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Abstract
Pulse injection of insulin analogues is an important strategy to control blood glucose concentrations and can
be combined with α– glucosidase inhibitors to reduce adverse effects to improve glucose control. We propose
a novel mathematical models with pulse injection insulin and α– glucosidase inhibitors , eating in the form
of pulse blood glucose injection. The existence and uniqueness of the positive periodic solution is confirmed
In type 1 diabetes, which is globally asymptotically stable. Further, the permanence of the system is given in
type 2 diabetes. The numerical analysis verified the correctness of the theoretical calculation results, and
show that the period and the dose of insulin injections and α– glucosidase inhibitors are crucial for insulin
therapies. In addition, we systematically evaluated a reasonable strategy to treat diabetes combined with α–
glucosidase inhibitors, which can provide more reasonable clinical strategies.
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1 INTRODUCTION

Diabetes is a chronic disease in which the blood sugar level rises due to the lack of insulin or the impaired function of insulin
secretion. With the change of age structure and lifestyle habits, the prevalence rate of diabetes has a rising trend and the charac-
teristics of young people1, thus it has become a chronic non-hereditary disease that seriously endangers people’s health. Diabetes
mellitus can be divided into Type 1 Diabetes Mellitus (T1DM) and Type 2 Diabetes Mellitus (T2DM) according to its causes.
T1DM is an autoimmune disease, T lymphocytes mediate the activation of the autoimmune system, leading to the destruction
and functional failure of islet cells, and the absolute lack of endogenous insulin; in people with T2DM, the body’s cells can not
absorb and metabolize glucose to produce energy2,3. In the existing treatment regimen, patients with diabetes need continuous
injection of exogenous subcutaneous insulin analogues or use insulin pumps, but adverse reactions such as hypoglycemia,
insulin resistance, increased body mass, lipodystrophy and so on lead to unsatisfactory therapeutic effect and substandard
glucose. Base on medical clinical research and data statistics, on the basis of exogenous insulin injection to control blood sugar,
combined with α– glucosidase inhibitors can reduce adverse reactions, so that diabetic patients can get better treatment effect.

The α – glucosidase inhibitors (AGIs) are a class of oral drugs that reduce the absorption of carbohydrates in the organism
by inhibiting glucosidase, thus reducing the concentration of blood glucose4. Clinical studies have shown that the main drugs of
AGIs, including Acarbose and hemoglobin, used in treatment can reduce the level of glycated hemoglobin (HbA1c) without
increasing body mass in patients with T2DM5,6,7. At present, there are studies on the treatment of T1DM patients with AGIs,
and found that it can significantly improve the control of blood glucose in T1DM patients8,9.

In recent years, in order to get the right dose of insulin and the right time of injection, a class of diabetes models targeting

Abbreviations: T1DM(T2DM), Type 1(2) Diabetes Mellitus; AGIs, α-glucosidase inhibitors.
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artificial pancreas has brought new hope for the control or cure of diabetes10,11,12,13,14,15,16,17. However, few scholars have
studied the influence of AGIs on diabetes models. In order to better understand the dynamic regulation of glucose and insulin in
the organism under the treatment of insulin, and the effect of AGIs on postprandial blood glucose concentration, it is necessary
to study the dynamic regulation of glucose-insulin system glucose and insulin in physiology with periodic intakes of insulin
injections and α– glucosidase inhibitors18,19,20. According to the biological mechanism of insulin-glucose biodynamics, AGIs
can delay the absorption of carbohydrates to reduce postprandial hyperglycemia, and the time interval between ingestion and
administration of AGIs is negligible relative to the effect of AGIs, so pulse can depict the dynamic process of AGIs. Eating is
approximately pulse glucose injection, and the time interval between eating and taking medicine was approximately negligible
compared with the time of drug effect, we developed a insulin-glucose interaction systems with two different control strategies.
In addition, elevated blood glucose levels stimulate cells in the pancreas to secrete insulin, and the rate of insulin degradation
is Michaelis – Menten function dI

k+I , it’s more realistic than a linear rate, where d is maximum insulin clearance rate, k is the
half-saturation value (see21). Therefore, the insulin injection and medication of diabetic patients can be regarded as pulse
injection to simulate the injection of insulin before eating and the oral administration of AGIs during eating, and then the
insulin-glucose feedback system of insulin combined with AGIs to control blood glucose can be described in more detail. Thus,
this paper proposes a dynamic system of impulse differential equations with double fixed time:

G′(t) = –(σ2 + a(c + mI(t)
k+I(t) ))G(t) + b̃,

I′(t) = σ1G2(t)
α2+G2(t) – dI(t)

k+I(t) ,

}
t ̸= (n + λ – 1)τ , t ̸= nτ ,

G(t+) = G(t),
I(t+) = I(t) + σ̃,

}
t = (n + λ – 1)τ ,

G(t+) = qG(t) + Gin,
I(t+) = I(t),

}
t = nτ ,λ, q ∈ (0, 1),

(1.1)

with initial conditions G(0) = G0 > 0, I(0) = I0 > 0, where G(t) and I(t) denote the blood glucose concentration and insulin
concentration at t > 0 time, respectively. The parameter G̃in represents the continuous exogenous injection of glucose (mimicking
food intake) and σ2G(t) represents the independent breakdown of glucose consumption by insulin. aG(c + mI(t)

k+I(t) ) denotes

insulin-dependent glucose utilization, and b̃ > 0 is the rate of hepatic glucose production. σ1G2(t)
α2

