loading page

Unraveling Different Biological Roles of Plant Synaptotagmins
  • +8
  • Selene García-Hernández,
  • Lourdes Rubio,
  • Jessica Pérez-Sancho,
  • Jorge Morello-López,
  • Alicia Esteban del Valle,
  • Francisco Benítez-Fuente,
  • Carmen Beuzón,
  • Alberto P. Macho,
  • Noemi Ruiz-López,
  • Armando Albert,
  • Miguel A. Botella
Selene García-Hernández
Instituto de Hortofruticultura Subtropical y Mediterranea La Mayora
Author Profile
Lourdes Rubio
Universidad de Malaga Departamento de Biologia Celular Genetica y Fisiologia
Author Profile
Jessica Pérez-Sancho
Chinese Academy of Sciences Shanghai Center for Plant Stress Biology
Author Profile
Jorge Morello-López
Instituto de Hortofruticultura Subtropical y Mediterranea La Mayora
Author Profile
Alicia Esteban del Valle
Instituto de Hortofruticultura Subtropical y Mediterranea La Mayora
Author Profile
Francisco Benítez-Fuente
Instituto de Hortofruticultura Subtropical y Mediterranea La Mayora
Author Profile
Carmen Beuzón
Instituto de Hortofruticultura Subtropical y Mediterranea La Mayora
Author Profile
Alberto P. Macho
Instituto de Hortofruticultura Subtropical y Mediterranea La Mayora
Author Profile
Noemi Ruiz-López
Instituto de Hortofruticultura Subtropical y Mediterranea La Mayora
Author Profile
Armando Albert
Instituto de Quimica Fisica Rocasolano Departmento de Cristalografia y Biologia Estructural
Author Profile
Miguel A. Botella
Instituto de Hortofruticultura Subtropical y Mediterranea La Mayora

Corresponding Author:mabotella@uma.es

Author Profile

Abstract

Endoplasmic Reticulum-Plasma Membrane contact sites (ER-PM CS) are evolutionarily conserved membrane domains found in all eukaryotes, where the endoplasmic reticulum (ER) closely interfaces with the plasma membrane (PM). This short distance is achieved in plants through the action of tether proteins such as Synaptotagmins (SYTs). Arabidopsis comprises five SYT members ( SYT1-SYT5), but whether they possess overlapping or distinct biological functions remains elusive. SYT1, the best-characterized member, plays essential roles in the resistance to abiotic stress. This study reveals that the functionally redundant SYT1 and SYT3 genes, but not SYT5, are involved in salt and cold stress resistance. We also show that, unlike SYT5, SYT1 and SYT3 are not required for Pseudomonas syringae resistance . Since SYT1 and SYT5 interact in vivo via their SMP domains , the distinct functions of these proteins cannot be caused by differences in their localization. Interestingly, structural phylogenetic analysis indicates that SYT1 and SYT5 clades emerged early in the evolution of land plants. We also show that SYT1 and SYT5 clades exhibit different structural features, rationalizing their distinct biological roles.
24 Apr 2024Submitted to Plant, Cell & Environment
24 Apr 2024Submission Checks Completed
24 Apr 2024Assigned to Editor
24 Apr 2024Review(s) Completed, Editorial Evaluation Pending
29 Apr 2024Reviewer(s) Assigned
13 Jul 20241st Revision Received
19 Jul 2024Submission Checks Completed
19 Jul 2024Assigned to Editor
20 Jul 2024Review(s) Completed, Editorial Evaluation Pending
21 Jul 2024Reviewer(s) Assigned
09 Aug 2024Editorial Decision: Revise Minor
12 Aug 20242nd Revision Received
16 Aug 2024Submission Checks Completed
16 Aug 2024Assigned to Editor
16 Aug 2024Review(s) Completed, Editorial Evaluation Pending
16 Aug 2024Editorial Decision: Accept