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Abstract  23 

Insects exhibit diverse colours that play a crucial role in communication that directs inter- and 24 

intra-species interactions such as predator-prey interactions and sexual selection. 25 

Anthropogenic climate change may impact insects colour expression and consequently their 26 

physiology and behaviour. Insects can respond to changing climatic through phenotypic 27 

plasticity or genetic modification, however it is unclear how any of the resulting changes in 28 

body and wing colour may impact interactions with conspecifics and heterospecific (e.g., 29 

predator, prey, and mate). The aim of this review is to synthesis the current knowledge of the 30 

consequences of climate driven colour change on insects. Firstly, we discussed the 31 

environmental factors that affect insect colours, and then we outlined the adaptive mechanisms 32 

in terms of phenotypic plasticity and microevolutionary response. Secondly, we conducted a 33 

systematic review and performed a qualitative analysis to understand how experimental rearing 34 

temperature influences insect colouration. Finally, we gave an overview of the beneficial or 35 

maladaptive impact of colour change on sexual selection. We concluded by identifying 36 

research gaps and highlight potential future research areas.   37 



Introduction  38 

Insects belong to the largest class of invertebrates and play a crucial role in ecosystem (Badejo 39 

et al., 2020; Noriega et al., 2018; Folgarait, 1998). They exhibit diverse species specific, 40 

population specific and sex-specific body colours and patterns, which can also vary across life 41 

stages (Figure 1) (Khan, 2020; Khan & Herberstein, 2020b; Wittkopp & Beldade, 2009). 42 

Insects colour originates from the pigments that are deposited underneath the cuticle, or 43 

cuticular surface structures, or a combination of both (Chapman & Chapman, 1998). These 44 

colours may function in interspecific communication (e.g. aposematism, crypsis including 45 

mimicry and camouflage), intraspecific communication (e.g. signalling), thermoregulation and 46 

UV-protection (Futahashi, 2020; Figon & Casas, 2018; Caro, 2005; Cott, 1940). For example, 47 

a non-territorial damselfly (Xanthagrion erythroneurum) undergoes ontogenetic colour change 48 

from yellow to red colour after few days of their emergence, which signals sexual maturity but 49 

may also have an impact on predation risk (Khan & Herberstein, 2020a). On the other hand, 50 

the yellow abdominal stripes in hornets (Vespa orientalis) assist in thermoregulation (Plotkin 51 

et al., 2009). Appreciating the complexity of body colours and their function is of  utmost 52 

important in understanding the species specific ecology and evolution (Endler & Mappes, 53 

2017).  54 

 55 

Anthropogenic climate change may impact insect in many ways such as phenotypic changes 56 

of individuals, genetic, and microevolutionary changes of populations and communities 57 

(Larson et al., 2019; Parmesan & Yohe, 2003; Root et al., 2003; Stenseth et al., 2002; Walther 58 

et al., 2002; McCarty, 2001; Davis & Shaw, 2001; Hughes, 2000). There are several lines of 59 

evidence (temporal, geographical, and experimental studies) that indicate that insect colours 60 

vary in response to climatic factors such as temperature and humidity (Lis et al., 2020; Wilts 61 

et al., 2019; MacLean et al., 2019; Xing et al., 2018).  For example, Zvereva et al., (2019) 62 



observed a declining pattern of dark colour in subarctic leaf beetle morphs (Chrysomela 63 

lapponica) by experimentally increasing minimum spring temperature. Though climate change 64 

may be related to insects colour, the relationship between climate and insect colour is complex 65 

as there are several biotic and abiotic factors associated with climate change (reviewed in 66 

Clusella-Trullas & Nielsen, 2020).  67 

 68 

Evolutionary adaptation to new climatic conditions can bring substantial individual fitness 69 

benefits in terms of survivability, but can carry fitness costs in terms of reduced reproductive 70 

output through sexual selection (Candolin & Heuschele, 2008). Colour polymorphisms, which 71 

refers to the occurrence of two or more discrete colour pattern variants within population, can 72 

enhance the adaptability of an individual to a novel environment, resulting in expansion of 73 

population geographical ranges and may mitigating population extinction risk (Y. Takahashi 74 

& Noriyuki, 2019; Forsman et al., 2016; Wennersten & Forsman, 2012; Forsman et al., 2008). 75 

Butterflies and moths, for example, are active flyers who can shift their geographic ranges in 76 

response to new environmental conditions (Pöyry et al., 2009; Parmesan et al., 1999). 77 

Understanding the selective mechanisms, including the genetic basis of colour polymorphisms, 78 

are important for estimating extinction risk under a changing climate (True, 2003).  79 

