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How do Computational Models in the Cognitive and Brain Sciences Explain?”

Abstract

The nature of explanation is an important area of inquiry in philosophy of science.
Consensus has been that explanation in the cognitive and brain sciences is typically a
special case of causal explanation, specifically, mechanistic explanation (Craver 2007).
But recently there has been increased attention to computational explanation in the brain
sciences, and to whether that can be understood as a variety of mechanistic explanation.
After laying out the stakes for a proper understanding of scientific explanation, we

consider the status of computational explanation in the brain sciences by comparing the

argue that many of these accounts of computational explanation in neuroscience can
satisfy the same explanatory criteria as causal explanations, but not all. This has
implications for interpretation of those computational explanations that satisfy different

criteria.

Introduction
Recent years have seen a resurgence of work on perhaps the most central problem in
philosophy of science: the nature of scientific explanation. Lately, attention has focused

specifically on computational explanation in the cognitive and brain sciences. One

* Author names appear alphabetically. All authors contributed equally to this project.
ACKNOWLEDGEMENTS REMOVED FOR ANONYMOUS REVIEW.
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reason is that computational explanation has become much more prevalent in the
cognitive and brain sciences since the last period of philosophical focus on the nature of

explanation (cf. (Salmon and Fagot-Largeault, 1989). A second reason is that the general

has highlighted the lack of any adequate account of computational explanation in these
fields. In this paper, we focus on the question of how computational explanations work
in the cognitive and brain sciences, with attention to their implications for the practices
of the cognitive and neurosciences.!

Cognitive science was born in the 1950s at a time when some underlying
disciplines like psychology and anthropology were themselves undergoing
transformation — and other sciences, such as computer science and neuroscience, still
cognitive science and neuroscience in the form of cognitive neuroscience has
encountered both enthusiasm and criticism. Enthusiastic authors seem to agree that
cognitive neuroscience became possible when imaging techniques at least allowed the
study of brain activity in human subjects performing cognitive tasks (Kosslyn and Shin,
1992; Kriegeskorte and Douglas, 2018; Pereira, 2007). Critics, however, have deemed

this marriage “troubled” in view of the differences in concepts and methods between

! The term brain sciences is sometimes preferred to neuroscience. Cognitive science, at least early on, was
accompanied by brain sciences rather than by neuroscience. Indeed, the term neuroscience was only put
forward by the United States National Academies Committee on Brain Sciences at the end of the 1960s
(Altimus et al., 2020). In addition, the term brain sciences allows one to emphasize other levels of nervous
system organization rather than giving priority to neurons. It is natural for us to consider neuroscience to
be part of the brain sciences. However, there is also a generic use of the term neuroscience that covers
both the cognitive and brain sciences. We use these terms as generally as possible.
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cognitive science and neuroscience (Cooper and Shallice, 2010). For example, cognitive
and brain sciences, including neuroscience, frequently differ over how they approach
and evaluate explanations. It is familiar that neurobiology often favors mechanistic
explanations and cognitive sciences often favor computational explanations.

Mechanistic explanations have dominated the attention of philosophers of
neuroscience at least since Carl Craver’s groundbreaking book, Explaining the Brain
(2007). But the first word is not the last word, and the details of mechanistic models are
a matter of great dispute. Glennan & Illari propose a minimal definition, according to

which “[a] mechanism for a phenomenon consists of entities (or parts) whose activities

to relate how philosophers of science have compared mechanistic explanations to other
accounts when it comes to the cognitive and brain sciences.

For example, Craver argues that “[n]ot all models are explanatory,” but that
models, such as the Hodgkin-Huxley model describing the changes in permeability of a
neuron to sodium and potassium in equations, “are data summaries”, or “phenomenal
models” (Craver, 2006). This stance makes sense in the light of his vision that “to
explain something ... is to show how it fits into the causal structure of the world”
argues for mental mechanisms as “mechanisms that process information” (Bechtel
2008). He further argues that accounts of mechanistic explanation should not only look

“down” to determine in more detail the entities or parts and activities or operations that



compose a mechanism, but also ought to look “up” as “to situate a mechanism in its
context” (Bechtel 2009).

Bechtel and Oron Shagrir have interpreted David Marr’s famous levels of
analysis (viz., computational, algorithmic or representational and implementational) as
perspectives to better understand information-processing mechanism perspective.
Accordingly, “[t]he computational perspective provides an understanding of how a
mechanism functions in broader environments that determines the computations it needs
to perform,” the “algorithmic perspective offers an understanding of how information
about the environment is encoded within the mechanism and what are the patterns of
organization that enable the parts of the mechanism to produce the phenomenon” and
“[t]he implementation perspective yields an understanding of the neural details of the
312).

