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Abstract

Insects exhibit diverse colours that play a crucial role in communication that directs inter- and
intra-species interactions such as predator-prey interactions and sexual selection.
Anthropogenic climate change may impact insects colour expression and consequently their
physiology and behaviour. Insects can respond to changing climatic through phenotypic
plasticity or genetic modification, however it is unclear how any of the resulting changes in
body and wing colour may impact interactions with conspecifics and heterospecific (e.g.,
predator, prey, and mate). The aim of this review is to synthesis the current knowledge of the
consequences of climate driven colour change on insects. Firstly, we discussed the
environmental factors that affect insect colours, and then we outlined the adaptive mechanisms
in terms of phenotypic plasticity and microevolutionary response. Secondly, we conducted a
systematic review and performed a qualitative analysis to understand how experimental rearing
temperature influences insect colouration. Finally, we gave an overview of the beneficial or
maladaptive impact of colour change on sexual selection. We concluded by identifying

research gaps and highlight potential future research areas.



38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Introduction

Insects belong to the largest class of invertebrates and play a crucial role in ecosystem (Badejo
et al., 2020; Noriega et al., 2018; Folgarait, 1998). They exhibit diverse species specific,
population specific and sex-specific body colours and patterns, which can also vary across life
stages (Figure 1) (Khan, 2020; Khan & Herberstein, 2020b; Wittkopp & Beldade, 2009).
Insects colour originates from the pigments that are deposited underneath the cuticle, or
cuticular surface structures, or a combination of both (Chapman & Chapman, 1998). These
colours may function in interspecific communication (e.g. aposematism, crypsis including
mimicry and camouflage), intraspecific communication (e.g. signalling), thermoregulation and
UV-protection (Futahashi, 2020; Figon & Casas, 2018; Caro, 2005; Cott, 1940). For example,
a non-territorial damselfly (Xanthagrion erythroneurum) undergoes ontogenetic colour change
from yellow to red colour after few days of their emergence, which signals sexual maturity but
may also have an impact on predation risk (Khan & Herberstein, 2020a). On the other hand,
the yellow abdominal stripes in hornets (Vespa orientalis) assist in thermoregulation (Plotkin
et al., 2009). Appreciating the complexity of body colours and their function is of utmost
important in understanding the species specific ecology and evolution (Endler & Mappes,

2017).

Anthropogenic climate change may impact insect in many ways such as phenotypic changes
of individuals, genetic, and microevolutionary changes of populations and communities
(Larson et al., 2019; Parmesan & Yohe, 2003; Root et al., 2003; Stenseth et al., 2002; Walther
et al., 2002; McCarty, 2001; Davis & Shaw, 2001; Hughes, 2000). There are several lines of
evidence (temporal, geographical, and experimental studies) that indicate that insect colours
vary in response to climatic factors such as temperature and humidity (Lis et al., 2020; Wilts

et al., 2019; MacLean et al., 2019; Xing et al., 2018). For example, Zvereva et al., (2019)
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observed a declining pattern of dark colour in subarctic leaf beetle morphs (Chrysomela
lapponica) by experimentally increasing minimum spring temperature. Though climate change
may be related to insects colour, the relationship between climate and insect colour is complex
as there are several biotic and abiotic factors associated with climate change (reviewed in

Clusella-Trullas & Nielsen, 2020).

Evolutionary adaptation to new climatic conditions can bring substantial individual fitness
benefits in terms of survivability, but can carry fitness costs in terms of reduced reproductive
output through sexual selection (Candolin & Heuschele, 2008). Colour polymorphisms, which
refers to the occurrence of two or more discrete colour pattern variants within population, can
enhance the adaptability of an individual to a novel environment, resulting in expansion of
population geographical ranges and may mitigating population extinction risk (Y. Takahashi
& Noriyuki, 2019; Forsman et al., 2016; Wennersten & Forsman, 2012; Forsman et al., 2008).
Butterflies and moths, for example, are active flyers who can shift their geographic ranges in
response to new environmental conditions (Poyry et al., 2009; Parmesan et al., 1999).
Understanding the selective mechanisms, including the genetic basis of colour polymorphisms,

are important for estimating extinction risk under a changing climate (True, 2003).

