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How do Computational Models in the Cognitive and Brain Sciences Explain?* 

 

Abstract 

The nature of explanation is an important area of inquiry in philosophy of science. 

Consensus has been that explanation in the cognitive and brain sciences is typically a 

special case of causal explanation, specifically, mechanistic explanation (Craver 2007). 

But recently there has been increased attention to computational explanation in the brain 

sciences, and to whether that can be understood as a variety of mechanistic explanation. 

After laying out the stakes for a proper understanding of scientific explanation, we 

consider the status of computational explanation in the brain sciences by comparing the 

mechanistic proposal to computational accounts advanced by Piccinini (2015), 

Milkowski (2013), Cao (2019), Chirimuuta (2014, 2018), and Ross (2015, 2023). We 

argue that many of these accounts of computational explanation in neuroscience can 

satisfy the same explanatory criteria as causal explanations, but not all. This has 

implications for interpretation of those computational explanations that satisfy different 

criteria. 

 

 

Introduction 

Recent years have seen a resurgence of work on perhaps the most central problem in 

philosophy of science: the nature of scientific explanation. Lately, attention has focused 

specifically on computational explanation in the cognitive and brain sciences. One 

 
* Author names appear alphabetically. All authors contributed equally to this project. 
ACKNOWLEDGEMENTS REMOVED FOR ANONYMOUS REVIEW. 
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reason is that computational explanation has become much more prevalent in the 

cognitive and brain sciences since the last period of philosophical focus on the nature of 

explanation (cf. (Salmon and Fagot-Largeault, 1989). A second reason is that the general 

shift toward mechanistic strategies for explanation in the sciences (e.g., Bechtel and 

Richardson, 1993, Machamer et al., 2000), particularly as applied to the brain sciences, 

has highlighted the lack of any adequate account of computational explanation in these 

fields. In this paper, we focus on the question of how computational explanations work 

in the cognitive and brain sciences, with attention to their implications for the practices 

of the cognitive and neurosciences.1 

Cognitive science was born in the 1950s at a time when some underlying 

disciplines like psychology and anthropology were themselves undergoing 

transformation — and other sciences, such as computer science and neuroscience, still 

had to fully emerge (Miller, 2003). More than half a century later, the marriage between 

cognitive science and neuroscience in the form of cognitive neuroscience has 

encountered both enthusiasm and criticism. Enthusiastic authors seem to agree that 

cognitive neuroscience became possible when imaging techniques at least allowed the 

study of brain activity in human subjects performing cognitive tasks (Kosslyn and Shin, 

1992; Kriegeskorte and Douglas, 2018; Pereira, 2007). Critics, however, have deemed 

this marriage “troubled” in view of the differences in concepts and methods between 

 
1 The term brain sciences is sometimes preferred to neuroscience. Cognitive science, at least early on, was 
accompanied by brain sciences rather than by neuroscience. Indeed, the term neuroscience was only put 
forward by the United States National Academies Committee on Brain Sciences at the end of the 1960s 
(Altimus et al., 2020). In addition, the term brain sciences allows one to emphasize other levels of nervous 
system organization rather than giving priority to neurons. It is natural for us to consider neuroscience to 
be part of the brain sciences. However, there is also a generic use of the term neuroscience that covers 
both the cognitive and brain sciences. We use these terms as generally as possible. 
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cognitive science and neuroscience (Cooper and Shallice, 2010). For example, cognitive 

and brain sciences, including neuroscience, frequently differ over how they approach 

and evaluate explanations. It is familiar that neurobiology often favors mechanistic 

explanations and cognitive sciences often favor computational explanations. 

Mechanistic explanations have dominated the attention of philosophers of 

neuroscience at least since Carl Craver’s groundbreaking book, Explaining the Brain 

(2007). But the first word is not the last word, and the details of mechanistic models are 

a matter of great dispute. Glennan & Illari propose a minimal definition, according to 

which “[a] mechanism for a phenomenon consists of entities (or parts) whose activities 

and interactions are organized so as to be responsible for the phenomenon” (Glennan 

and Illari, 2018: 2). Our aim here is not to defend an account of mechanisms, but rather 

to relate how philosophers of science have compared mechanistic explanations to other 

accounts when it comes to the cognitive and brain sciences. 

For example, Craver argues that “[n]ot all models are explanatory,” but that 

“[m]echanistic models are explanatory” (Craver, 2006, p. 355). According to him, other 

models, such as the Hodgkin-Huxley model describing the changes in permeability of a 

neuron to sodium and potassium in equations, “are data summaries”, or “phenomenal 

models” (Craver, 2006). This stance makes sense in the light of his vision that “to 

explain something …  is to show how it fits into the causal structure of the world” 

(Craver, 2009, p. 578). Building on the basic mechanistic framework, William Bechtel 

argues for mental mechanisms as “mechanisms that process information” (Bechtel 

2008). He further argues that accounts of mechanistic explanation should not only look 

“down” to determine in more detail the entities or parts and activities or operations that 
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compose a mechanism, but also ought to look “up” as “to situate a mechanism in its 

context” (Bechtel 2009). 