 80 

The aim of this review is to examine the contemporary evidence of insect responses (colour 81 

change) against a rapidly changing climate and review the impact of climate driven colour 82 

change on sexual selection in insects. First, we provide the current evidence of insect colour 83 

change in response to environmental factors (Table 1). Second, we discuss the mechanisms of 84 

colour change in insects and finally, we review the impact of colour change on sexual selection 85 

in insects (Table 2). We highlighted the current gaps and proposed future directions where 86 

further research is required. We believe, our review will provide insights how insects colour 87 



varies across climate and will highlight the ecological and evolutionary consequences of such 88 

variations under the rapidly changing climate. 89 

 90 

Insect colour: production mechanism and link to environmental factors  91 

Insects exhibit colours mainly in two ways: through pigmentation or structure. Pigments or 92 

their precursor can either be synthesised in epidermal cells or extracted from diet (e.g. 93 

carotenoids) (Dresp, 2014; Wittkopp & Beldade, 2009). There are eight classes of pigments, 94 

namely, melanins, ommochromes, pteridines, tetrapyrroles, carotenoids, flavonoids, 95 

papiliochromes, and quinones that are involved in insect colouration (Futahashi & Osanai-96 

Futahashi, 2021). Of these, melanins, ommochromes, and pteridines are the dominant colour 97 

pigments in some insects i.e., dragonflies (Futahashi & Osanai-Futahashi, 2021). On the other 98 

hand, tetrapyrroles, carotenoids, flavonoids, papiliochromes, and quinones are the main 99 

contributors to colour in grasshoppers, aphids, butterflies and moths (Futahashi & Osanai-100 

Futahashi, 2021; Burghardt et al., 2000; Tsuchida, 2016; Stavenga et al., 2014b). Finally, 101 

pigments can also contribute to insects structural colours (Yoshioka & Kinoshita, 2006).  102 

 103 

Structural colours in insects are the result of light refraction, interference or diffraction caused 104 

by photonic structures in the insect integument (Sun et al., 2013; Kemp et al., 2006; Vukusic 105 

& Sambles, 2003). Several insect groups such as butterflies, moths and beetles exhibit 106 

structural colours (Burg & Parnell, 2018; Stavenga et al., 2018, 2014a; Mason, 2002; Vukusic 107 

et al., 2000; Ghiradella et al., 1972). For example, metallic structural colours are common in 108 

beetles and are generated by epicuticular multilayer reflectors (McNamara et al., 2012). In 109 

addition to pigmentation and structural colour, some insects such as fireflies, beetles, and 110 

springtails also produces colour by luciferases, an enzyme capable of producing light in 111 

bioluminescence (Viviani, 2002).  112 



The expression of insect colours in terms of quantity and quality can be impacted by 113 

environmental factors including temperature, rainfall, and solar radiation  (Elith et al., 2010; 114 

Cott, 1940). Temperature directly affects insects physiology and pigment production (Hassall 115 

& Thompson, 2012). For example, insects in colder environments tend to be darker, as melanin 116 

production is greater in colder temperatures (De Souza et al., 2017). The selective advantage 117 

of this response to environmental temperature is the conversion of solar radiation to heat 118 

allowing greater activity for reproduction and foraging (Clusella Trullas et al., 2007; De Souza 119 

et al., 2017). Not surprisingly, solar radiation is an important predictor for colour lightness in 120 

insects - geometrid moths become increasingly lighter with increasing solar radiation (Heidrich 121 

et al., 2018). However, this pattern is not universal – in pierid butterflies, colour lightness 122 

usually decreases with high levels of solar radiation (Stelbrink et al., 2019).  123 

 124 

Humidity can also trigger body colour changes in insects, even within the same individual, 125 

such as in Adscita statice, a green forester moth that changes its colour at dusk and dawn with 126 

humidity changes (Wilts et al., 2019). The ambient humidity changes the multilayer refractive 127 

index which changes the moth’s colour from red to green (Wilts et al., 2019). Moreover, male 128 

Hercules beetles, Dynastes hercules, change the colour of the elytra from black (at night) to 129 

yellowish (in the morning) associated with a humidity shift from high to low (Hinton & Jarman, 130 

1973). There is also evidence that insect melanization increases with decreasing humidity 131 

which helps them to reduce cuticular water loss and makes them more resistant to desiccation 132 

than less melanized individuals (Parkash et al., 2008). However, results from a selection 133 

experiment that selected for daker and lighter phenotypes of Drosophila melanogaster over 134 

generations found no relationship between desiccation tolerance and colour (Rajpurohit et al., 135 