The aim of this review is to examine the contemporary evidence of insect responses (colour
change) against a rapidly changing climate and review the impact of climate driven colour
change on sexual selection in insects. First, we provide the current evidence of insect colour
change in response to environmental factors (Table 1). Second, we discuss the mechanisms of
colour change in insects and finally, we review the impact of colour change on sexual selection
in insects (Table 2). We highlighted the current gaps and proposed future directions where

further research is required. We believe, our review will provide insights how insects colour
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varies across climate and will highlight the ecological and evolutionary consequences of such

variations under the rapidly changing climate.

Insect colour: production mechanism and link to environmental factors

Insects exhibit colours mainly in two ways: through pigmentation or structure. Pigments or
their precursor can either be synthesised in epidermal cells or extracted from diet (e.g.
carotenoids) (Dresp, 2014; Wittkopp & Beldade, 2009). There are eight classes of pigments,
namely, melanins, ommochromes, pteridines, tetrapyrroles, carotenoids, flavonoids,
papiliochromes, and quinones that are involved in insect colouration (Futahashi & Osanai-
Futahashi, 2021). Of these, melanins, ommochromes, and pteridines are the dominant colour
pigments in some insects i.e., dragonflies (Futahashi & Osanai-Futahashi, 2021). On the other
hand, tetrapyrroles, carotenoids, flavonoids, papiliochromes, and quinones are the main
contributors to colour in grasshoppers, aphids, butterflies and moths (Futahashi & Osanai-
Futahashi, 2021; Burghardt et al., 2000; Tsuchida, 2016; Stavenga et al., 2014b). Finally,

pigments can also contribute to insects structural colours (Yoshioka & Kinoshita, 2006).

Structural colours in insects are the result of light refraction, interference or diffraction caused
by photonic structures in the insect integument (Sun et al., 2013; Kemp et al., 2006; Vukusic
& Sambles, 2003). Several insect groups such as butterflies, moths and beetles exhibit
structural colours (Burg & Parnell, 2018; Stavenga et al., 2018, 2014a; Mason, 2002; Vukusic
et al., 2000; Ghiradella et al., 1972). For example, metallic structural colours are common in
beetles and are generated by epicuticular multilayer reflectors (McNamara et al., 2012). In
addition to pigmentation and structural colour, some insects such as fireflies, beetles, and
springtails also produces colour by luciferases, an enzyme capable of producing light in

bioluminescence (Viviani, 2002).
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The expression of insect colours in terms of quantity and quality can be impacted by
environmental factors including temperature, rainfall, and solar radiation (Elith et al., 2010;
Cott, 1940). Temperature directly affects insects physiology and pigment production (Hassall
& Thompson, 2012). For example, insects in colder environments tend to be darker, as melanin
production is greater in colder temperatures (De Souza et al., 2017). The selective advantage
of this response to environmental temperature is the conversion of solar radiation to heat
allowing greater activity for reproduction and foraging (Clusella Trullas et al., 2007; De Souza
et al., 2017). Not surprisingly, solar radiation is an important predictor for colour lightness in
insects - geometrid moths become increasingly lighter with increasing solar radiation (Heidrich
et al., 2018). However, this pattern is not universal — in pierid butterflies, colour lightness

usually decreases with high levels of solar radiation (Stelbrink et al., 2019).

Humidity can also trigger body colour changes in insects, even within the same individual,
such as in Adscita statice, a green forester moth that changes its colour at dusk and dawn with
humidity changes (Wilts et al., 2019). The ambient humidity changes the multilayer refractive
index which changes the moth’s colour from red to green (Wilts et al., 2019). Moreover, male
Hercules beetles, Dynastes hercules, change the colour of the elytra from black (at night) to
yellowish (in the morning) associated with a humidity shift from high to low (Hinton & Jarman,
1973). There is also evidence that insect melanization increases with decreasing humidity
which helps them to reduce cuticular water loss and makes them more resistant to desiccation
than less melanized individuals (Parkash et al., 2008). However, results from a selection
experiment that selected for daker and lighter phenotypes of Drosophila melanogaster over
generations found no relationship between desiccation tolerance and colour (Rajpurohit et al.,
2016). It is possible that there are other physiological mechanisms that are responsible

desiccation tolerance in insects. As might be expected, the response of organisms to
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environmental change is complex, highly context-dependent and is shaped by both their

physical and biological environments.