Bechtel and Oron Shagrir have interpreted David Marr’s famous levels of 

analysis (viz., computational, algorithmic or representational and implementational) as 

perspectives to better understand information-processing mechanism perspective. 

Accordingly, “[t]he computational perspective provides an understanding of how a 

mechanism functions in broader environments that determines the computations it needs 

to perform,” the “algorithmic perspective offers an understanding of how information 

about the environment is encoded within the mechanism and what are the patterns of 

organization that enable the parts of the mechanism to produce the phenomenon” and 

“[t]he implementation perspective yields an understanding of the neural details of the 

mechanism and how they constrain function and algorithms” (Bechtel and Shagrir 2015: 

312). 

Emphasis on so-called levels in the questions and positions just summarized may 

give the false impression that things are or can be neatly separated. While the authors 

who share such concerns often seem to favor a pluralism of explanatory styles (Krakauer 

et al., 2017; Potochnik and Sanches de Oliveira, 2020), questions remain as to what 

kinds of explanations are required in order for cognitive sciences to explain and how 

computational or mathematical explanations and models should be considered.  

Kaplan and Craver, for example, argue that “dynamical and mathematical 

models in systems and cognitive neuroscience explain (rather than redescribe) a 

phenomenon only if there is a plausible mapping between elements in the model and 

elements in the mechanism for the phenomenon” (Kaplan and Craver, 2011). In a 
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similar spirit, Piccinini and Boone have suggested “a framework of multilevel 

neurocognitive mechanisms that incorporates representation and computation” (Boone 

and Piccinini, 2016). For these authors, the explanatory value of mathematical and 

computation models in cognitive science seems to be conditioned on the explanatory 

value of underlying mechanisms. This preference makes sense in light of the close 

connection between mechanistic and causal explanation, to which we return, below. 

Can all computational explanations and models be treated as mechanistic 

explanations and models? And, why should we care? In section 2, we review the 

relevance of theories of explanation for the cognitive and brain sciences. In section 3, we 

examine the importance of understanding explanation in the special case of causal or 

mechanistic explanations. This positions us, in section 4, to raise the question of how 

computational models and explanations relate to those causal or mechanistic models. If 

computational models just are mechanistic models, then we know how the connection 

will go. But if they are not, then there is more work to be done. We conclude by 

outlining that work, in section 5. 

 

Why care about explanation at all? 

Before we dive into the topic of computational explanation, it is worthwhile to consider 

why discussion of explanation is profitable. Philosophers may suppose that it is obvious 

that studying and theorizing about explanation is a worthwhile endeavor; but this may be 

less the case for (neuro)scientists who are often trained in applying one type of 

explanation. 
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To those who do not already think that the study of explanation is intrinsically 

valuable, or those who doubt that its intrinsic value is sufficient reason for its pursuit, 

several things can be said. First, it is plausible that an understanding of explanation itself 

is necessary if we are to give any principled accounts of when and how explanations 

succeed or fail. If it is right that the height of a flagpole explains the length of the 

shadow it casts but the length of the shadow does not explain the height (Bromberger, 

1966), then we would like to know what makes the difference. If the fact that Josephina 

uses contraception explains why she does not become pregnant but Joseph’s use of 

contraception does not explain why he does not become pregnant (Salmon, 1971), then 

we would like to know what makes the difference. And if the number of strawberries in 

the container being 21 explains why it cannot be evenly divided into two equinumerous 

containers without cutting strawberries but does not explain why it cannot be divided 

into two containers of equal weight (Lange, 2013), then we would like to know the 

difference. 

The claim here is not that a theory of explanation should be in any way prior to 

the conduct of the various sciences. On the contrary, it is familiar within the sciences to 

raise questions about the distinction between description and explanation (e.g., with 

respect to the status of either law-based or dynamical systems explanations), when 

explanation is finished or complete (e.g., with respect to whether causal or reductive 

explanations must terminate at some point), or what kind of empirical support is 

required for adequate explanation (e.g., with respect to the “replication crisis,” “p-

hacking,” or whether reductive explanations must entail a priori principles that enable 

transcription of entities from one higher-level theory to those of a lower-level theory 
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(Casadevall and Fang, 2008; Claxton et al., 2005; Hanna, 1969; MacQueen, 2013; 

Reese, 1999)). So these kinds of concerns are not specifically “philosophical” or “a 

priori” in any distinctive way. 

Relatedly, there will be important questions about the relations between various 

explanations or candidate explanations. This will even be the case if there is only one 

kind of explanation — for then we will need to know when explanations compete with 

one another and, if they do, how to choose among them. Yet it is plausible that there is 

more than one kind of explanation or explanatory model: causal, mechanistic, 

mathematical, computational, statistical, and so on.2 If so, then the questions arise of 

how various explanations of both the same and different varieties are related to one 

another, whether we must choose among them, and how to do so. This question will be 

acute if the various explanatory models intend to offer a plurality of explanations of the 

same phenomenon, or if they explain different phenomena that are purported to “add up” 

in some way to the target phenomenon. This may be, for example, by standing in some 

sort of part-whole relation to the target phenomenon as atoms do to molecular 

substances, proteins to cells, individuals to populations, and so on. 