Emphasis on so-called levels in the questions and positions just summarized may
give the false impression that things are or can be neatly separated. While the authors
who share such concerns often seem to favor a pluralism of explanatory styles (Krakauer
et al., 2017; Potochnik and Sanches de Oliveira, 2020), questions remain as to what
kinds of explanations are required in order for cognitive sciences to explain and how
computational or mathematical explanations and models should be considered.

Kaplan and Craver, for example, argue that “dynamical and mathematical
models in systems and cognitive neuroscience explain (rather than redescribe) a
phenomenon only if there is a plausible mapping between elements in the model and

elements in the mechanism for the phenomenon” (Kaplan and Craver, 2011). In a



similar spirit, Piccinini and Boone have suggested “a framework of multilevel
neurocognitive mechanisms that incorporates representation and computation” (Boone
and Piccinini, 2016). For these authors, the explanatory value of mathematical and
computation models in cognitive science seems to be conditioned on the explanatory
value of underlying mechanisms. This preference makes sense in light of the close
connection between mechanistic and causal explanation, to which we return, below.

Can all computational explanations and models be treated as mechanistic
explanations and models? And, why should we care? In section 2, we review the
relevance of theories of explanation for the cognitive and brain sciences. In section 3, we
examine the importance of understanding explanation in the special case of causal or
mechanistic explanations. This positions us, in section 4, to raise the question of how
computational models and explanations relate to those causal or mechanistic models. If
computational models just are mechanistic models, then we know how the connection
will go. But if they are not, then there is more work to be done. We conclude by

outlining that work, in section 5.

Why care about explanation at all?

Before we dive into the topic of computational explanation, it is worthwhile to consider
why discussion of explanation is profitable. Philosophers may suppose that it is obvious
that studying and theorizing about explanation is a worthwhile endeavor; but this may be
less the case for (neuro)scientists who are often trained in applying one type of

explanation.



To those who do not already think that the study of explanation is intrinsically
valuable, or those who doubt that its intrinsic value is sufficient reason for its pursuit,
several things can be said. First, it is plausible that an understanding of explanation itself
is necessary if we are to give any principled accounts of when and how explanations
succeed or fail. If it is right that the height of a flagpole explains the length of the
shadow it casts but the length of the shadow does not explain the height (Bromberger,
1966), then we would like to know what makes the difference. If the fact that Josephina
uses contraception explains why she does not become pregnant but Joseph’s use of
contraception does not explain why he does not become pregnant (Salmon, 1971), then
we would like to know what makes the difference. And if the number of strawberries in
the container being 21 explains why it cannot be evenly divided into two equinumerous
containers without cutting strawberries but does not explain why it cannot be divided
into two containers of equal weight (Lange, 2013), then we would like to know the
difference.

The claim here is not that a theory of explanation should be in any way prior to
the conduct of the various sciences. On the contrary, it is familiar within the sciences to
raise questions about the distinction between description and explanation (e.g., with
respect to the status of either law-based or dynamical systems explanations), when
explanation is finished or complete (e.g., with respect to whether causal or reductive
explanations must terminate at some point), or what kind of empirical support is
required for adequate explanation (e.g., with respect to the “replication crisis,” “p-
hacking,” or whether reductive explanations must entail a priori principles that enable

transcription of entities from one higher-level theory to those of a lower-level theory
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(Casadevall and Fang, 2008; Claxton et al., 2005; Hanna, 1969; MacQueen, 2013;
Reese, 1999)). So these kinds of concerns are not specifically “philosophical” or “a
priori” in any distinctive way.

Relatedly, there will be important questions about the relations between various
explanations or candidate explanations. This will even be the case if there is only one
kind of explanation — for then we will need to know when explanations compete with
one another and, if they do, how to choose among them. Yet it is plausible that there is
more than one kind of explanation or explanatory model: causal, mechanistic,
mathematical, computational, statistical, and so on.? If so, then the questions arise of
how various explanations of both the same and different varieties are related to one
another, whether we must choose among them, and how to do so. This question will be
acute if the various explanatory models intend to offer a plurality of explanations of the
same phenomenon, or if they explain different phenomena that are purported to “add up”
in some way to the target phenomenon. This may be, for example, by standing in some
sort of part-whole relation to the target phenomenon as atoms do to molecular
substances, proteins to cells, individuals to populations, and so on.

These latter issues, regarding the relations that a plurality of explanations or
explanatory models may stand in with respect to one another, are particularly important
if we think that explanations — or some explanations, at any rate — tell us how the
world is. For example, a common idea is that what exists is more or less what our best
explanations tell us exists—or, to qualify, the best explanations of certain sorts. Insofar

as explanations are our best guide to the world around us, we have an interest in what

2 We shall use “model” and “explanation” interchangeably, for present purposes.
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makes for a good, adequate, or otherwise successful explanation.® So explanations
appear to have implications for what is thought to exist in the world—what philosophers
call “ontological commitments.”