Insect colour functions

Insects colour may provide immunological protection, facilitate mimicry, camouflage,
thermoregulation and communication (Khan & Herberstein, 2021; Cott, 1940). In terms of
immunological protection, darker insect cuticles can increase resistance against pathogens and
parasites (Armitage & Siva-Jothy, 2005) because melanin pigment deposited in the insect
cuticle plays a significant role in immune reactions, because melanin is a rate limiting molecule
of the phenoloxidase cascade (Sugumaran & Barek, 2016; José de Souza et al., 2011; Armitage

& Siva-Jothy, 2005; Sugumaran, 2002; S6derhéll & Cerenius, 1998; Neville, 1975).

Colour can be a significant element of camouflage, that includes specific mechanism such as
crypsis, disruptive patterning, counter illumination and countershading (Stevens & Merilaita,
2009; Cott, 1940). A common form of animal camouflage is background matching, for
example, Morpho dragonfly (Zenithoptera lanei) camouflage against the water background
through counter-brightness strategies to avoid predators (Cezario et al., 2022). In addition,
green lacewings, Chrysopa match the green colour of leaves thereby avoiding predation
(Edmunds, 2005). Countershading is another form of camouflage. Caterpillars and green
grasshoppers improve crypsis by reducing ventral shadow through a paler green colour creating
a uniformly green appearance when viewed from the side (Stevens & Ruxton, 2019; Rowland
et al., 2008; Evans & Schmidt, 1990). In addition, insects such as eyed hawkmoth (Smerinthus
ocellata) caterpillar uses reverse countershading strategies (Cott, 1940). Finally, disruptive

colouration can also improve camouflage, as is seen in many green grasshoppers, shield bugs
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and caterpillars whose disruptive patterns draw the attention of predators away from the overall

shape of the insects (Khramov & Chemakos, 2022; Kang et al., 2015; Edmunds, 2005).

Insects also use colours for signalling in the context of individual recognition, warning
colouration (aposematism), mate choice and assessment of rivals (Khan & Herberstein, 2021,
2020a; Khan, 2020; Khan & Herberstein, 2020b; Skaldina, 2017; Injaian & Tibbetts, 2014;
Tibbetts, 2010; Tibbetts & Dale, 2004; Cott, 1940). For example, some species of Polistes
wasps and Pachycondyla villosa ants recognise individuals by facial colour patterns (Sheehan
et al., 2014; Sheehan & Tibbetts, 2009; D’Ettorre & Heinze, 2005). Warning colours typically
combine a dark background colour with bright red, orange, yellow or white stripes and spots
(Ruxton et al., 2004; Mappes et al., 2005; Cott, 1940). These are often coupled with a secondary
defense, such as a toxin, sending an unpalatability signals to predators (Lindstrom et al., 2004;
Cott, 1940). For example, ladybird beetle (Harmonia axyridis) pupae signal their unpalatability
to predators through their conspicuous black dots against red cuticle warning colouration
(Lindstedt et al., 2019). Besides predator-prey interactions, bright colouration can also
functions as a warning signal to avoid unwanted mating. For example, pre-reproductive female
Agriocnemis femina damselflies reduce male mating harassment by the exhibiting a

conspicuous red colouration (Khan, 2020).

Colour is an important component in mimicry, where the resemblance to another species carries
a selective advantage. In Mullerian mimicry, several toxic and unpalatable species converge in
their warning colours deterring a shared predator. Iconic Mullerian mimics include the
Amazonian butterfly, Heliconius numata, which exhibited different patterns of tiger mimicry
(Llaurens et al., 2014; Joron, 2009), Batesian mimics on the other hand, are not toxic but mimic

an unpalatable species, gaining protection without the cost of producing a toxin. Species such
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as viceroy butterflies, hoverflies, striped beetles, diurnal moths and crane flies are perfectly
palatable Batesian mimics of monarch butterfly, wasps and bees, respectively (Thompson &

Jiggins, 2014; Kunte, 2009; Joron, 2009).