These latter issues, regarding the relations that a plurality of explanations or 

explanatory models may stand in with respect to one another, are particularly important 

if we think that explanations — or some explanations, at any rate — tell us how the 

world is. For example, a common idea is that what exists is more or less what our best 

explanations tell us exists—or, to qualify, the best explanations of certain sorts. Insofar 

as explanations are our best guide to the world around us, we have an interest in what 

 
2 We shall use “model” and “explanation” interchangeably, for present purposes. 
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makes for a good, adequate, or otherwise successful explanation.3 So explanations 

appear to have implications for what is thought to exist in the world—what philosophers 

call “ontological commitments.” 

Of course, many scientists and philosophers are unmoved by “ontological” 

considerations. But here, again, some things can be said. For example, insofar as we take 

it that explanations tell us about the world, determining just what an explanation tells us 

about the world (i.e., its “ontological commitments”) can have implications for whether 

an explanation is successful at all. One example that has been recently debated is the 

Model-to-Mechanism Mapping (3M) constraint, according to which a model is only 

explanatory if the parts of the model correspond to parts of the system that it is modeling 

(Kaplan, 2011; Kaplan and Craver, 2011). For example, it has been argued that the 

Hodgkin-Huxley (HH) model of the formation of the action potential was not itself 

explanatory, and the explanation of the formation of the action potential was not had 

until the discovery of the existence and mechanism of ion channels (Craver, 2006) that 

correspond to the variables in the HH model. 

The 3M constraint implies that an explanatory model including idealized parts 

that do not map directly onto the target phenomenon will always be inferior to any 

explanation that includes only components that map onto parts of the phenomenon; and 

3M is sometimes interpreted to imply that an explanation that has more parts that map 

 
3 We need not suppose that this broadly realist approach to explanation is committed to any deep 
“metaphysical” thesis in the sense that has been debated over the last century or more. It is enough that we 
take explanation to be a, perhaps fallible, guide to the claims that we accept, count as true, assess to be 
warrantedly assertable, or whatever pro-epistemic status we prefer. 

Nor should we suppose that this thin realism implies that we can read our ontological commitments 
directly off the quantificational structure of sentences used in explanatory texts (cf. Quine, 1948). 
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onto the parts of the phenomenon will always be a better explanation than those that 

have fewer mappings (the principle of More Details are Better, per Chirimuuta, 2014). 

But these two implications are rejected by many scientists and philosophers of science, 

and even by some whose accounts of explanation are purported to have these 

implications (e.g., Craver and Kaplan, 2020). As pointed out, the term “mechanism” in 

neuroscience and closely-related domains can refer to different kinds of explanations 

ranging from those in which the activity of a single mechanism component is 

explanatory, to those for which the organization or relationships between mechanism 

components seem to be explanatory (Konsman, 2024; Ross and Bassett, 2024). The 

question of whether or not the organization or relationship between the parts could be an 

additional criterion by which to evaluate the 3M constraint may be of relevance here 

because many mechanisms in cognitive science and neuroscience seem to correspond to 

more abstract mechanisms (Anand and Mande, 2022) — or to what some philosophers 

call “mechanism schemas” (Machamer et al., 2000). 

The common-sense “realist” relationship between explanation and the world is 

hard to break but also hard to establish rigorously. Here we suggest only that the 

“ontological commitments” of an explanation — what it says about things in the world 

— bear not only on its success or failure in explanatory terms but also bear on 

experimental and clinical interventions. We cannot experimentally or clinically 

intervene on things that do not exist; and the adequacy of an explanation is sometimes 

assessed by the interventions that it predicts or enables. This is the sort of thought that 

lies behind Ian Hacking’s slogan, “if you can spray them then they are real” (Hacking, 
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1983: 23). Hacking had in mind electrons and the use of electron “guns” in, e.g., 

television sets and electron microscopes. 

Finally, there is a special sort of practical relevance to so-called scientific 

ontology that is typically neglected by philosophers but is often primary for scientists—

namely, whether something exists, or whether we can find out what exists, is often 

relevant to decisions about the utility and funding of various research programs. For just 

one example that is salient in the cognitive and brain sciences, if neuroimaging 

techniques like functional magnetic resonance imaging (fMRI) do not contribute to 

explanations, then we may be wasting huge amounts of time and money on 

neuroimaging studies—time and money that would be better spent on other research 

programs. It is plausible to think that neuroimaging studies contribute to explanations 

only if they are evidence about the working parts of neural systems, ideally if the brain 

areas that “light up” in imaging studies are the working parts of brains or are closely 

correlated with them. Imaging studies might be useful if they were even merely heuristic 

for whether and where to direct other inquiries, for example, studies in systems or 

cellular neurobiology. But even then, many researchers would wonder if that benefit 

justified the costs of the studies. Such questions have in fact been raised. Indeed, it has 

been charged that neuroimaging—i.e., cognitive neuroscience—is wholly bankrupt 

because the operations of brains will be entirely explained by molecular biochemical 

models (Shulman, 2013) or because brains are wholistic systems (Hardcastle and 

Stewart 2002). This would be the case, for example, if the working parts of brains are 

not “brain areas” and that way of talking is just a heuristic way to refer to the gross 
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anatomical locations of the electrochemical processes that are the real explainers; or if 

explanation “drains down” to the “lowest” or “smallest” explanatory models. 