Of course, many scientists and philosophers are unmoved by “ontological”
considerations. But here, again, some things can be said. For example, insofar as we take
it that explanations tell us about the world, determining just what an explanation tells us
about the world (i.e., its “ontological commitments’) can have implications for whether
an explanation is successful at all. One example that has been recently debated is the
Model-to-Mechanism Mapping (3M) constraint, according to which a model is only
explanatory if the parts of the model correspond to parts of the system that it is modeling
(Kaplan, 2011; Kaplan and Craver, 2011). For example, it has been argued that the
Hodgkin-Huxley (HH) model of the formation of the action potential was not itself
explanatory, and the explanation of the formation of the action potential was not had
until the discovery of the existence and mechanism of ion channels (Craver, 2006) that
correspond to the variables in the HH model.

The 3M constraint implies that an explanatory model including idealized parts
that do not map directly onto the target phenomenon will always be inferior to any
explanation that includes only components that map onto parts of the phenomenon; and

3M is sometimes interpreted to imply that an explanation that has more parts that map

3 We need not suppose that this broadly realist approach to explanation is committed to any deep
“metaphysical” thesis in the sense that has been debated over the last century or more. It is enough that we
take explanation to be a, perhaps fallible, guide to the claims that we accept, count as true, assess to be
warrantedly assertable, or whatever pro-epistemic status we prefer.

Nor should we suppose that this thin realism implies that we can read our ontological commitments
directly off the quantificational structure of sentences used in explanatory texts (cf. Quine, 1948).
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onto the parts of the phenomenon will always be a better explanation than those that
But these two implications are rejected by many scientists and philosophers of science,
and even by some whose accounts of explanation are purported to have these
implications (e.g., Craver and Kaplan, 2020). As pointed out, the term “mechanism” in
neuroscience and closely-related domains can refer to different kinds of explanations
ranging from those in which the activity of a single mechanism component is
explanatory, to those for which the organization or relationships between mechanism
components seem to be explanatory (Konsman, 2024; Ross and Bassett, 2024). The
question of whether or not the organization or relationship between the parts could be an
additional criterion by which to evaluate the 3M constraint may be of relevance here
because many mechanisms in cognitive science and neuroscience seem to correspond to
call “mechanism schemas” (Machamer et al., 2000).

The common-sense “realist” relationship between explanation and the world is
hard to break but also hard to establish rigorously. Here we suggest only that the
“ontological commitments” of an explanation — what it says about things in the world
— bear not only on its success or failure in explanatory terms but also bear on
experimental and clinical interventions. We cannot experimentally or clinically
intervene on things that do not exist; and the adequacy of an explanation is sometimes
assessed by the interventions that it predicts or enables. This is the sort of thought that

lies behind Ian Hacking’s slogan, “if you can spray them then they are real” (Hacking,
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1983: 23). Hacking had in mind electrons and the use of electron “guns” in, e.g.,
television sets and electron microscopes.

Finally, there is a special sort of practical relevance to so-called scientific
ontology that is typically neglected by philosophers but is often primary for scientists—
namely, whether something exists, or whether we can find out what exists, is often
relevant to decisions about the utility and funding of various research programs. For just
one example that is salient in the cognitive and brain sciences, if neuroimaging
techniques like functional magnetic resonance imaging (fMRI) do not contribute to
explanations, then we may be wasting huge amounts of time and money on
neuroimaging studies—time and money that would be better spent on other research
programs. It is plausible to think that neuroimaging studies contribute to explanations
only if they are evidence about the working parts of neural systems, ideally if the brain
areas that “light up” in imaging studies are the working parts of brains or are closely
correlated with them. Imaging studies might be useful if they were even merely heuristic
for whether and where to direct other inquiries, for example, studies in systems or
cellular neurobiology. But even then, many researchers would wonder if that benefit
justified the costs of the studies. Such questions have in fact been raised. Indeed, it has
been charged that neuroimaging—i.e., cognitive neuroscience—is wholly bankrupt
because the operations of brains will be entirely explained by molecular biochemical
models (Shulman, 2013) or because brains are wholistic systems (Hardcastle and
Stewart 2002). This would be the case, for example, if the working parts of brains are

not “brain areas” and that way of talking is just a heuristic way to refer to the gross
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anatomical locations of the electrochemical processes that are the real explainers; or if
explanation “drains down” to the “lowest” or “smallest” explanatory models.

Many scientists and philosophers have strongly held views about the outcomes
of the above sorts of disputes. And those views likely depend on assumptions about
explanation and the relationship between explanation and ontology — whether or not
such assumptions are made explicit.* So there is good reason to think that philosophers
and scientists ought to care about the nature of explanation in cognitive and brain
sciences, and thus about scientific explanation in general. We shall proceed on that

basis.