2016). It is possible that there are other physiological mechanisms that are responsible 136 

desiccation tolerance in insects. As might be expected, the response of organisms to 137 



environmental change is complex, highly context-dependent and is shaped by both their 138 

physical and biological environments.  139 

 140 

Insect colour functions 141 

Insects colour may provide immunological protection, facilitate mimicry, camouflage, 142 

thermoregulation and communication (Khan & Herberstein, 2021; Cott, 1940). In terms of 143 

immunological protection, darker insect cuticles can increase resistance against pathogens and 144 

parasites (Armitage & Siva-Jothy, 2005) because melanin pigment deposited in the insect 145 

cuticle plays a significant role in immune reactions, because melanin is a rate limiting molecule 146 

of the phenoloxidase cascade (Sugumaran & Barek, 2016; José de Souza et al., 2011; Armitage 147 

& Siva-Jothy, 2005; Sugumaran, 2002; Söderhäll & Cerenius, 1998; Neville, 1975).  148 

 149 

Colour can be a significant element of camouflage, that includes specific mechanism such as 150 

crypsis, disruptive patterning, counter illumination and countershading (Stevens & Merilaita, 151 

2009; Cott, 1940). A common form of animal camouflage is background matching, for 152 

example, Morpho dragonfly (Zenithoptera lanei) camouflage against the water background 153 

through counter-brightness strategies to avoid predators (Cezário et al., 2022). In addition, 154 

green lacewings, Chrysopa match the green colour of leaves thereby avoiding predation 155 

(Edmunds, 2005). Countershading is another form of camouflage. Caterpillars and green 156 

grasshoppers improve crypsis by reducing ventral shadow through a paler green colour creating 157 

a uniformly green appearance when viewed from the side (Stevens & Ruxton, 2019; Rowland 158 

et al., 2008; Evans & Schmidt, 1990). In addition, insects such as eyed hawkmoth (Smerinthus 159 

ocellata) caterpillar uses reverse countershading strategies (Cott, 1940). Finally, disruptive 160 

colouration can also improve camouflage, as is seen in many green grasshoppers, shield bugs 161 



and caterpillars whose disruptive patterns draw the attention of predators away from the overall 162 

shape of the insects (Khramov & Chemakos, 2022; Kang et al., 2015; Edmunds, 2005).  163 

 164 

Insects also use colours for signalling in the context of individual recognition, warning 165 

colouration (aposematism), mate choice and assessment of rivals (Khan & Herberstein, 2021, 166 

2020a; Khan, 2020; Khan & Herberstein, 2020b; Skaldina, 2017; Injaian & Tibbetts, 2014; 167 

Tibbetts, 2010; Tibbetts & Dale, 2004; Cott, 1940). For example, some species of Polistes 168 

wasps and Pachycondyla villosa ants recognise individuals by facial colour patterns (Sheehan 169 

et al., 2014; Sheehan & Tibbetts, 2009; D’Ettorre & Heinze, 2005). Warning colours typically 170 

combine a dark background colour with bright red, orange, yellow or white stripes and spots 171 

(Ruxton et al., 2004; Mappes et al., 2005; Cott, 1940). These are often coupled with a secondary 172 

defense, such as a toxin, sending an unpalatability signals to predators (Lindström et al., 2004; 173 

Cott, 1940). For example, ladybird beetle (Harmonia axyridis) pupae signal their unpalatability 174 

to predators through their conspicuous black dots against red cuticle warning colouration 175 

(Lindstedt et al., 2019). Besides predator-prey interactions, bright colouration can also 176 

functions as a warning signal to avoid unwanted mating. For example, pre-reproductive female 177 

Agriocnemis femina damselflies reduce male mating harassment by the exhibiting a 178 

conspicuous red colouration (Khan, 2020).   179 

 180 

Colour is an important component in mimicry, where the resemblance to another species carries 181 

a selective advantage. In Mullerian mimicry, several toxic and unpalatable species converge in 182 

their warning colours deterring a shared predator. Iconic Mullerian mimics include the 183 

Amazonian butterfly, Heliconius numata, which exhibited different patterns of tiger mimicry 184 

(Llaurens et al., 2014; Joron, 2009), Batesian mimics on the other hand, are not toxic but mimic 185 

an unpalatable species, gaining protection without the cost of producing a toxin. Species such 186 



as viceroy butterflies, hoverflies, striped beetles, diurnal moths and crane flies are perfectly 187 

palatable Batesian mimics of monarch butterfly, wasps and bees, respectively (Thompson & 188 