Evidence of climate change impact on insect colour

Temporal studies

Insects have been shown to change their colour over time in response to climate change. A
long-term study between 1953-2012 on Colias meadii butterflies in the USA showed that the
wing melanization decreased with increasing temperature during this time period (MacLean et
al., 2016). This pattern, however, is not true across space; melanism was studied in the same
species, Colias meadii, over the same time period at different locations with melanism
decreasing with increasing temperature in the Northern Canada but increasing with increasing

temperature in southern USA (MacLean et al., 2019).

Another study provided evidence that European butterflies and dragonflies were becoming
lighter, less melanized in warmer regions darker species shifted their distribution towards
cooler region (Zeuss et al., 2014). A similar survey of the two-spot ladybird beetle, Adalia
bipunctata, over 25 years showed a decreased frequency of the melanic morph concomitant
with an increase of spring temperatures (Brakefield & de Jong, 2011). Similarly, darker morphs
of leave beetles (Chrysomela lapponica) were strongly declining with increased minimum
spring daily temperatures between 1992 and 2018 (Zvereva et al., 2019). Conversely, the
frequency of melanic stick insects (7imea cristine) morphs increased in warmer years (Nosil

etal., 2018).
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Geographic variation

Phenotypic differences across altitude and/or elevation are often used to anticipate how
organisms might react to climate change (Fielding et al., 1999). Altitudinal (or elevational)
variation is related to colour pattern polymorphism in several insect species (Hodkinson, 2005)
whereby, the frequency of melanic morphs increases with altitude (Berry & Willmer, 1986;
Hodkinson, 2005). Species, such as spittle bugs Philaenus spumarius, dung beetles
Onthophagus proteus, Eupteryx leafthoppers and grasshoppers show increased melanization
with altitude (Stanbrook et al., 2021; Guerrucci & Voisin, 1988; Stewart, 1986; Berry &
Willmer, 1986; Brakefield & Willmer, 1985). However, in some ladybird beetles (Adalia
bipunctata) the melanic frequencies decreased with altitude (Scali & Creed, 1975). Similarly,
in geometrid moths in China the observation of darker colour moths at higher elevations was
not consistent across different study sites (Xing et al., 2018). In addition to melanisms,
structural colours that cause a metallic appearance also change with elevation. For example,
the metallic colouration in Oreina sulcata beetle varies with elevation: green-colour morphs
are more frequent at lower elevations, and darker and more reflective metallic morphs at higher

elevations (Mikhailov, 2001).

Distributions across different latitudes can also relate to phenotypic variation in insects (Zheng
et al., 2015). Variation in colour along latitudinal gradients is still a matter of debate (Gosden
et al., 2011; Williams, 2007). Research suggests a bimodal effect of latitude: individuals tend
to be darker both at higher latitude (i.e. in colder climates) and lower latitude (in warmer
climate), with lighter morph at intermediate latitudes (Stewart, 1986; Watt, 1968; Williams,
2007). For example, Colias butterflies possess darker hindwing (undersides) at higher latitude

and colder climates as well as lower latitudes and hotter climates (Watt, 1968).
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By contrast, some insects are generally darker in colder climates and lighter in warmer
climates. For example, Tectocoris diophthalmus bugs at temperate and lower latitude sites
showed larger patches of blue against a lighter red background compared to subtropical and
tropical bugs (Fabricant et al., 2018). On the other hand, in adult swallowtail butterflies
(Sericinus montelus), males at lower latitudes were more likely to express darker colour than
males at higher latitudes (Zheng et al., 2015). Similar result was also found in bumblebees

(Williams, 2007).