Varieties of Explanatory Models

As noted above, there is a plentiful number of competing proposals about the nature of
explanation or explanatory models in the cognitive and brain sciences. And in the
preceding discussion, we raised the possibility that there could in fact be a plurality of
successful kinds of explanations or explanatory models. Indeed, w favor some varieties
of explanatory pluralism but we don’t intend to argue for explanatory pluralism here.
For the purposes of inquiring about computational explanation in the cognitive and brain
sciences, it is enough that there are multiple candidate accounts of scientific explanation
regardless of whether they are ultimately compatible with or competing with one

another.

4 John Bickle has sometimes claimed that these issues are purely descriptive and can be resolved by
accurately describing what neuroscientists do without any assumptions about what makes some
explanations successful and others not, and without any appeal to ontological considerations (Bickle,
2003). For example, he points to the amount of space dedicated to molecular neuroscience posters versus
cognitive neuroscience posters at meetings of Society for Neuroscience as evidence that “real”
neuroscience is molecular neuroscience. It is hard to see how this can be an entirely descriptive claim.
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Above we justified the project of explaining explanations in part by appealing to
the potential ontological significance of explanations and explanatory models, viz., that
“what exists is more or less what our best explanations tell us exists.” But we
immediately qualified our appeal to even this minimal realism with the observation that
it may be only some kinds of explanation that have the potential to tell us what exists. So
we have thus far said nothing about how different explanations could tell us about the
world. Let us begin with a relatively familiar way of making the connection between
explanation and the furniture of reality.

When we were offering reasons that one might want an account of explanation,
we appealed to some classic examples that seem to illustrate important features of
explanation. There seems to be a difference between explaining the length of the shadow
in terms of the height of the flagpole and explaining the height of the flagpole in terms
of the length of the shadow; and this seems to illustrate that explanatory relations are, or
can be, asymmetric. There seems to be a difference between explaining Josephina’s non-
pregnancy and Joseph’s non-pregnancy in terms of their use of contraception; and this
seems to illustrate that potential explanatory factors can be distinguished according to
differences in relevance. A common way to secure this explanatory asymmetry and
relevance is to require explanations to appeal to a relation in the world that is itself
asymmetric and differentially sensitive to manipulations or interventions. The primary
candidate for such a relation is causation. We can say that the flagpole height explains
the shadow length but not vice versa because the flagpole causes the shadow and not
vice versa. And the use of contraception explains Josephina’s non-pregnancy and not

Joseph’s if contraceptives are causes of Josephina’s non-pregnancy and not causes of

16



Joseph’s non-pregnancy. The idea, then, is that explanations succeed by identifying
causal relations. Causal explanations, i.e., causal models, successfully explain the
occurrence of effects by identifying their actual causes.

That causal explanation can account for explanatory asymmetry and relevance is
often cited in favor of causal explanation as the basic sort of scientific explanation (cf.
line of reasoning seems to say that causal explanations succeed when the world is as the
explanation says, that is, when there are causal relations that correspond to those cited in
a causal explanation or included in a causal model.

Now, whatever the causal relation itself might be, it is plausible that the things
that stand in causal relations must exist.’> So causal explanations tell us what exists by
telling us about the relata of causal relations, where it is implied that those relata are
“things” in some sense, i.e., they exist. Indeed, one widely accepted principle is that “to
be is to be a cause.” Jaegwon Kim calls this Alexander’s Dictum, and others have called
it the Eleatic Principle ( Kim, 2006; Armstrong, 1978). What exists are causes.

If we take causal models of explanation accordingly, we get an easy path from

explanation to existence. Put in terms of explanatory models:

1. Model M is the best causal model of phenomenon P; and, according to M, C
causes E
2. Therefore, C causes E (from 1, by minimal realism)

3. Therefore, C exists (from 2, by Alexander’s Dictum)

3 Nothing has been said here about the nature of causation, but the line of reasoning is most persuasive if
causation is more than mere regularity.

17



Once we’ve gone down this path of reasoning, we may draw further practical and
epistemic conclusions, such as: cause C is the kind of thing on which we can
experimentally or clinically intervene, cause C and model M are worthwhile objects of
investigation, or M is accurate, true, or otherwise epistemically good. These further
inferences begin from the existence of cause C, whatever it may be.

Of course, there are many missing details and unarticulated assumptions in the
above argument outline. And we do not want to leave anyone with the mistaken
impression that the path from causal explanation to ontology is uncontroversial. What is
important, for present purposes, is simply that we have a good sense of how the
argument would work for causal explanation, assuming it does.

