δ𝑗

+ (𝑇 − 𝛿)𝜆̄(𝑄)Δ2
𝑗 + 2𝜖𝜆̄(𝑅)Δ𝑗 + 𝜆̄(𝑅)Δ2

𝑗 (35)

According to (35), Δ𝑉 < −𝑙𝛿 is obtained, i.e., 𝑉 (𝑡𝑖𝑘+1) < 𝑉 (𝑡𝑖𝑘) − 𝑙𝛿. Let 𝜇 = 𝑉 (0)−𝛿𝓁
𝑉 (0)

. Subsequently, 𝑉 (𝑡𝑖𝑘+1) < 𝜇𝑉 (𝑡𝑖𝑘) is
derived. This implies that the multi-quadrotor systems asymptotically converge to the desired velocity and desired formation
within a finite time. When the state enters the terminal set, i.e., 𝜉∗(𝑡𝑖𝑘|𝑡

𝑖
𝑘) ∈ Ω𝜖 , the re-scaling of Δ𝑉1 and Δ𝑉3 can be performed:

Δ𝑉1 ≤
2𝜆̄(𝑄)𝜔̄𝛿𝜖

𝐿𝑝
(𝑒𝐿𝑝𝑇 − 𝑒𝐿𝑝𝛿) +

2𝜆̄(𝑄)𝜔̄𝛿(𝜖 + 𝛼)
√

2𝐿𝑝
(𝑇

2

𝛿
− 𝑇 )

1
2 (𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

1
2

+ (𝛼(𝑇 − 𝛿) + 2𝜖𝑇 ln(𝑇
𝛿
))𝜆̄(𝑄)Δ𝑗 + (𝑇 − 𝛿)𝜆̄(𝑄)Δ2

𝑗 +
𝜆̄(𝑄)𝜔̄2𝛿2

2𝐿𝑝
(𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿) (36)
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Δ𝑉3 ≤ −𝜆(𝑄)𝛿||𝜉𝑖(𝑡𝑖𝑘+1) − 𝜉𝑖,𝑟(𝑡
𝑖
𝑘+1|𝑡

𝑖
𝑘)||

2 + 𝜆(𝑄)𝜔̄2𝛿3𝑒2𝐿𝑝𝛿 + 2𝜆(𝑄)𝜖𝜔̄𝛿2𝑒𝐿𝑝𝛿 (37)

According to Δ𝑉 =
∑3
𝑖=1 Δ𝑉𝑖, the result can be expressed as:

Δ𝑉 ≤ 2𝜆̄(𝑄)𝜔̄𝛿𝜖
𝐿𝑝

(𝑒𝐿𝑝𝑇 − 𝑒𝐿𝑝𝛿) +
𝜆̄(𝑄)𝜔̄2𝛿2

2𝐿𝑝
(𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿) + (𝑇 − 𝛿)𝜆̄(𝑄)Δ2

𝑗 +
2𝜆̄(𝑄)𝜔̄𝛿(𝜖 + 𝛼)

√

2𝐿𝑝
(𝑇

2

𝛿
− 𝑇 )

1
2 (𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

1
2

+ (3𝑟 + 𝜖)𝜆̄(𝑅)𝜔̄𝛿𝑒𝐿𝑝𝑇 + 2𝜖𝜆̄(𝑅)Δ𝑗 + 𝜆̄(𝑅)Δ2
𝑗 + (𝛼(𝑇 − 𝛿) + 2𝜖𝑇 ln(𝑇

𝛿
))𝜆̄(𝑄)Δ𝑗

− 𝜆(𝑄)𝛿||𝜉𝑖(𝑡𝑖𝑘+1) − 𝜉𝑖,𝑟(𝑡
𝑖
𝑘+1|𝑡

𝑖
𝑘)||

2 + 𝜆(𝑄)𝜔̄2𝛿3𝑒2𝐿𝑝𝛿 + 2𝜆(𝑄)𝜖𝜔̄𝛿2𝑒𝐿𝑝𝛿

≤ −𝜆(𝑄)𝛿||𝜉𝑖(𝑡𝑖𝑘+1) − 𝜉𝑖,𝑟(𝑡
𝑖
𝑘+1|𝑡

𝑖
𝑘)||

2 + 𝐺(𝜔̄) (38)

where 𝐺(𝜔̄) = 2𝜆̄(𝑄)𝜔̄𝛿𝜖
𝐿𝑝

(𝑒𝐿𝑝𝑇 − 𝑒𝐿𝑝𝛿) + 𝜆̄(𝑄)𝜔̄2𝛿2

2𝐿𝑝
(𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿) + 2𝜆̄(𝑄)𝜔̄𝛿(𝜖+𝛼)