Experimental evidence of temperature impact on insect colour

Various experimental studies provide support that temperature affects insect colour. For
example, in Indian Drosophila melanogaster, pigmentation on the thorax and abdomen
decreased with increasing temperature (Gibert et al., 1998). Contrary to this result,
planthoppers Saccharosydne procerus produced darker colours at higher temperatures (Yin et
al., 2015). Similarly, male territorial dragonflies, Pachydiplax longipennis, produced more dark
coloured wing ornamentation when larvae were reared at higher temperature than when larvae
were reared at lower temperature (Lis et al., 2020). A controlled rearing experiment in bugs
(male Tectocoris diophthalmus; male and female Murgantia histrionica) also showed that
temperature was a significant factor for melanization: individuals reared in lower temperature
were darker than the individuals of higher temperature (Sibilia et al., 2018). In addition, a study
on monarch larvae (Danaus plexippus) colouration showed that when reared in lower
temperature the larvae developed greater portion of black and lower portions of white and

yellow, compared to larvae reared in warm temperature (Solensky & Larkin, 2003).

Some of the responses to rearing temperature can result in seasonal polymorphism. For

example, Colias butterflies, Papilio machaonin, and Pontia butterflies show seasonally
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polyphenic traits that can generate various adaptive phenotypes in response to seasonal
environmental variation (Kingsolver, 1995). Distinct wing phenotypes are the most common
seasonal polyphenism in butterflies that can influence their thermoregulatory ability
(Kingsolver, 1987). For example, environmental manipulation such as altering photoperiodic
conditions during the larval stage of the white butterfly (Pontia occidentalis), resulted in higher
melanin on the dorsal forewings and lower melanin on the ventral hindwings of summer
individuals compared with spring individuals (Kingsolver, 1995; Kingsolver & Wiernasz,

1991).

Some insects are also able to change colour reversibly with ambient temperature (Umbers et
al., 2013; Huang & Reinhard, 2012; O’Farrell, 1964; Key & Day, 1954). In common blue-tail
damselflies (Ischnura heterosticta), morphs changed their colour partially and reversibly under
controlled laboratory conditions: dull green or grey colour under 12°C and bright blue above
15°C (Huang & Reinhard, 2012; O’Farrell, 1964). In addition, male chameleon grasshopper
(Kosciuscola tristis) also showed rapid reversible colour change under different laboratory
conditions- black to turquoise colouration at 10°C, intermediate colouration from 10 to 15°C
and turquoise colouration over 25 °C (Umbers et al., 2013, 2013; Umbers, 2011; Key & Day,
1954). The often-opposing results summarized above indicate that the relationship between

insect colour and the thermal environment is complex.

To further understand the experimental evidence of temperature impact on insect colour, we
performed a systematic review following PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines (Moher et al., 2009). We conducted a literature search
on 6 September 2023 using Web of Science database. This search was limited to studies that

were published between January 2014 and September 2023. We selected keywords (Insect*)
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AND (climate change) AND (colour* OR color* OR thermal melanism OR melanin). Our
literature search identified a total of 673 articles, which were then screened to 123 articles based
on studies that tested the impact of climate change or temperature variation on insects colour.
Then, we further scrutinized to nine articles that experimentally tested the impact of rearing
temperature on insects colouration. We summarized our exclusion and inclusion criteria of
different studies in supplementary Figure 1. Initially, we aimed to quantify data from these
studies, however, this was not possible due to a number of reasons, including the unavailability
of data in some studies, lack of sample numbers reported, and the use of different units to
quantify colour intensity. Hence, we performed a qualitative analysis and found that generally
(six out of nine studies), insects showed high pigmentation or darker colour at colder
temperature and low pigmentation or lighter colour as temperatures increase. Some studies
report conflicting evidence, where temperature associated melanisation was only found in the
wing colour of crickets but not in their hindleg. In contrast, two studies found the opposite
results - pigmentation increased with increasing temperature. All our finding is summarized in
Table-3. In short, just as field studies provided conflicting evidence, experimental manipulation
of ambient temperature in insects is equally reporting inconsistent, possibly species-specific

results.

Mechanisms: phenotypic plasticity, microevolutionary response

Populations experiencing new selection pressures may respond in three different ways- they
may shift to a more suitable habitat, adjust to changing conditions through phenotypic
plasticity, or they may adapt to new conditions through population genetic change (Davis et
al., 2005; Holt, 1990). The precise mechanism depends on life history traits, dispersal ability,

availability of alternative habitats and the rate of continual environmental change (Gienapp et
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al., 2008). Sometimes populations combine these responses to climatic change (Davis & Shaw,

2001).