This is important precisely because there are many other kinds of proposed
explanation and explanatory models that are not causal models, or at least are prima
facie not causal models. Classically we might distinguish causal explanations from
teleological explanations, or proximate causes from ultimate causes (Mayr, 1961). In the

second half of the twentieth century the main contenders were influentially grouped

to frame questions about explanation in terms of explanatory models, where those
include causal models, mechanistic models, mathematical models, physical models,

computational models, statistical models, and topological models.® And there has also

® Here we follow the fashion of focusing attention on so-called explanatory models. But it is just as
important—perhaps even more important in the neuroscience—to attend to other kinds of models: data
models, experimental models, predictive models, clinical models, and so on.
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been a great deal of attention to the ways that models — the best models, that is — do
not invariably work by telling us how the world is but instead rely on strategies such as
abstraction and idealization. Michael Weisberg, for example, describes three kinds of
idealized models that he calls Galilean idealization, minimalist idealization, and multiple
model idealization; and others have proposed even more varieties (Weisberg, 2007a).

The upshot is that, on the one hand, we cannot blithely assume that all
explanations are causal, nor that figuring out what a model tells us about the world is a
straight-forward matter. On the other hand, we do have a good general idea of how
causal explanations work, what makes them successful, and how they are related to
ontology—all of this being in principle, while recognizing that it is often difficult to
determine in practice.

This brings us back to our eponymous question, namely, how do computational
models in the cognitive and brain sciences explain? For we are now in a position to give
a conditional answer: If computational models in the cognitive and brain sciences are
causal models, then they explain by representing the causal relations between
computational states, properties, events, or processes; and they succeed when there are
(i.e., there exist) states, properties, events, or processes that are causally related as the
model says that they are. In short, if these computational models are causal models, then

computational models succeed when they get the causal relations right.’

7 We use ‘state’ in this discussion and hereafter to include (the having of) properties and (the occurrence
of) events or processes; and we shall use all of these expressions interchangeably, along with ‘thing’ in the
most generic sense. Moreover, as far as we’re concerned, a causal model or explanation can succeed or
“get the causal relations right” even if it is idealized or abstract. That view is not trivial; but we do not rely
on it here except for ease of exposition. The defense of that view is beyond the scope of this paper.
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Taking stock of the situation, we find ourselves at a crossroads. If computational
models in the cognitive and brain sciences are causal models, then in general terms we
know how they do their explanatory work and what ontological implications they carry.
But if computational models in the cognitive and brain sciences are not causal models,
then there is more work to be done if we are to understand how they do their explanatory
work and what ontological implications they carry.

Two potential sources of confusion must be mentioned before we proceed. First,
just as there is a generic way of talking about computation as any mediating process
whatsoever, there is also a way of talking computation that simply redescribes the
phenomenon that is to be explained. We therefore need to be careful to attend to only
those cases where the computational explanations are more substantive (Cao 2019).

Second, while we should be aware of extremely generic notions of computation
that make our question seem too trivial to answer, we must also be alert to overly
stringent notions of computation. Nico Orlandi, for example, argues that vision is not a
computational process in part by arguing that processes only count as computational if
they actually represent the rules that they follow (Orlandi, 2014). This idea has a long
history, going back to Alan Turing’s (1936, 1950) specification of his eponymous
machine as composed in part by the machine table that records the instructions that are
to be followed by the processing unit. But this is an extremely demanding way of
thinking about computation that would rule out many familiar but simple electronic

computing devices as well as, possibly, even general purpose computing machines that
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run compiled programs® We are not aware of any model in the cognitive and brain
sciences that assumes that the system to be explained itself represents computational
instructions that it consults during processing. If that is what we require, then there are
not even any candidates for computational explanation in the cognitive and brain
sciences. But that conclusion conflicts with the practice of giving computational
explanations in the brain sciences. So, it seems that we should not be quite so
demanding about computation.

At this point our inquiry threatens to become bogged down in variety and
ambiguity. It is well known that various notions of computation are at play, e.g., Aizawa
(2010), Milkowski (2013), Piccinini (2015, 2020), Shagrir (2021), or Maley (2022).
Plainly this variety could itself contribute to confusion over the nature of computational
explanations.

If the question is whether there is some example of “computational” explanation
in the cognitive and brain sciences that can be assimilated to causal explanation, then the
answer is surely yes. As Piccinini and Scarantino observe, “In many quarters, especially
neuroscientific ones, the term ‘computation’ is used, more or less, for whatever internal
processes explain cognition” (Piccinini and Scarantino 2010: 244, 2011: 4; see also Cao
2019). Used so generically, it is likely that many such “computational” explanations are

causal explanations. But here the term ‘computes’ is like the term ‘mediates” and can be

8There is a tradition of thinking of computer programs in terms of the human-readable programs that we
write; and of compiling a human-readable computer program as one of translating those same instructions
into a “machine language” program that the machine will follow. But insofar as the machine program can
be thought of in terms of instructions at all, it is more accurate to think of the compiled program as
providing instructions for how to arrange the initial conditions of the machine for its run, rather than as a
set of instructions that are followed during the running of the program.
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used to refer to processes, often unknown, that are causal mediators between input and
output.