√

2𝐿𝑝
( 𝑇

2

𝛿
− 𝑇 )

1
2 (𝑒2𝐿𝑝𝑇 − 𝑒2𝐿𝑝𝛿)

1
2 + (𝑇 − 𝛿)𝜆̄(𝑄)Δ2

𝑗 + (3𝑟+

𝜖)𝜆̄(𝑅)𝜔̄𝛿𝑒𝐿𝑝𝑇 + 2𝜖𝜆̄(𝑅)Δ𝑗 + 𝜆̄(𝑅)Δ2
𝑗 + (𝛼(𝑇 − 𝛿) + 2𝜖𝑇 ln( 𝑇

𝛿
))𝜆̄(𝑄)Δ𝑗 + 𝜆(𝑄)𝜔̄2𝛿3𝑒2𝐿𝑝𝛿 + 2𝜆(𝑄)𝜖𝜔̄𝛿2𝑒𝐿𝑝𝛿 . This implies that

the quadrotor system is ISpS, and the states of the formation error converge to the set Ω. Therefore, the proofs for the two cases
of communication delays are completed.

Remark 2. A novel EDMPC scheme is proposed by combining ETM, DMPC, and innovative information transmission strate-
gies. A rigorous theoretical analysis of the recursive feasibility and ISpS of the entire multi-quadrotor systems is presented. The
proposed EDMPC scheme ensures that the formation error of quadrotors converges to a small region around zero in finite time,
even in the presence of additive disturbances and communication delays. The focus or challenge lies in ensuring the accuracy
and stability of the formation composition and keeping performance of the multi-quadrotor systems in the presence of various
communication delays.

5 SIMULATION RESULTS

In this section, numerical and SIL simulations of the EDMPC method are provided to demonstrate the effectiveness of the
multi-quadrotor systems with communication delays. The multi-quadrotor systems consist of one leader quadrotor and four
follower quadrotors, all of which have the same structure, with detailed parameters listed in TABLE 1. Quadrotor 1 is tasked with
trajectory tracking and instruction acquisition. Figure 1 illustrates the communication topology graph, denoted as . Arrows in
the figure represent the information flow, signifying that the front-end quadrotor’s broadcasted information must be acquired by
the rear-end quadrotors. The leader’s reference trajectory is predefined as follows:

𝑥𝑟𝑒𝑓 = 10(sin(0.1𝑡) − (sin(0.1𝑡))3)
𝑦𝑟𝑒𝑓 = 10(cos(0.1𝑡) − (cos(0.1𝑡))3)
𝑧𝑟𝑒𝑓 = 5 + sin(0.1𝑡)
𝜓𝑟𝑒𝑓 = 0

According to the predefined mission requirements, the initial and relative positions of the subsequent quadrotors to the leader
quadrotor in the Frenet-Serret coordinate system must align with the values specified in TABLE 2.

TABLE 1 Quadrotor Parameters Table

Parameter Value Unit Description

𝐼𝑥𝑥 0.456 kg ⋅m2 Moment of inertia (about 𝑥-axis)
𝐼𝑦𝑦 0.456 kg ⋅m2 Moment of inertia (about 𝑦-axis)
𝐼𝑧𝑧 0.641 kg ⋅m2 Moment of inertia (about 𝑧-axis)
𝑑 0.15 m Length of the quadrotor arm
𝑚 2 kg Mass
𝑔 9.81 m∕s2 Gravitational acceleration
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FIGURE 2 Position trajectories of multi-quadrotor systems with EDMPC in 3D space.
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FIGURE 3 Position trajectory of quadrotor 2 in top view. (a) EDMPC. (b) DMPC.
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FIGURE 4 The lift variation curves by each motor of multi-quadrotor systems. (a) EDMPC. (b) DMPC.
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TABLE 2 Positions of Multi-quadrotor Systems

Quadrotor Initial Position (m) Relative Position to Leader (m)

2 (5, 0, 0) (0.5, 0, 0)
3 (−5, 0, 0) (−0.5, 0, 0)
4 (0,−5, 0) (0,−0.5, 0)
5 (0, 5, 0) (0, 0.5, 0)
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FIGURE 5 Six degrees of freedom states of multi-quadrotor systems. (a) EDMPC. (b) DMPC.