Jiggins, 2014; Kunte, 2009; Joron, 2009).  189 

 190 

Evidence of climate change impact on insect colour  191 

 192 

Temporal studies 193 

Insects have been shown to change their colour over time in response to climate change. A 194 

long-term study between 1953-2012 on Colias meadii butterflies in the USA showed that the 195 

wing melanization decreased with increasing temperature during this time period (MacLean et 196 

al., 2016). This pattern, however, is not true across space; melanism was studied in the same 197 

species, Colias meadii, over the same time period at different locations with melanism 198 

decreasing with increasing temperature in the Northern Canada but increasing with increasing 199 

temperature in southern USA (MacLean et al., 2019).   200 

 201 

Another study provided evidence that European butterflies and dragonflies were becoming 202 

lighter, less melanized in warmer regions darker species shifted their distribution towards 203 

cooler region (Zeuss et al., 2014). A similar survey of the two-spot ladybird beetle, Adalia 204 

bipunctata, over 25 years showed a decreased frequency of the melanic morph concomitant 205 

with an increase of spring temperatures (Brakefield & de Jong, 2011). Similarly, darker morphs 206 

of leave beetles (Chrysomela lapponica) were strongly declining with increased minimum 207 

spring daily temperatures between 1992 and 2018 (Zvereva et al., 2019). Conversely, the 208 

frequency of melanic stick insects (Timea cristine) morphs increased in warmer years (Nosil 209 

et al., 2018).  210 

 211 



Geographic variation 212 

Phenotypic differences across altitude and/or elevation are often used to anticipate how 213 

organisms might react to climate change (Fielding et al., 1999). Altitudinal (or elevational) 214 

variation is related to colour pattern polymorphism in several insect species (Hodkinson, 2005) 215 

whereby, the frequency of melanic morphs increases with altitude (Berry & Willmer, 1986; 216 

Hodkinson, 2005). Species, such as spittle bugs Philaenus spumarius, dung beetles 217 

Onthophagus proteus, Eupteryx leafhoppers and grasshoppers show increased melanization 218 

with altitude (Stanbrook et al., 2021; Guerrucci & Voisin, 1988; Stewart, 1986; Berry & 219 

Willmer, 1986; Brakefield & Willmer, 1985). However, in some ladybird beetles (Adalia 220 

bipunctata) the melanic frequencies decreased with altitude (Scali & Creed, 1975). Similarly, 221 

in geometrid moths in China the observation of darker colour moths at higher elevations was 222 

not consistent across different study sites (Xing et al., 2018). In addition to melanisms, 223 

structural colours that cause a metallic appearance also change with elevation. For example, 224 

the metallic colouration in Oreina sulcata beetle varies with elevation: green-colour morphs 225 

are more frequent at lower elevations, and darker and more reflective metallic morphs at higher 226 

elevations (Mikhailov, 2001).  227 

 228 

Distributions across different latitudes can also relate to phenotypic variation in insects (Zheng 229 

et al., 2015). Variation in colour along latitudinal gradients is still a matter of debate (Gosden 230 

et al., 2011; Williams, 2007). Research suggests a bimodal effect of latitude: individuals tend 231 

to be darker both at higher latitude (i.e. in colder climates) and lower latitude (in warmer 232 

climate), with lighter morph at intermediate latitudes (Stewart, 1986; Watt, 1968; Williams, 233 

2007). For example, Colias butterflies possess darker hindwing (undersides) at higher latitude 234 

and colder climates as well as lower latitudes and hotter climates (Watt, 1968).  235 

 236 



By contrast, some insects are generally darker in colder climates and lighter in warmer 237 

climates. For example, Tectocoris diophthalmus bugs at temperate and lower latitude sites 238 

showed larger patches of blue against a lighter red background compared to subtropical and 239 

tropical bugs (Fabricant et al., 2018). On the other hand, in adult swallowtail butterflies 240 

(Sericinus montelus), males at lower latitudes were more likely to express darker colour than 241 

males at higher latitudes (Zheng et al., 2015). Similar result was also found in bumblebees 242 

(Williams, 2007).   243 

 244 

Experimental evidence of temperature impact on insect colour 245 

Various experimental studies provide support that temperature affects insect colour. For 246 

example, in Indian Drosophila melanogaster, pigmentation on the thorax and abdomen 247 

decreased with increasing temperature (Gibert et al., 1998). Contrary to this result, 248 

planthoppers Saccharosydne procerus produced darker colours at higher temperatures (Yin et 249 

al., 2015). Similarly, male territorial dragonflies, Pachydiplax longipennis, produced more dark 250 

coloured wing ornamentation when larvae were reared at higher temperature than when larvae 251 

were reared at lower temperature (Lis et al., 2020). A controlled rearing experiment in bugs 252 