Individuals can change colour with changing environments (such as temperature and humidity
changes) or during transitional developmental stages (Khan, 2020; Khan & Herberstein, 2020a;
Nijhout, 2010; Rassart et al., 2008; Vigneron et al., 2007). Plasticity of pigmentation is
common among insects and can be expressed temporarily or it can be sustained for a longer
time (Nijhout, 2010). Plastic responses are more rapid to new conditions than evolutionary
responses (Sgro et al., 2016). In insects, phenotypic plasticity of color can stem from a change
in the colour pigment in the epidermis or the cuticle (Nijhout, 2010). For example, RNA
interference (RNA1) mediated treatment of yellow mealworm (7enebrio molitor) showed light
brownish colour whereas, enzymes deficient in the cuticle tanning pathway resulted darker
pigments (Mun et al., 2020). Similarly, swallowtail butterfly (Papilio xuthus) displayed black
cuticle colour when epidermal cells expressed tyrosine hydroxylase and dopa decarboxylase
enzymes whereas they exhibited reddish-brown colour during the epidermal expression of
tyrosine hydroxylase, dopa decarboxylase, and ebony enzymes (Futahashi & Fujiwara, 2005).
Phenotypic variation of colour can also occurs in different seasons i.e., polyphenism (Nijhout,
2010) and is known in many insect such as moths (Orgyia antiqua) (Sandre et al., 2007),
narrow-headed ants (Formica exsecta) (Putyatina et al., 2022) and butterflies (species belong

to tribe Junoniini) (Clarke, 2017).

Phenotypic plasticity provides an important mechanism to adjust to new environmental
conditions. The underlying mechanisms are likely to be up and downregulation of the relevant
genes. Insects colour is produced by the expressions of genes, for example, in Colias crocea

butterflies an increased expression of the BarH-1 gene is responsible for the white wing colour
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(Woronik et al., 2019). In Heliconius butterflies optix and cortex genes control red and
yellow/white wing patterns (Jiggins et al., 2017). Furthermore, in Ischnura senegalensis
damselfly the expression of ebony and black genes is responsible for the reddish-brown colour
in the thorax of the gynochrome female (Takahashi et al., 2019). The expression of colour
producing genes may vary in response to climate change, however, experimental evidence for
such changing gene expressions is limited mostly because of the nature and complexity of the
genetic basis for colour (Clusella-Trullas & Nielsen, 2020; Daniels et al., 2014; Roulin, 2014).
Recent advancement in genetics and genomics now provide platforms to study the impact of

climate on insect colour.

It has been argued that phenotypic plasticity, as described above, is unable to provide long-
term solutions for populations (Gienapp et al., 2008; Przybylo et al., 2000). Hence,
microevolutionary responses are required to cope with continual environmental change over
long periods (Davis et al., 2005; Stockwell et al., 2003). While the heritability of melanism is
thought to be high (e.g., Roff & Fairbairn, 2013), potentially setting the stage for rapid
evolution, insect melanin is associated with several other physiological mechanisms, such as
immunity, sexual selection and desiccation, which could potentially counteract adaptive color

evolution in response to a warming climate (Clusella-Trullas & Nielsen, 2020).

Impact of colour change on sexual selection

Sexual selection is an important selective force that can improve population fitness, and can
accelerate speciation (Cally et al., 2019; Hugall & Stuart-Fox, 2012). Climatic change may
impact life history traits and mating systems that subsequently affect the strength or direction
of sexual selection (Maan & Seehausen, 2011; Pilakouta & Alund, 2021). A recent quantitative

genetic model showed that the strength of sexual selection may decrease due to rapid climate
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change, which reduces the benefits of sexual selection relative to the survival benefits by
adapting to new environmental conditions (Martinossi-Allibert et al., 2019). For example,
temperature can determine the outcome of sexual selection by changing reproductive
behaviour, such as mate searching, male-female and male-male interactions (Garcia-Roa et al.,
2020). Accordingly a study conducted on ambush bugs, Phymata americana, showed that
sexual dimorphism in colouration caused by temperature could affect the outcome of mate
competition as male bugs with relatively darker color patterns had higher mate-searching

success in cool ambient temperature (Punzalan et al., 2008).