Many scientists and philosophers have strongly held views about the outcomes 

of the above sorts of disputes. And those views likely depend on assumptions about 

explanation and the relationship between explanation and ontology — whether or not 

such assumptions are made explicit.4 So there is good reason to think that philosophers 

and scientists ought to care about the nature of explanation in cognitive and brain 

sciences, and thus about scientific explanation in general. We shall proceed on that 

basis. 

 

Varieties of Explanatory Models 

As noted above, there is a plentiful number of competing proposals about the nature of 

explanation or explanatory models in the cognitive and brain sciences. And in the 

preceding discussion, we raised the possibility that there could in fact be a plurality of 

successful kinds of explanations or explanatory models. Indeed, w favor some varieties 

of explanatory pluralism but we don’t intend to argue for explanatory pluralism here. 

For the purposes of inquiring about computational explanation in the cognitive and brain 

sciences, it is enough that there are multiple candidate accounts of scientific explanation 

regardless of whether they are ultimately compatible with or competing with one 

another. 

 
4 John Bickle has sometimes claimed that these issues are purely descriptive and can be resolved by 
accurately describing what neuroscientists do without any assumptions about what makes some 
explanations successful and others not, and without any appeal to ontological considerations (Bickle, 
2003). For example, he points to the amount of space dedicated to molecular neuroscience posters versus 
cognitive neuroscience posters at meetings of Society for Neuroscience as evidence that “real” 
neuroscience is molecular neuroscience. It is hard to see how this can be an entirely descriptive claim. 
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Above we justified the project of explaining explanations in part by appealing to 

the potential ontological significance of explanations and explanatory models, viz., that 

“what exists is more or less what our best explanations tell us exists.” But we 

immediately qualified our appeal to even this minimal realism with the observation that 

it may be only some kinds of explanation that have the potential to tell us what exists. So 

we have thus far said nothing about how different explanations could tell us about the 

world. Let us begin with a relatively familiar way of making the connection between 

explanation and the furniture of reality. 

When we were offering reasons that one might want an account of explanation, 

we appealed to some classic examples that seem to illustrate important features of 

explanation. There seems to be a difference between explaining the length of the shadow 

in terms of the height of the flagpole and explaining the height of the flagpole in terms 

of the length of the shadow; and this seems to illustrate that explanatory relations are, or 

can be, asymmetric. There seems to be a difference between explaining Josephina’s non-

pregnancy and Joseph’s non-pregnancy in terms of their use of contraception; and this 

seems to illustrate that potential explanatory factors can be distinguished according to 

differences in relevance. A common way to secure this explanatory asymmetry and 

relevance is to require explanations to appeal to a relation in the world that is itself 

asymmetric and differentially sensitive to manipulations or interventions. The primary 

candidate for such a relation is causation. We can say that the flagpole height explains 

the shadow length but not vice versa because the flagpole causes the shadow and not 

vice versa. And the use of contraception explains Josephina’s non-pregnancy and not 

Joseph’s if contraceptives are causes of Josephina’s non-pregnancy and not causes of 
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Joseph’s non-pregnancy. The idea, then, is that explanations succeed by identifying 

causal relations. Causal explanations, i.e., causal models, successfully explain the 

occurrence of effects by identifying their actual causes. 

That causal explanation can account for explanatory asymmetry and relevance is 

often cited in favor of causal explanation as the basic sort of scientific explanation (cf. 

Woodward, 2004). Be that as it may, what is crucial for our purposes is that the above 

line of reasoning seems to say that causal explanations succeed when the world is as the 

explanation says, that is, when there are causal relations that correspond to those cited in 

a causal explanation or included in a causal model. 

Now, whatever the causal relation itself might be, it is plausible that the things 

that stand in causal relations must exist.5 So causal explanations tell us what exists by 

telling us about the relata of causal relations, where it is implied that those relata are 

“things” in some sense, i.e., they exist. Indeed, one widely accepted principle is that “to 

be is to be a cause.” Jaegwon Kim calls this Alexander’s Dictum, and others have called 

it the Eleatic Principle ( Kim, 2006; Armstrong, 1978). What exists are causes. 

If we take causal models of explanation accordingly, we get an easy path from 

explanation to existence. Put in terms of explanatory models: 

 

1. Model M is the best causal model of phenomenon P; and, according to M, C 

causes E 

2. Therefore, C causes E (from 1, by minimal realism) 

3. Therefore, C exists (from 2, by Alexander’s Dictum) 

 
5 Nothing has been said here about the nature of causation, but the line of reasoning is most persuasive if 
causation is more than mere regularity. 
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Once we’ve gone down this path of reasoning, we may draw further practical and 

epistemic conclusions, such as: cause C is the kind of thing on which we can 

experimentally or clinically intervene, cause C and model M are worthwhile objects of 

investigation, or M is accurate, true, or otherwise epistemically good. These further 

inferences begin from the existence of cause C, whatever it may be. 