(male Tectocoris diophthalmus; male and female Murgantia histrionica) also showed that 253 

temperature was a significant factor for melanization: individuals reared in lower temperature 254 

were darker than the individuals of higher temperature (Sibilia et al., 2018). In addition, a study 255 

on monarch larvae (Danaus plexippus) colouration showed that when reared in lower 256 

temperature the larvae developed greater portion of black and lower portions of white and 257 

yellow, compared to larvae reared in warm temperature (Solensky & Larkin, 2003).  258 

 259 

Some of the responses to rearing temperature can result in seasonal polymorphism. For 260 

example, Colias butterflies, Papilio machaonin, and Pontia butterflies show seasonally 261 



polyphenic traits that can generate various adaptive phenotypes in response to seasonal 262 

environmental variation (Kingsolver, 1995). Distinct wing phenotypes are the most common 263 

seasonal polyphenism in butterflies that can influence their thermoregulatory ability 264 

(Kingsolver, 1987). For example, environmental manipulation such as altering photoperiodic 265 

conditions during the larval stage of the white butterfly (Pontia occidentalis), resulted in higher 266 

melanin on the dorsal forewings and lower melanin on the ventral hindwings of summer 267 

individuals compared with spring individuals (Kingsolver, 1995; Kingsolver & Wiernasz, 268 

1991). 269 

 270 

Some insects are also able to change colour reversibly with ambient temperature (Umbers et 271 

al., 2013; Huang & Reinhard, 2012; O’Farrell, 1964; Key & Day, 1954). In common blue-tail 272 

damselflies (Ischnura heterosticta), morphs changed their colour partially and reversibly under 273 

controlled laboratory conditions: dull green or grey colour under 120C and bright blue above 274 

150C (Huang & Reinhard, 2012; O’Farrell, 1964). In addition, male chameleon grasshopper 275 

(Kosciuscola tristis) also showed rapid reversible colour change under different laboratory 276 

conditions- black to turquoise colouration at 100C, intermediate colouration from 10 to 150C 277 

and turquoise colouration over 25 °C (Umbers et al., 2013, 2013; Umbers, 2011; Key & Day, 278 

1954). The often-opposing results summarized above indicate that the relationship between 279 

insect colour and the thermal environment is complex.  280 

 281 

To further understand the experimental evidence of temperature impact on insect colour, we 282 

performed a systematic review following PRISMA (Preferred Reporting Items for Systematic 283 

Reviews and Meta-Analyses) guidelines (Moher et al., 2009). We conducted a literature search 284 

on 6th September 2023 using Web of Science database. This search was limited to studies that 285 

were published between January 2014 and September 2023. We selected keywords (Insect*) 286 



AND (climate change) AND (colour* OR color* OR thermal melanism OR melanin). Our 287 

literature search identified a total of 673 articles, which were then screened to 123 articles based 288 

on studies that tested the impact of climate change or temperature variation on insects colour. 289 

Then, we further scrutinized to nine articles that experimentally tested the impact of rearing 290 

temperature on insects colouration. We summarized our exclusion and inclusion criteria of 291 

different studies in supplementary Figure 1. Initially, we aimed to quantify data from these 292 

studies, however, this was not possible due to a number of reasons, including the unavailability 293 

of data in some studies, lack of sample numbers reported, and the use of different units to 294 

quantify colour intensity. Hence, we performed a qualitative analysis and found that generally 295 

(six out of nine studies), insects showed high pigmentation or darker colour at colder 296 

temperature and low pigmentation or lighter colour as temperatures increase. Some studies 297 

report conflicting evidence, where temperature associated melanisation was only found in the 298 

wing colour of crickets but not in their hindleg. In contrast, two studies found the opposite 299 

results - pigmentation increased with increasing temperature. All our finding is summarized in 300 

Table-3. In short, just as field studies provided conflicting evidence, experimental manipulation 301 

of ambient temperature in insects is equally reporting inconsistent, possibly species-specific 302 

results.  303 

 304 

Mechanisms: phenotypic plasticity, microevolutionary response  305 

Populations experiencing new selection pressures may respond in three different ways- they 306 

may shift to a more suitable habitat, adjust to changing conditions through phenotypic 307 

plasticity, or they may adapt to new conditions through population genetic change (Davis et 308 

al., 2005; Holt, 1990). The precise mechanism depends on life history traits, dispersal ability, 309 

availability of alternative habitats and the rate of continual environmental change (Gienapp et 310 



al., 2008). Sometimes populations combine these responses to climatic change (Davis & Shaw, 311 

2001).  312 

 313 

Individuals can change colour with changing environments (such as temperature and humidity 314 

changes) or during transitional developmental stages (Khan, 2020; Khan & Herberstein, 2020a; 315 