Physiologically, a warming climate may enhance the fitness of animals living in cooler
temperature and higher latitudes whereas increasing temperature is likely to have detrimental
consequences on tropical animals (Deutsch et al., 2008). Behaviorally, animals that display sex
specific traits to attract mates or intimidate rivals may also be affected by increasing
temperature (Moore et al., 2019). For example, in some environments higher temperatures may
increase mating opportunity and reproductive output which may result in a cost of sexual
signaling if they are more likely to be detected by parasites and predators (Halfwerk et al.,
2011; Patricelli & Blickley, 2006; Zuk et al., 2006). In addition, certain sexual signals such as
melanized wing interference patterns or patches in Drosophila or dragonflies might increase
reproductive success but may be physiological detrimental as they increase body temperature
under the warming climate (Moore et al., 2021; Katayama et al., 2014; Corbet, 1999). A recent
study provided evidence that male dragonflies with higher wing melanization have greater
mating success than males with less melanized wings (Moore et al., 2021). However, wing
melanization also increased individual body temperature by >2° C (Svensson et al., 2020;
Moore et al., 2019; Svensson & Waller, 2013). Such thermal effects may confer modest

locomotor benefits in low temperature environments but may reduce flight ability, damage
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wing tissue, and cause death in high temperature environments (Svensson et al., 2020; Moore
et al., 2019). This impact may be sex specific as females forage at lower temperatures or in

shaded micro-habitats (Moore et al., 2021).

Knowledge gaps and proposed future directions

We identified several research gaps for further exploration. First, the impacts of climate on
insects colour are derived mostly from long term temporal studies. However, experimental
evidence is scarce. A few recent empirical studies demonstrated the consequences of climatic
factors on insects colour by manipulating environmental factors, however, those studies were
mostly limited to model species with fewer examples from non-model species. This raises the
question whether the model-species responses can be extrapolated to other species or
taxonomic groups (Zuk et al., 2014). Second, short-term experiments are most likely to detect
phenotypic plasticity and in addition, we argue that more long-term experiments over several
generations are necessary to understand the potential for evolutionary response. Specifically,
the fitness impact of climate change induced colour change in terms of reproduction, survival,
predation, and foraging is mostly unknown. Long term studies have the power to identify
multiple factors contributing to colour variations in insects and predict the impact of ongoing
climate change. Furthermore, there is limited information on the exact genetic and
physiological mechanisms resulting in insect colour change. Third, there are possible
geographic and sex specific biases in the current literatures due to the limited geographic
regions (mostly temperate) where studies recorded the impact of environmental change on sex-
specific colour. Clearly, large-scale geographic surveys on both sexes of multiple species can
reduce this bias. Fourth, the availability of many advanced techniques such as digital
photographs for assessing colour, and computer assisted image analysis software also opens

the use of museum specimen that may be too fragile for conventional photospectrometry.
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Usage of museum specimens provides further opportunity to understand the temporal trend of
insects colour change under the changing climate. The advancement of genomics,
bioinformatics and genetics also broaden the scope to understand the genetic mechanism of
climate change induced colour change. In conclusion, the effect of global climate change on
insects colour can impact physiological functions, intra- and interspecies communication and
sexual selection, all of which may contribute to the global decline of insects. We believe
monitoring the impact of global climate change on insect traits based on empirical studies will

assist the management of biodiversity and environmental sustainability.
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Table 1: Evidence of insect colour change associated with latitude and climatic factors. Study

type refers to whether the study used temporal, geographic or experimental evidence of colour