Of course, there are many missing details and unarticulated assumptions in the 

above argument outline. And we do not want to leave anyone with the mistaken 

impression that the path from causal explanation to ontology is uncontroversial. What is 

important, for present purposes, is simply that we have a good sense of how the 

argument would work for causal explanation, assuming it does. 

This is important precisely because there are many other kinds of proposed 

explanation and explanatory models that are not causal models, or at least are prima 

facie not causal models. Classically we might distinguish causal explanations from 

teleological explanations, or proximate causes from ultimate causes (Mayr, 1961). In the 

second half of the twentieth century the main contenders were influentially grouped 

together into the classes of causal explanations and unification explanations (Salmon 

and Fagot-Largeault, 1989, Salmon, 1990). In the early twenty-first century it is familiar 

to frame questions about explanation in terms of explanatory models, where those 

include causal models, mechanistic models, mathematical models, physical models, 

computational models, statistical models, and topological models.6 And there has also 

 
6 Here we follow the fashion of focusing attention on so-called explanatory models. But it is just as 
important—perhaps even more important in the neuroscience—to attend to other kinds of models: data 
models, experimental models, predictive models, clinical models, and so on. 
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been a great deal of attention to the ways that models — the best models, that is — do 

not invariably work by telling us how the world is but instead rely on strategies such as 

abstraction and idealization. Michael Weisberg, for example, describes three kinds of 

idealized models that he calls Galilean idealization, minimalist idealization, and multiple 

model idealization; and others have proposed even more varieties (Weisberg, 2007a). 

The upshot is that, on the one hand, we cannot blithely assume that all 

explanations are causal, nor that figuring out what a model tells us about the world is a 

straight-forward matter. On the other hand, we do have a good general idea of how 

causal explanations work, what makes them successful, and how they are related to 

ontology—all of this being in principle, while recognizing that it is often difficult to 

determine in practice. 

This brings us back to our eponymous question, namely, how do computational 

models in the cognitive and brain sciences explain? For we are now in a position to give 

a conditional answer: If computational models in the cognitive and brain sciences are 

causal models, then they explain by representing the causal relations between 

computational states, properties, events, or processes; and they succeed when there are 

(i.e., there exist) states, properties, events, or processes that are causally related as the 

model says that they are. In short, if these computational models are causal models, then 

computational models succeed when they get the causal relations right.7 

 
7 We use ‘state’ in this discussion and hereafter to include (the having of) properties and (the occurrence 
of) events or processes; and we shall use all of these expressions interchangeably, along with ‘thing’ in the 
most generic sense. Moreover, as far as we’re concerned, a causal model or explanation can succeed or 
“get the causal relations right” even if it is idealized or abstract. That view is not trivial; but we do not rely 
on it here except for ease of exposition. The defense of that view is beyond the scope of this paper. 
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Taking stock of the situation, we find ourselves at a crossroads. If computational 

models in the cognitive and brain sciences are causal models, then in general terms we 

know how they do their explanatory work and what ontological implications they carry. 

But if computational models in the cognitive and brain sciences are not causal models, 

then there is more work to be done if we are to understand how they do their explanatory 

work and what ontological implications they carry. 

Two potential sources of confusion must be mentioned before we proceed. First, 

just as there is a generic way of talking about computation as any mediating process 

whatsoever, there is also a way of talking computation that simply redescribes the 

phenomenon that is to be explained. We therefore need to be careful to attend to only 

those cases where the computational explanations are more substantive (Cao 2019). 

Second, while we should be aware of extremely generic notions of computation 

that make our question seem too trivial to answer, we must also be alert to overly 

stringent notions of computation. Nico Orlandi, for example, argues that vision is not a 

computational process in part by arguing that processes only count as computational if 

they actually represent the rules that they follow (Orlandi, 2014). This idea has a long 

history, going back to Alan Turing’s (1936, 1950) specification of his eponymous 

machine as composed in part by the machine table that records the instructions that are 

to be followed by the processing unit. But this is an extremely demanding way of 

thinking about computation that would rule out many familiar but simple electronic 

computing devices as well as, possibly, even general purpose computing machines that 
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run compiled programs8 We are not aware of any model in the cognitive and brain 

sciences that assumes that the system to be explained itself represents computational 

instructions that it consults during processing. If that is what we require, then there are 

not even any candidates for computational explanation in the cognitive and brain 

sciences. But that conclusion conflicts with the practice of giving computational 

explanations in the brain sciences. So, it seems that we should not be quite so 

demanding about computation. 

At this point our inquiry threatens to become bogged down in variety and 

ambiguity. It is well known that various notions of computation are at play, e.g., Aizawa 

(2010), Milkowski (2013), Piccinini (2015, 2020), Shagrir (2021), or Maley (2022). 

Plainly this variety could itself contribute to confusion over the nature of computational 

explanations.  