Nijhout, 2010; Rassart et al., 2008; Vigneron et al., 2007). Plasticity of pigmentation is 316 

common among insects and can be expressed temporarily or it can be sustained for a longer 317 

time (Nijhout, 2010). Plastic responses are more rapid to new conditions than evolutionary 318 

responses (Sgrò et al., 2016). In insects, phenotypic plasticity of color can stem from a change 319 

in the colour pigment in the epidermis or the cuticle (Nijhout, 2010). For example, RNA 320 

interference (RNAi) mediated treatment of yellow mealworm (Tenebrio molitor) showed light 321 

brownish colour whereas, enzymes deficient in the cuticle tanning pathway resulted darker 322 

pigments (Mun et al., 2020). Similarly, swallowtail butterfly (Papilio xuthus) displayed black 323 

cuticle colour when epidermal cells expressed tyrosine hydroxylase and dopa decarboxylase 324 

enzymes whereas they exhibited reddish-brown colour during the epidermal expression of 325 

tyrosine hydroxylase, dopa decarboxylase, and ebony enzymes (Futahashi & Fujiwara, 2005). 326 

Phenotypic variation of colour can also occurs in different seasons i.e., polyphenism (Nijhout, 327 

2010) and is known in many insect such as moths (Orgyia antiqua) (Sandre et al., 2007), 328 

narrow-headed ants (Formica exsecta) (Putyatina et al., 2022) and butterflies (species belong 329 

to tribe Junoniini) (Clarke, 2017).  330 

 331 

Phenotypic plasticity provides an important mechanism to adjust to new environmental 332 

conditions. The underlying mechanisms are likely to be up and downregulation of the relevant 333 

genes. Insects colour is produced by the expressions of genes, for example, in Colias crocea 334 

butterflies an increased expression of the BarH-1 gene is responsible for the white wing colour 335 



(Woronik et al., 2019). In Heliconius butterflies optix and cortex genes control red and 336 

yellow/white wing patterns (Jiggins et al., 2017). Furthermore, in  Ischnura senegalensis 337 

damselfly the expression of ebony and black genes is responsible for the reddish-brown colour 338 

in the thorax of the gynochrome female (Takahashi et al., 2019). The expression of colour 339 

producing genes may vary in response to climate change, however, experimental evidence for 340 

such changing gene expressions is limited mostly because of the nature and complexity of the 341 

genetic basis for colour (Clusella-Trullas & Nielsen, 2020; Daniels et al., 2014; Roulin, 2014). 342 

Recent advancement in genetics and genomics now provide platforms to study the impact of 343 

climate on insect colour.    344 

 345 

It has been argued that phenotypic plasticity, as described above, is unable to provide long-346 

term solutions for populations (Gienapp et al., 2008; Przybylo et al., 2000). Hence, 347 

microevolutionary responses are required to cope with continual environmental change over 348 

long periods (Davis et al., 2005; Stockwell et al., 2003). While the heritability of melanism is 349 

thought to be high (e.g., Roff & Fairbairn, 2013), potentially setting the stage for rapid 350 

evolution, insect melanin is associated with several other physiological mechanisms, such as 351 

immunity, sexual selection and desiccation, which could potentially counteract adaptive color 352 

evolution in response to a warming climate (Clusella-Trullas & Nielsen, 2020).  353 

 354 

Impact of colour change on sexual selection 355 

Sexual selection is an important selective force that can improve population fitness, and can 356 

accelerate speciation (Cally et al., 2019; Hugall & Stuart-Fox, 2012). Climatic change may 357 

impact life history traits and mating systems that subsequently affect the strength or direction 358 

of sexual selection (Maan & Seehausen, 2011; Pilakouta & Ålund, 2021). A recent quantitative 359 

genetic model showed that the strength of sexual selection may decrease due to rapid climate 360 



change, which reduces the benefits of sexual selection relative to the survival benefits by 361 

adapting to new environmental conditions (Martinossi-Allibert et al., 2019). For example, 362 

temperature can determine the outcome of sexual selection by changing reproductive 363 

behaviour, such as mate searching, male-female and male-male interactions (García-Roa et al., 364 

2020). Accordingly a study conducted on ambush bugs, Phymata americana, showed that 365 

sexual dimorphism in colouration caused by temperature could affect the outcome of mate 366 

competition as male bugs with relatively darker color patterns had higher mate-searching 367 

success in cool ambient temperature (Punzalan et al., 2008).  368 

 369 

Physiologically, a warming climate may enhance the fitness of animals living in cooler 370 

temperature and higher latitudes whereas increasing temperature is likely to have detrimental 371 

consequences on tropical animals (Deutsch et al., 2008). Behaviorally, animals that display sex 372 

specific traits to attract mates or intimidate rivals may also be affected by increasing 373 

temperature (Moore et al., 2019). For example, in some environments higher temperatures may 374 

increase mating opportunity and reproductive output which may result in a cost of sexual 375 

signaling if they are more likely to be detected by parasites and predators (Halfwerk et al., 376 