Similarly, and not unrelatedly, if the question is whether there is some notion of
computation according to which some or all causal processes in the cognitive and neural
systems are computational processes, then again the answer is surely yes. That
consequence would be assured by various theories of computation that imply that every
process is a computational process, i.e., pancomputation. But it would also be implied by
a variety of theories of computation according to which whether something is a
computation is a matter of interpretation or description, an idea to which we shall return.
These questions are important, but they do not tell us what we want to know about
computational explanation in the cognitive and brain sciences.

Fortunately for us, we do not have to settle on one example of computational
explanation nor one theory of computation. What we want to know is not, in the first
case, whether one or more of the accounts is correct. Rather, we can turn directly to
some of the proposed accounts of computational explanation in the cognitive and brain
sciences and consider whether they purport to be causal accounts or to make claims

about ontology. That is the task of the next section.

Are computational models in fact causal models?

Are computational models in the cognitive and brain sciences in fact causal models?
One answer is, yes. According to Gualtiero Piccinini (Piccinini, 2015, 2007),
computational models are abstract mechanical models, viz., mechanism sketches or

schema. He specifies his “mechanistic account of computation” as so:
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A physical computing system is a mechanism whose teleological function is
performing a physical computation. A physical computation is the manipulation
(by a functional mechanism) of a medium-independent vehicle according to a
rule. A medium-independent vehicle is a physical variable defined solely in
terms of its degrees of freedom (e.g., whether its value is 1 or 0 during a given
time interval), as opposed to its specific physical composition (e.g., whether it’s
a voltage and what voltage values correspond to 1 or 0 during a given time
interval). A rule is a mapping from inputs and/or internal states to internal states
and/or outputs. (Piccinini, 2015)
Piccinini is explicit that his account is meant to ensure that computational explanation is
just a special case of causal explanation — specifically, of mechanistic explanation
(2015, 2020). A similarly “mechanistic” account of neural computation has been
Whether Piccinini’s “mechanistic account of computation” should be favored is
not our current question.” What matters for our present purposes is simply that if
Piccinini is correct then there is no special problem about computational explanation in
the brain sciences — because computational explanation is just a special case of
mechanistic explanation, which is itself just a variety of causal explanation. We argued
above that, at least in outline, philosophers and scientists understand what sorts of
scientific practices should be used to explore such mechanisms, and we understand what
sorts of scientific products will count as successes. So there is no special problem about

computational explanation in the brain sciences if Piccinini is correct.

? For doubts, see Shagrir (2021) and Maley (2023).
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A different answer is also affirmative but it works from concrete examples rather
say: “Many neuroscientists have started using the term ‘computation’ for the processing
of neuronal spike trains (i.e. sequences of spikes produced by neurons in real time). The
processing of neuronal spike trains by neural systems is often called ‘neural
computation’” (Piccinini and Scarantino, 2011). While there is reason to doubt that the
processing of neuronal spike trains is best understood as a variety of computation (Cao
2019), there is no doubt that such “neural computation” is a causal process. So, as
above, we may comfortably conclude that this variety of computational explanation in
the brain sciences can be assimilated to causal explanation.

A third approach, advanced by Mazviita Chirimuuta (2014, 2018), proposes that
computational explanation in brain sciences is distinct from the mechanistic account of
explanation. According to Chirimuuta, models in computational neuroscience often
produce a non-mechanistic type of explanation which she dubs efficient coding
explanation. Efficient-coding explanations rely on the idea that neural systems are
structured to represent information in a way that minimizes redundancy and maximizes
the use of available resources, such as energy or neural resources (Doi et al., 2012; Evan
C. Smith et al., 2006). This idea derives from information theory, which suggests that
neural systems might encode sensory information in an efficient manner to optimize
processing and transmission. Efficient coding explanations, Chirimuuta argues, are best
viewed as a variety of minimal model that differs from Weisberg’s causal minimal
models (Weisberg, 2007b) which she calls ‘A-minimal models’ (Chirimuuta, 2014, p.