If the question is whether there is some example of “computational” explanation 

in the cognitive and brain sciences that can be assimilated to causal explanation, then the 

answer is surely yes. As Piccinini and Scarantino observe, “In many quarters, especially 

neuroscientific ones, the term ‘computation’ is used, more or less, for whatever internal 

processes explain cognition” (Piccinini and Scarantino 2010: 244, 2011: 4; see also Cao 

2019). Used so generically, it is likely that many such “computational” explanations are 

causal explanations. But here the term ‘computes’ is like the term ‘mediates” and can be 

 
8There is a tradition of thinking of computer programs in terms of the human-readable programs that we 
write; and of compiling a human-readable computer program as one of translating those same instructions 
into a “machine language” program that the machine will follow. But insofar as the machine program can 
be thought of in terms of instructions at all, it is more accurate to think of the compiled program as 
providing instructions for how to arrange the initial conditions of the machine for its run, rather than as a 
set of instructions that are followed during the running of the program. 
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used to refer to processes, often unknown, that are causal mediators between input and 

output.  

Similarly, and not unrelatedly, if the question is whether there is some notion of 

computation according to which some or all causal processes in the cognitive and neural 

systems are computational processes, then again the answer is surely yes. That 

consequence would be assured by various theories of computation that imply that every 

process is a computational process, i.e., pancomputation. But it would also be implied by 

a variety of theories of computation according to which whether something is a 

computation is a matter of interpretation or description, an idea to which we shall return. 

These questions are important, but they do not tell us what we want to know about 

computational explanation in the cognitive and brain sciences. 

Fortunately for us, we do not have to settle on one example of computational 

explanation nor one theory of computation. What we want to know is not, in the first 

case, whether one or more of the accounts is correct. Rather, we can turn directly to 

some of the proposed accounts of computational explanation in the cognitive and brain 

sciences and consider whether they purport to be causal accounts or to make claims 

about ontology. That is the task of the next section. 

 

Are computational models in fact causal models? 

Are computational models in the cognitive and brain sciences in fact causal models? 

One answer is, yes. According to Gualtiero Piccinini (Piccinini, 2015, 2007), 

computational models are abstract mechanical models, viz., mechanism sketches or 

schema. He specifies his “mechanistic account of computation” as so: 
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A physical computing system is a mechanism whose teleological function is 

performing a physical computation. A physical computation is the manipulation 

(by a functional mechanism) of a medium-independent vehicle according to a 

rule. A medium-independent vehicle is a physical variable defined solely in 

terms of its degrees of freedom (e.g., whether its value is 1 or 0 during a given 

time interval), as opposed to its specific physical composition (e.g., whether it’s 

a voltage and what voltage values correspond to 1 or 0 during a given time 

interval). A rule is a mapping from inputs and/or internal states to internal states 

and/or outputs. (Piccinini, 2015) 

Piccinini is explicit that his account is meant to ensure that computational explanation is 

just a special case of causal explanation — specifically, of mechanistic explanation 

(2015, 2020). A similarly “mechanistic” account of neural computation has been 

advanced by Milkowski (2013). 

Whether Piccinini’s “mechanistic account of computation” should be favored is 

not our current question.9 What matters for our present purposes is simply that if 

Piccinini is correct then there is no special problem about computational explanation in 

the brain sciences — because computational explanation is just a special case of 

mechanistic explanation, which is itself just a variety of causal explanation. We argued 

above that, at least in outline, philosophers and scientists understand what sorts of 

scientific practices should be used to explore such mechanisms, and we understand what 

sorts of scientific products will count as successes. So there is no special problem about 

computational explanation in the brain sciences if Piccinini is correct. 

 
9 For doubts, see Shagrir (2021) and Maley (2023). 
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A different answer is also affirmative but it works from concrete examples rather 

than by employing an overarching mechanistic assumption. As Piccinini and Scarantino 

say: “Many neuroscientists have started using the term ‘computation’ for the processing 

of neuronal spike trains (i.e. sequences of spikes produced by neurons in real time). The 

processing of neuronal spike trains by neural systems is often called ‘neural 

computation’” (Piccinini and Scarantino, 2011). While there is reason to doubt that the 

processing of neuronal spike trains is best understood as a variety of computation (Cao 

2019), there is no doubt that such “neural computation” is a causal process. So, as 

above, we may comfortably conclude that this variety of computational explanation in 

the brain sciences can be assimilated to causal explanation. 

A third approach, advanced by Mazviita Chirimuuta (2014, 2018), proposes that 

computational explanation in brain sciences is distinct from the mechanistic account of 

explanation. According to Chirimuuta, models in computational neuroscience often 

produce a non-mechanistic type of explanation which she dubs efficient coding 

explanation. Efficient-coding explanations rely on the idea that neural systems are 

structured to represent information in a way that minimizes redundancy and maximizes 

the use of available resources, such as energy or neural resources (Doi et al., 2012; Evan 

C. Smith et al., 2006). This idea derives from information theory, which suggests that 

neural systems might encode sensory information in an efficient manner to optimize 

processing and transmission. Efficient coding explanations, Chirimuuta argues, are best 

viewed as a variety of minimal model that differs from Weisberg’s causal minimal 

models (Weisberg, 2007b) which she calls ‘A-minimal models’ (Chirimuuta, 2014, p. 