Control input and state constraints are defined as 0 ≤ 𝐹𝑖,𝑛 ≤ 15(𝑁). Communication delay 𝜏, randomly varying within
[1, 𝜏], has an upper limit of 𝜏 = 4. Other parameters are set as follows: 𝑄 = diag(100, 1, 100, 1, 100, 1, 1, 1, 1, 1, 1, 1), 𝑅 =
diag(1, 1, 1, 1), 𝑁 = 25, Δ𝑡 = 0.2, Δ𝑖 = 3.58, 𝜁 = 0.4, and 𝜌𝑖 =

√

6. The upper bound of external disturbance is 𝜔̄ = 0.015,
and the magnitude of disturbance experienced by each quadrotor is generated completely randomly at each time step.

Simulations are conducted using two methods in an environment with time-varying communication delays: the traditional
DMPC and the proposed EDMPC. Simulation results, spanning a total of 60 seconds, are presented in Figures 2-6. Figure
2 depicts position trajectories of multi-quadrotor systems in 3D space using EDMPC with communication delays. Figure 3
depicts the position trajectory of the 2nd quadrotor in the top view. Figure 4 shows the lift variation curves by each motor
of multi-quadrotor systems, while Figure 5 displays the six degrees of freedom states of multi-quadrotor systems. These
results demonstrate the superior performance of quadrotors using the proposed EDMPC approach, particularly considering
time-varying communication delay, compared to traditional DMPC.

Figure 6 demonstrates the variation in distances within the formation, indicating that the proposed EDMPC method effectively
operates within specified constraints (10). In an environment with time-varying communication delays, the formation distance
error is maintained within a reasonable range, [-0.21m, 0.19m], indicating that the multi-quadrotor systems maintain the desired
formation more smoothly. Notably, increasing the minimum interval time can significantly alleviate the computational burden,



14 AUTHOR ONE ET AL

0 10 20 30 40 50 60

Time (sec)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
is

ta
n

c
e

 (
m

)

Ref-Distance

Quadrotor 1-Quadrotor 2

Quadrotor 1-Quadrotor 3

Quadrotor 1-Quadrotor 4

Quadrotor 1-Quadrotor 5

(a)

0 10 20 30 40 50 60

Time (sec)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
is

ta
n

c
e

 (
m

)

Ref-Distance

Quadrotor 1-Quadrotor 2

Quadrotor 1-Quadrotor 3

Quadrotor 1-Quadrotor 4

Quadrotor 1-Quadrotor 5

(b)

FIGURE 6 The formation distance of multi-quadrotor systems. (a) EDMPC. (b) DMPC.
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FIGURE 7 (a) EDMPC framework for the SIL simulations. (b) Position trajectories of multi-quadrotor systems with EDMPC
in SIL.

albeit at the expense of tracking performance. Therefore, a trade-off is evident between maintaining overall system formation
stability and minimizing the communication and computational load.

To further testify the validity of the proposed EDMPC strategy, experiments using the SIL real-time simulations are also con-
ducted. The SIL real-time simulation is implemented using solvers designed by the Simulink Real-Time Toolbox. The quadrotor
model runs in the Robot Operating System (ROS) environment, utilizing the RflySim software development kit developed based
on PX4 and ROS. Communication between the multi-quadrotor systems is achieved through interprocess communication, with
the addition of random communication delays of up to four sampling periods. These measures increase the realism of the sim-
ulation. A detailed schematic illustration of the control system in the SIL simulations is shown in Figure 7(a). Figure 7(b) of
RflySim3D depicts the monitored trajectories and dynamics of the multi-quadrotor systems throughout the entire mission pro-
cess. The simulation results indicate that the proposed EDMPC method can cope with complex time-varying communication
delays and achieve the task of formation composition and keeping. These results validate the effectiveness and reliability of
the proposed EDMPC approach for formation composition and keeping missions of multi-quadrotor systems in time-varying
communication delay scenarios.
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6 CONCLUSION

This paper proposes an EDMPC approach to address the formation composition and maintenance problem of multi-quadrotor
systems in a complex environment with time-varying communication delays. In the approach, an ETM is employed to reduce
bandwidth usage in the multi-quadrotor systems, providing support for stable formation composition and keeping control. To
address the issue of time-varying communication delays in multi-quadrotor systems, a novel consistency constraint is introduced
to ensure that deviations between the latest predicted state and previously predicted states remain within a predefined region.
This strategy ensures that the multi-quadrotor systems maintain a certain level of formation accuracy under any communica-
tion delays. Simulation results demonstrate that, compared to traditional DMPC methods in environments with time-varying
communication delays, the proposed EDMPC approach significantly reduces communication load and enhances the stabil-
ity of multi-quadrotor formation control. However, real-world scenarios in multi-quadrotor systems often pose challenges
such as packet loss and network attacks, for which effective solutions are still under development. Improving the ability of
multi-quadrotor systems to cope with communication packet loss and destructive attacks will be the direction of future research.
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