134). Whereas A-minimal models operate in the mechanistic mode, seeking to identify
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some specific causal mechanisms underlying cognitive and neural processes (or

the computational mode, aiming to describe how information is encoded and processed
in the neural system by focusing on abstract principles of optimization and information
processing. Building upon an influential efficient-coding model that abstracts from the
biophysical mechanisms underlying its neural implementation (viz., the Gabor model of
V1 receptive field), Chirimuuta contends that despite being basically descriptive, the
model offers a computational explanation for why neurons exhibit behaviors described
by the model. The Gabor model of V1 receptive fields abstracts away from biophysical
details not because it is incomplete or because the details are unknown, but instead it
abstracts in order to characterize the information-processing capabilities of a neuron or
neuronal population. In other words, efficient-coding models do not try to satisfy the 3M
or the MDB (“more details are better”) constraints.

If 3M is constitutive of mechanistic explanation, then efficient-coding
explanations are not mechanistic. Yet, they nevertheless offer genuine explanations, as
Chirimuuta argues by showing that efficient-coding computational explanations can
meet the same explanatory demands endorsed by the advocates of mechanistic
explanation — such as James Woodward’s counterfactual test for causal explanation. In
particular, efficient-coding models can answer “w-questions” or “what-if-things-had-
been-different questions”(Woodward, 2004). Indeed, the facts that efficient-coding
explanations address the processing of information in the neural system and that they are
dependent on the evolutionary or developmental environments is precisely what allows

them to offer specific answers to questions about what would occur in counterfactual
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scenarios that modulate the behavior of the system. On Chirimuuta’s account then, at
least some computational models in brain sciences are not mechanistic while still being
explanatory by the same criteria as causal models'®.

Chirimuuta’s approach reflects on the practice of neuroscience, noting that it
displays a wider diversity of methods of inquiry than is usually considered by
philosophers. If she is on the right path, the upshot is that there are several types of
explanation at play in the brain sciences, depending on the type of abstraction “level”
(rather than scale or constitutive “levels”) at which the explanation is directed. Some of
these explanations are not causal or mechanical. But if Chirimuuta is right then these
explanations only require us to slightly relax our explanatory criteria. She argues that
efficient-coding explanations, for example, satisfy broadly Woodwardian criteria on
explanation, such as that they can answer counterfactual questions about why things are
the way they are and how they could be different. Suppose that the core idea behind
“Alexander’s Dictum” that what exists are causes is the idea the things that exist are the
things about which we can reason counterfactually, e.g., to answer such “w-questions”
or “what-if-things-had-been-different questions”(Woodward, 2004). This suggests that
we might generalize the principle to something like, “what exists are those things on
which what-if-things-had-been-different questions depend.” If so, then we can assimilate
Chirimuuta’s efficient-coding models into our general understanding of the

methodological and ontological significance of causal explanations, now understood as

10 Chirimuuta later (2018) introduces the idea that “if one is willing to extend the notion of a mechanism
to include the whole apparatus of natural selection and ontogenesis, one might propose that computational
neuroscience is still just in the business of discovering mechanisms” (2018: 853). But that stretches the
notion of a mechanism rather thin.
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A different approach is advanced by Lauren Ross. Like Chirimuuta, Ross is
critical of the broadness of the hegemony of mechanistic explanation in neuroscience
and of the 3M criterion (Ross, 2015; Ross and Bassett, 2024). She proposes that
computational explanations in the brain sciences are better construed as explanations in
terms of causal circuits or pathways rather than as mechanisms, in a special sense of
Craver (Craver, 2007) or even (Glennan and Illari, 2018). Mechanisms in this view
“emphasize the “biophysical” and “physical” causes that realize neural and brain
systems,” which can be “called the hardware or wetware” and that is distinguished
does not exclude a 3M approach as such, it is certainly not firmly committed to it.
Instead, Ross seems more favorable to a Chirimuuta-style approach of computational
explanations that “pertains not just to single neurons but also to neural networks” and
thus “indicates the relevance of this explanatory approach to both cellular- and systems-
level neuroscience” (Ross, 2015). If Ross is right and computational models in the brain
sciences are actually circuit or pathway models, then once more we have a view that
assimilates computational explanation to causal explanation, albeit not mechanistic
explanation per se. In that case we at least know how to think about the ontological
commitments and practical implications of circuits and pathways.

Up to this point, we seem to be suggesting that the leading interpretations of
computational explanation in the cognitive and brain sciences can all be assimilated into
the broadly causal or dependency framework associated with Woodward (2004) and
therefore are only slight challenges to the dominant mechanistic approach to explanation