134). Whereas A-minimal models operate in the mechanistic mode, seeking to identify 
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some specific causal mechanisms underlying cognitive and neural processes (or 

“difference makers”, per Levy and Bechtel, 2013), efficient-coding models operate in 

the computational mode, aiming to describe how information is encoded and processed 

in the neural system by focusing on abstract principles of optimization and information 

processing. Building upon an influential efficient-coding model that abstracts from the 

biophysical mechanisms underlying its neural implementation (viz., the Gabor model of 

V1 receptive field), Chirimuuta contends that despite being basically descriptive, the 

model offers a computational explanation for why neurons exhibit behaviors described 

by the model. The Gabor model of V1 receptive fields abstracts away from biophysical 

details not because it is incomplete or because the details are unknown, but instead it 

abstracts in order to characterize the information-processing capabilities of a neuron or 

neuronal population. In other words, efficient-coding models do not try to satisfy the 3M 

or the MDB (“more details are better”) constraints. 

If 3M is constitutive of mechanistic explanation, then efficient-coding 

explanations are not mechanistic. Yet, they nevertheless offer genuine explanations, as 

Chirimuuta argues by showing that efficient-coding computational explanations can 

meet the same explanatory demands endorsed by the advocates of mechanistic 

explanation — such as James Woodward’s counterfactual test for causal explanation. In 

particular, efficient-coding models can answer “w-questions” or “what-if-things-had-

been-different questions”(Woodward, 2004). Indeed, the facts that efficient-coding 

explanations address the processing of information in the neural system and that they are 

dependent on the evolutionary or developmental environments is precisely what allows 

them to offer specific answers to questions about what would occur in counterfactual 
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scenarios that modulate the behavior of the system. On Chirimuuta’s account then, at 

least some computational models in brain sciences are not mechanistic while still being 

explanatory by the same criteria as causal models10. 

Chirimuuta’s approach reflects on the practice of neuroscience, noting that it 

displays a wider diversity of methods of inquiry than is usually considered by 

philosophers. If she is on the right path, the upshot is that there are several types of 

explanation at play in the brain sciences, depending on the type of abstraction “level” 

(rather than scale or constitutive “levels”) at which the explanation is directed. Some of 

these explanations are not causal or mechanical. But if Chirimuuta is right then these 

explanations only require us to slightly relax our explanatory criteria. She argues that 

efficient-coding explanations, for example, satisfy broadly Woodwardian criteria on 

explanation, such as that they can answer counterfactual questions about why things are 

the way they are and how they could be different. Suppose that the core idea behind 

“Alexander’s Dictum” that what exists are causes is the idea the things that exist are the 

things about which we can reason counterfactually, e.g., to answer such “w-questions” 

or “what-if-things-had-been-different questions”(Woodward, 2004). This suggests that 

we might generalize the principle to something like, “what exists are those things on 

which what-if-things-had-been-different questions depend.” If so, then we can assimilate 

Chirimuuta’s efficient-coding models into our general understanding of the 

methodological and ontological significance of causal explanations, now understood as 

dependence explanations more broadly (cf. Bechtel and Shagrir 2015). 

 
10 Chirimuuta later (2018) introduces the idea that “if one is willing to extend the notion of a mechanism 
to include the whole apparatus of natural selection and ontogenesis, one might propose that computational 
neuroscience is still just in the business of discovering mechanisms” (2018: 853). But that stretches the 
notion of a mechanism rather thin. 
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A different approach is advanced by Lauren Ross. Like Chirimuuta, Ross is 

critical of the broadness of the hegemony of mechanistic explanation in neuroscience 

and of the 3M criterion (Ross, 2015; Ross and Bassett, 2024). She proposes that 

computational explanations in the brain sciences are better construed as explanations in 

terms of causal circuits or pathways rather than as mechanisms, in a special sense of 

Craver (Craver, 2007) or even (Glennan and Illari, 2018). Mechanisms in this view 

“emphasize the “biophysical” and “physical” causes that realize neural and brain 

systems,” which can be “called the hardware or wetware” and that is distinguished 

“from higher-scale structures, computations” (Ross and Bassett, 2024, 84). While this 

does not exclude a 3M approach as such, it is certainly not firmly committed to it. 

Instead, Ross seems more favorable to a Chirimuuta-style approach of computational 

explanations that “pertains not just to single neurons but also to neural networks” and 

thus “indicates the relevance of this explanatory approach to both cellular- and systems-

level neuroscience” (Ross, 2015). If Ross is right and computational models in the brain 

sciences are actually circuit or pathway models, then once more we have a view that 

assimilates computational explanation to causal explanation, albeit not mechanistic 

explanation per se. In that case we at least know how to think about the ontological 

commitments and practical implications of circuits and pathways. 

Up to this point, we seem to be suggesting that the leading interpretations of 

computational explanation in the cognitive and brain sciences can all be assimilated into 

the broadly causal or dependency framework associated with Woodward (2004) and 

therefore are only slight challenges to the dominant mechanistic approach to explanation 

in neuroscience. You might even wonder why we bothered to argue that there are 
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important implications for understanding different accounts of explanation if they can all 

be unified. But matters are not so simple. 