2011; Patricelli & Blickley, 2006; Zuk et al., 2006). In addition, certain sexual signals such as 377 

melanized wing interference patterns or patches in Drosophila or dragonflies might increase 378 

reproductive success but may be physiological detrimental as they increase body temperature 379 

under the warming climate (Moore et al., 2021; Katayama et al., 2014; Corbet, 1999). A recent 380 

study provided evidence that male dragonflies with higher wing melanization have greater 381 

mating success than males with less melanized wings (Moore et al., 2021). However, wing 382 

melanization also increased individual body temperature by >20 C (Svensson et al., 2020; 383 

Moore et al., 2019; Svensson & Waller, 2013). Such thermal effects may confer modest 384 

locomotor benefits in low temperature environments but may reduce flight ability, damage 385 



wing tissue, and cause death in high temperature environments (Svensson et al., 2020; Moore 386 

et al., 2019). This impact may be sex specific as females forage at lower temperatures or in 387 

shaded micro-habitats (Moore et al., 2021).  388 

 389 

Knowledge gaps and proposed future directions 390 

We identified several research gaps for further exploration. First, the impacts of climate on 391 

insects colour are derived mostly from long term temporal studies. However, experimental 392 

evidence is scarce. A few recent empirical studies demonstrated the consequences of climatic 393 

factors on insects colour by manipulating environmental factors, however, those studies were 394 

mostly limited to model species with fewer examples from non-model species. This raises the 395 

question whether the model-species responses can be extrapolated to other species or 396 

taxonomic groups (Zuk et al., 2014). Second, short-term experiments are most likely to detect 397 

phenotypic plasticity and in addition, we argue that more long-term experiments over several 398 

generations are necessary to understand the potential for evolutionary response. Specifically, 399 

the fitness impact of climate change induced colour change in terms of reproduction, survival, 400 

predation, and foraging is mostly unknown. Long term studies have the power to identify 401 

multiple factors contributing to colour variations in insects and predict the impact of ongoing 402 

climate change. Furthermore, there is limited information on the exact genetic and 403 

physiological mechanisms resulting in insect colour change. Third, there are possible 404 

geographic and sex specific biases in the current literatures due to the limited geographic 405 

regions (mostly temperate) where studies recorded the impact of environmental change on sex-406 

specific colour. Clearly, large-scale geographic surveys on both sexes of multiple species can 407 

reduce this bias. Fourth, the availability of many advanced techniques such as digital 408 

photographs for assessing colour, and computer assisted image analysis software also opens 409 

the use of museum specimen that may be too fragile for conventional photospectrometry. 410 



Usage of museum specimens provides further opportunity to understand the temporal trend of 411 

insects colour change under the changing climate. The advancement of genomics, 412 

bioinformatics and genetics also broaden the scope to understand the genetic mechanism of 413 

climate change induced colour change. In conclusion, the effect of global climate change on 414 

insects colour can impact physiological functions, intra- and interspecies communication and 415 

sexual selection, all of which may contribute to the global decline of insects. We believe 416 

monitoring the impact of global climate change on insect traits based on empirical studies will 417 

assist the management of biodiversity and environmental sustainability. 418 
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 975 
 976 



Table 1: Evidence of insect colour change associated with latitude and climatic factors. Study 977 

type refers to whether the study used temporal, geographic or experimental evidence of colour 978 

change. 979 

 980 

Species Study type Insects’ response Factors associated 

with colour change 

References 

Montane butterfly 

(Colias meadii) 

Temporal Decreased wing 

melanization 

Warmer temperature (MacLean et 

al., 2016) 

Montane butterfly 

(Colias meadii) 

Temporal  Increased wing 

melanization 

Higher temperature (MacLean et 

al., 2019) 

Butterflies and 

dragonflies 

Temporal Decreased 

melanization 

Higher temperature (Zeuss et al., 

2014) 

Ladybird beetle, 

(Adalia bipunctata) 

Temporal Decreased 

frequency of 

melanic morph 

Higher spring 

temperatures 

(Brakefield 

& de Jong, 

2011) 

Leave beetles 

(Chrysomela 

lapponica) 

Temporal Decreased darker 

morphs  

Higher spring daily 

temperatures  

(Zvereva et 

al., 2019) 

Stick insects 

(Timea Cristine 

Temporal Increased 

frequency of 

melanic morphs  

Warmer temperature (Nosil et al., 

2018) 

Ladybird beetles 

(Adalia bipunctata) 

Geographical  Decreased 

frequency of 

melanic morphs 

Altitude (Scali & 

Creed, 1975) 