in neuroscience. You might even wonder why we bothered to argue that there are
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important implications for understanding different accounts of explanation if they can all
be unified. But matters are not so simple.
they consider can not be assimilated into the broadly causal picture by itself. Ross
focuses on explanations that are formulated in terms of constraints on systems, which is
a familiar enough idea. She argues that some constraints are physical (like a river bed
that constrains the flow of water), some have to do with laws of nature (like the
constraints on body shapes and sizes for aquatic animals), and some are mathematical
(like constraints on possible unbroken and non-redundant paths that cross the bridges of
a city). Causal and nomological (i.e., lawful) constraints are not (always) mechanisms,
but it is readily shown that they meet the same kinds of criteria on explanation that
mechanists endorse. But mathematical explanations are of a different sort, and some
computational explanations in neurosciences seem to involve mathematical constraints,
specifically, constraints on the efficient transmission or processing of information. These
will not count as full constraint explanations if they do not entirely rule out possible
forms, showing that some are impossible. Instead, like the explanation of the shape of
the cells of a honeycomb (Lyon, 2012), such explanations propose to explain a
phenomenon by showing that it is or approximates an optimal form. Some of
Chirimuuta’s efficient-coding explanations seem to be of this sort.

Chirimuuta (2018) decouples the counterfactualist from the causal interventionist
components of Woodward’s account of explanation (Woodward, 2004) and combines
the former with Lange’s (2016) account of “distinctively mathematical explanation” to

describe a subset of efficient-coding explanations in computational neuroscience that she
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considers neither mechanistic nor causal. As she puts it in her concluding section: “The
clearest cases of non-causal explanation in neuroscience are efficient coding
explanations that refer to information theoretic trade-offs in order to show why it is that
neural systems should employ particular computational solutions, such as hybrid
computation, or Gabor filtering” (2018: 875). These kinds of computational models
offer mathematical explanations of the efficiency and utility of features of neural
systems because they focus on characteristics of the global dynamics of the system
rather than looking for any actual causal interactions between parts of a real neural
network. She suggests that this entails a perspectivist understanding of explanation in
brain science which shouldn’t be a surprise because neurons can be considered as
complex biological mechanisms (or parts of systems), as well being considered as
computational systems (or parts of systems). While acknowledging the limitations of
efficient-coding explanations (particularly their reliance on simplifying assumptions and
idealized models of neural processing), Chirimuuta suggests that efficient-coding
complements other approaches that consider the complexity and heterogeneity of actual
neural circuits.

Explanations in terms of mathematical constraints or optimality considerations
do not readily fit into the picture of explanations that answer w-questions as telling us
about how the world is or inviting causal intervention on the entities that they model
because they frequently idealize and sometimes in dramatic ways. Sometimes their
efficiency or optimality can be explained in terms of conserved resources, as perhaps is
the case with the hexagonal cells of a honeycomb that require less wax to construct than

would be required by any other tessellation of the same area (Lyon, 2012). But in other
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cases the informational efficiency is less clear. At the very least, we can’t assume that
neural computational happens the way that it does because it approximates optimal
energenti efficiency.

While debates persist regarding whether computational models constitute causal
explanations, various perspectives converge on the idea that they are explanatory.
Piccinini's mechanistic account suggests that computational explanation is a subset of
causal explanation, aligning with the broader framework of mechanistic understanding
in neuroscience. Chirimuuta's efficient-coding explanation, offer a non-mechanistic
perspective, emphasizing optimization principles over mechanistic details. Similarly,
Ross proposes a view that focuses on causal circuits or pathways rather than strict
mechanistic accounts, further broadening the scope of computational explanation. These
diverse interpretations collectively underline the richness and complexity of explanatory
frameworks in neuroscience, challenging traditional mechanistic paradigms and urging a
more nuanced understanding of causality and explanation.

It appears that computational modeling has emerged as a distinctive and
influential contribution to the field of neuroscience, reshaping our understanding of

explanatory norms.

Conclusion: Are computational models actually causal models, or not?

The significance of determining whether computational models are causal models for
brain scientists cannot be overstated. Understanding the nature of computational
explanation informs not only theoretical frameworks but also practical implications for

research methodologies and funding priorities. If computational models are indeed
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causal models, scientists can leverage established methodologies for exploring causal
relationships to advance understanding in cognitive and brain sciences. Conversely, if
computational models offer a different mode of explanation, such as efficient coding
explanations, then that recognition necessitates a reevaluation of research practices and
the development of new methodological approaches to capture these explanations. The
most obvious implication is that computational explanations are not just more abstract or
less detailed mechanistic explanations, and the question of the relationship between
computational and mechanistic explanations is thrown wide open.

The long-standing priority given to the search for causal mechanisms is linked to
certain types of tools (both methodological and technical) that have been crucial to the
development of neuroscience as we know it today. But the increasing importance of
theoretical and computational approaches in neuroscience means that we need to rethink
the articulation of modes of investigation in neuroscience and the epistemic standards
that go with them. As such the question of whether computational models are causal
models or not has profound implications for the advancement of knowledge in cognitive
and brain sciences. Answering this question enables scientists to refine their theoretical
frameworks, develop robust research methodologies, and ultimately deepen our

understanding of the complexities of the human brain.
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