Chirimuuta (2014) and Ross (2023) each suggest that some of the explanations 

they consider can not be assimilated into the broadly causal picture by itself. Ross 

focuses on explanations that are formulated in terms of constraints on systems, which is 

a familiar enough idea. She argues that some constraints are physical (like a river bed 

that constrains the flow of water), some have to do with laws of nature (like the 

constraints on body shapes and sizes for aquatic animals), and some are mathematical 

(like constraints on possible unbroken and non-redundant paths that cross the bridges of 

a city). Causal and nomological (i.e., lawful) constraints are not (always) mechanisms, 

but it is readily shown that they meet the same kinds of criteria on explanation that 

mechanists endorse. But mathematical explanations are of a different sort, and some 

computational explanations in neurosciences seem to involve mathematical constraints, 

specifically, constraints on the efficient transmission or processing of information. These 

will not count as full constraint explanations if they do not entirely rule out possible 

forms, showing that some are impossible. Instead, like the explanation of the shape of 

the cells of a honeycomb (Lyon, 2012), such explanations propose to explain a 

phenomenon by showing that it is or approximates an optimal form. Some of 

Chirimuuta’s efficient-coding explanations seem to be of this sort. 

Chirimuuta (2018) decouples the counterfactualist from the causal interventionist 

components of Woodward’s account of explanation (Woodward, 2004) and combines 

the former with Lange’s (2016) account of “distinctively mathematical explanation” to 

describe a subset of efficient-coding explanations in computational neuroscience that she 
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considers neither mechanistic nor causal. As she puts it in her concluding section: “The 

clearest cases of non-causal explanation in neuroscience are efficient coding 

explanations that refer to information theoretic trade-offs in order to show why it is that 

neural systems should employ particular computational solutions, such as hybrid 

computation, or Gabor filtering” (2018: 875). These kinds of computational models 

offer mathematical explanations of the efficiency and utility of features of neural 

systems because they focus on characteristics of the global dynamics of the system 

rather than looking for any actual causal interactions between parts of a real neural 

network. She suggests that this entails a perspectivist understanding of explanation in 

brain science which shouldn’t be a surprise because neurons can be considered as 

complex biological mechanisms (or parts of systems), as well being considered as 

computational systems (or parts of systems). While acknowledging the limitations of 

efficient-coding explanations (particularly their reliance on simplifying assumptions and 

idealized models of neural processing), Chirimuuta suggests that efficient-coding 

complements other approaches that consider the complexity and heterogeneity of actual 

neural circuits. 

Explanations in terms of mathematical constraints or optimality considerations 

do not readily fit into the picture of explanations that answer w-questions as telling us 

about how the world is or inviting causal intervention on the entities that they model 

because they frequently idealize and sometimes in dramatic ways. Sometimes their 

efficiency or optimality can be explained in terms of conserved resources, as perhaps is 

the case with the hexagonal cells of a honeycomb that require less wax to construct than 

would be required by any other tessellation of the same area (Lyon, 2012). But in other 
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cases the informational efficiency is less clear. At the very least, we can’t assume that 

neural computational happens the way that it does because it approximates optimal 

energenti efficiency. 

While debates persist regarding whether computational models constitute causal 

explanations, various perspectives converge on the idea that they are explanatory. 

Piccinini's mechanistic account suggests that computational explanation is a subset of 

causal explanation, aligning with the broader framework of mechanistic understanding 

in neuroscience. Chirimuuta's efficient-coding explanation, offer a non-mechanistic 

perspective, emphasizing optimization principles over mechanistic details. Similarly, 

Ross proposes a view that focuses on causal circuits or pathways rather than strict 

mechanistic accounts, further broadening the scope of computational explanation. These 

diverse interpretations collectively underline the richness and complexity of explanatory 

frameworks in neuroscience, challenging traditional mechanistic paradigms and urging a 

more nuanced understanding of causality and explanation. 

It appears that computational modeling has emerged as a distinctive and 

influential contribution to the field of neuroscience, reshaping our understanding of 

explanatory norms. 

 

Conclusion: Are computational models actually causal models, or not? 

The significance of determining whether computational models are causal models for 

brain scientists cannot be overstated. Understanding the nature of computational 

explanation informs not only theoretical frameworks but also practical implications for 

research methodologies and funding priorities. If computational models are indeed 
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causal models, scientists can leverage established methodologies for exploring causal 

relationships to advance understanding in cognitive and brain sciences. Conversely, if 

computational models offer a different mode of explanation, such as efficient coding 

explanations, then that recognition necessitates a reevaluation of research practices and 

the development of new methodological approaches to capture these explanations. The 

most obvious implication is that computational explanations are not just more abstract or 

less detailed mechanistic explanations, and the question of the relationship between 

computational and mechanistic explanations is thrown wide open. 

The long-standing priority given to the search for causal mechanisms is linked to 

certain types of tools (both methodological and technical) that have been crucial to the 

development of neuroscience as we know it today. But the increasing importance of 

theoretical and computational approaches in neuroscience means that we need to rethink 

the articulation of modes of investigation in neuroscience and the epistemic standards 

that go with them. As such the question of whether computational models are causal 

models or not has profound implications for the advancement of knowledge in cognitive 

and brain sciences. Answering this question enables scientists to refine their theoretical 

frameworks, develop robust research methodologies, and ultimately deepen our 

understanding of the complexities of the human brain. 
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