change.
Species Study type | Insects’ response | Factors associated | References
with colour change
Montane butterfly Temporal Decreased wing | Warmer temperature | (MacLean et
(Colias meadii) melanization al., 2016)
Montane butterfly Temporal Increased wing Higher temperature | (MacLean et
(Colias meadii) melanization al., 2019)
Butterflies and Temporal Decreased Higher temperature | (Zeuss et al.,
dragonflies melanization 2014)
Ladybird beetle, Temporal Decreased Higher spring (Brakefield
(Adalia bipunctata) frequency of temperatures & de Jong,
melanic morph 2011)
Leave beetles Temporal Decreased darker | Higher spring daily | (Zvereva et
(Chrysomela morphs temperatures al., 2019)
lapponica)
Stick insects Temporal Increased Warmer temperature | (Nosil et al.,
(Timea Cristine frequency of 2018)
melanic morphs
Ladybird beetles | Geographical Decreased Altitude (Scali &
(Adalia bipunctata) frequency of Creed, 1975)
melanic morphs
Beetle Geographical Green colours Lower elevations (Mikhailov,
(Oreina sulcate) 2001)
Beetle Geographical | Darker and more Higher elevations (Mikhailov,
(Oreina sulcate) reflective metallic 2001)
morphs
Colias butterflies | Geographical | Darker hindwing Higher latitude (Watt, 1968)
(undersides)
Bumblebees Geographical Darker colour Lower latitude (Williams,

2007)
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Drosophila Experimental | Decreased colour | Higher temperature (Gibert et
melanogaster on the thorax and al., 1998)
abdomen
Planthoppers Experimental Darker colour Higher temperature (Yin et al.,
(Saccharosydne 2015)
procerus)
Dragonflies Experimental | Increased wing Warmer larval (Lis et al.,
(Pachydiplax ornamentation temperatures 2020)
longipennis)
Monarch larvae Experimental | Greater portion Lower temperature | (Solensky &
(Danaus plexippus) of black and a Larkin,
lower portion of 2003)

white and yellow

colour
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Table 2: Impact of climate driven colour change on sexual selection

Species Factors associated Impact References
with colour change
Ambush bugs Temperature Dark individuals had | (Punzalan et
(Phymata higher success rate in al., 2008)
americana) mate searching at colder
ambient temperature
Dragonfly Temperature Greater abundance of (Moore et al.,
(Pachydiplax dark pigment in the wing 2019)
longipennis) increased male flight
performance at colder
temperature
Common bluetail High latitude Darker colours led to (Svensson,
damselfly (Ischnura increased sexual conflict | Willink, et al.,
elegans) 2020)
Cricket Short season length Darker colours led to (Fedorka et
(Allonemobius increased melanin-based al., 2013)
socius) immunity
Butterflies Elevation Lighter males had (Ellers &
(Colias philodice reduced flight activity at | Boggs, 2004)
eriphyle) high elevation
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Table 3: Experimental studies of linking rearing temperature to insect colouration

nepalensis)

Study system Body Direction of colour change References
parts/region of
study
Fruit fly Abdomen and High percentage of melanin at (Ramniwas &
(Drosophila wing lower temperature Singh, 2022)

Butterfly

Dorsal wing and

High percentage of melanin at

(Markl et al., 2022)

(Aglais urticae) body lower temperature
Grasshopper Cuticle Darker individuals at lower (Srygley &
(Melanoplus temperature Jaronski, 2022)
sanguinipes)
Butterfly Wing High Wing melanization at colder (Rosa &
(Melitaea temperature Saastamoinen,
cinxia) 2020)
Dragonfly Wing High wing colouration at warmer (Lis et al., 2020)
(Pachydiplax temperature
longipennis)
Drosophila Abdomen High pigmentation at lower (Negoua et al.,
(Drosophila temperature 2019)
simulans)
Harlequin Bug Cuticle High pigmentation at colder (Sibilia et al., 2018)
(Murgantia temperature
histrionica)
Cricket Wing cuticle Reduced wing colour at warmer (Ehrlich & Zuk,
(Teleogryllus and hindleg temperature, however, lighter 2019)
oceanicus) hindleg at mid temperature (29 °C)
than lower (26°C) and higher
temperature (32°C)
Planthopper Body Increased melanism at high (Yin et al., 2015)
(Saccharosydne temperature
procerus)
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Figure 1: Insects exhibit diverse colours that are produced from pigments, structural-based
colour or a combination of both. A) Danaus genetia, B) Ceriagrion cerinorubellum, C)
Tectocoris diophthalmus, D) Coccinella transversalis, E) Trithemis aurora, F) Taxila

haquinus. Photo © MK Khan