Beetle 

(Oreina sulcate)  

Geographical Green colours  Lower elevations (Mikhailov, 

2001) 

Beetle 

(Oreina sulcate) 

Geographical Darker and more 

reflective metallic 

morphs  

Higher elevations (Mikhailov, 

2001) 

Colias butterflies Geographical Darker hindwing 

(undersides) 

Higher latitude (Watt, 1968) 

Bumblebees Geographical Darker colour Lower latitude (Williams, 

2007) 



Drosophila 

melanogaster  

Experimental Decreased colour 

on the thorax and 

abdomen  

Higher temperature (Gibert et 

al., 1998) 

Planthoppers 

(Saccharosydne 

procerus) 

Experimental Darker colour Higher temperature (Yin et al., 

2015) 

Dragonflies 

(Pachydiplax 

longipennis)  

Experimental Increased wing 

ornamentation 

Warmer larval 

temperatures  

(Lis et al., 

2020) 

Monarch larvae 

(Danaus plexippus) 

Experimental  Greater portion 

of black and a 

lower portion of 

white and yellow 

colour 

Lower temperature (Solensky & 

Larkin, 

2003) 
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Table 2: Impact of climate driven colour change on sexual selection 982 

 983 

Species Factors associated 
with colour change 

Impact References 

Ambush bugs 
(Phymata 

americana) 

Temperature Dark individuals had 
higher success rate in 
mate searching at colder 
ambient temperature 
 

(Punzalan et 
al., 2008) 

Dragonfly 
(Pachydiplax 
longipennis) 

Temperature Greater abundance of 
dark pigment in the wing 

increased male flight 
performance at colder 

temperature 
 

(Moore et al., 
2019) 

Common bluetail 
damselfly (Ischnura 

elegans) 

High latitude Darker colours led to 
increased sexual conflict 

(Svensson, 
Willink, et al., 

2020) 
 

Cricket 
(Allonemobius 

socius) 
 

Short season length Darker colours led to 
increased melanin-based 

immunity 

(Fedorka et 
al., 2013) 

Butterflies 
 (Colias philodice 

eriphyle) 
 

Elevation  Lighter males had 
reduced flight activity at 

high elevation 

(Ellers & 
Boggs, 2004) 

 984 

 985 

 986 
 987 
 988 
 989 
 990 
 991 
 992 
 993 
 994 
 995 
 996 
 997 
 998 
 999 
 1000 
 1001 
 1002 
 1003 
 1004 



Table 3: Experimental studies of linking rearing temperature to insect colouration  1005 
 1006 

Study system Body 
parts/region of 

study 
 

Direction of colour change References 

Fruit fly 
(Drosophila 
nepalensis) 

Abdomen and 
wing 

High percentage of melanin at 
lower temperature 

(Ramniwas & 
Singh, 2022) 

Butterfly  
(Aglais urticae) 

Dorsal wing and 
body 

High percentage of melanin at 
lower temperature 

(Markl et al., 2022) 

Grasshopper 
(Melanoplus 
sanguinipes) 

 

Cuticle Darker individuals at lower 
temperature 

(Srygley & 
Jaronski, 2022) 

 

Butterfly 
(Melitaea 

cinxia) 

Wing High Wing melanization at colder 
temperature 

(Rosa & 
Saastamoinen, 

2020) 
 

Dragonfly 
(Pachydiplax 
longipennis) 

 

Wing High wing colouration at warmer 
temperature 

 

(Lis et al., 2020) 

Drosophila 
(Drosophila 
simulans) 

 

Abdomen High pigmentation at lower 
temperature 

 

(Negoua et al., 
2019) 

Harlequin Bug 
(Murgantia 
histrionica) 

 

Cuticle 
 

High pigmentation at colder 
temperature 

 

(Sibilia et al., 2018) 

Cricket 
(Teleogryllus 

oceanicus) 
 

Wing cuticle 
and hindleg 

Reduced wing colour at warmer 
temperature, however, lighter 

hindleg at mid temperature (29 °C) 
than lower (26°C) and higher 

temperature (32°C) 
 

(Ehrlich & Zuk, 
2019) 

Planthopper 
(Saccharosydne 

procerus) 
 
 

Body Increased melanism at high 
temperature 

(Yin et al., 2015) 
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Figure 1: Insects exhibit diverse colours that are produced from pigments, structural-based 1013 

colour or a combination of both. A) Danaus genetia, B) Ceriagrion cerinorubellum, C) 1014 

Tectocoris diophthalmus, D) Coccinella transversalis, E) Trithemis aurora, F) Taxila 1015 

haquinus. Photo © MK Khan 1016 
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