1+G2(t) is amount of insulin secretion
stimulated by the increase of glucose concentration indicates. σ1, σ2, α1, a, c, m, kis the normal number. Parameter σ̃(µU/ml) > 0
represents the dose of exogenous insulin injected, τ (min) > 0 denote the injection period, σ̃(µU/ml) denote that insulin is
injected into the organism at t = nτ (n ∈ Z+) discrete pulse times, and the nth instant after injection is denoted as t = nτ+, and
t = (n + λ – 1)τ the representative represents glucose infusion in which pulse insulin is injected at discrete times, σ̃(µU/ml) > 0
is the amount of each exogenous insulin injection at discrete time, Gin is the glucose intake at t = nτ discrete time, and qG(t) is
the blood glucose concentration after oral administration of AGIs at t = nτ discrete time.

2 PRELIMINARIES

Let R+ = [0,∞) and R2
+ = {X = (x1, x2)T ∈ R2 : xi ∈ R+, i = 1, 2}. Denote by f = (f1, f2)T the map defined by right-hand

sides of the first two equation of (1.1)22. Set V : R+ × Rn → R+ and then V is said to belong to class V0 if
(i) V is continuous in ((n – 1)τ , (n + λ – 1)τ ] × R2

+∪((n + λ – 1)τ , nτ ] × R2
+, for each X ∈ R2

+,

lim
(t,s)→((n+λ–1)τ+,X)

V(t, s) = V((n + λ – 1)τ+, X)

and
lim

(t,s)→(nτ+,X)
V(t, s) = V(nτ+, X)

exist;
(ii) V is locally Lipschitzian in X.

Definition 1. Let V ∈ V0, then for ((t, X) ∈ ((n – 1)τ , (n + λ – 1)τ ] × R2
+ ∪ ((n + λ – 1)τ , nτ ] × R2

+, the upper right derivative of
V(t, X) with respect to system (1.1) is defined as

D+V(t, X) = lim
h→0+

sup
1
h

[V(t + h, X + hf (t, X)) – V(t, X)].
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Definition 2. System is said to be permanent if there exist positive constant m and M with M ≥ m ≥ 0 such that every positive
solution G(t),I(t) satisfying

m ≤ G(t) ≤ M and m ≤ I(t) ≤ M,

for all t large enough. The solution of system (1.1), denoted by X(t) = (G(t), I(t)) : R+ → R2
+, is continuously differentiable on

((n – 1)τ , (n + λ – 1)τ ] ∪ ((n + λ – 1)τ , nτ ], n ∈ Z+.

Definition 3. The Lambert W function is defined to be a multivalued inverse of the function z 7→ zez satisfying

Lambert W(z)exp(LambertW(z)) = z,

It follows from above definition that we have

Lambert W
′
(z) =

LambertW(z)
z(1 + LambertW(z))

,

and which has two real branches will play an important role in calculating the analytical solutions of one compartment with a
constant input.(see Figure.1)
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F I G U R E 1 the two real branches of Lambert Wfucntion

Lemma 1. Suppose that (G(t), I(t)) is a solution of system (1.1) with G(0+) ≥ 0, I(0+) ≥ 0, then G(t) > 0, I(t) > 0 for all t ≥ 0.
Furthermore, G(t) > 0, I(t) > 0 if G(0+) > 0, I(0+) > 0.

Lemma 2. Both systems (2.1) and (2.2)
u′1(t) = a1 – b1u1(t), t ̸= (n + λ – 1)τ , t ̸= nτ ,

u1(t+) = u1(t) + σ, t = (n + λ – 1)τ ,

u1(t+) = u1(t), t = nτ ,

u1(0+) = u01,

(2.1)

and 
u′2(t) = a2 – b2u2(t), t ̸= (n + λ – 1)τ , t ̸= nτ ,

u2(t+) = u2(t), t = (n + λ – 1)τ ,

u2(t+) = u2(t) + Gin, t = nτ ,

u2(0+) = u02,

(2.2)
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have unique positive periodic solutions u∗
1 (t) and u∗

2 (t), respectively, and for every solutions u1(t) of (2.1) and u2(t) of (2.2),
satisfying

|ui(t) – u∗
i (t)| → 0, t → ∞, i = 1, 2,

where

u∗i (t) =

{
ai
bi

+ (u∗i (0+) – ai
bi

)e–bi(t–(n–1)τ ), t ∈ ((n – 1)τ , (n + λ – 1)τ ],
ai
bi

+ (u∗i ((n + λ – 1)τ+) – ai
bi

)e–bi(t–(n+λ–1)τ ), t ∈ ((n + λ – 1)τ , nτ ],

u∗1 (0+) = u∗1 (nτ+) =
a1

b1
+
σe–b1(1–λ)τ

1 – e–b1τ
,

u∗1 ((n + λ – 1)τ+) =
a1

b1
+

σ

1 – e–b1τ
,

u∗2 (0+) = u∗2 (nτ+) =
a2

b2
+

Gin

1 – e–b2τ
,

u∗2 ((n + λ – 1)τ+) =
a2

b2
+

Gine–b2λτ

1 – e–b2τ
.

Especially, when ai = 0, both systems (2.1) and (2.2) have unique positive periodic solutions

u∗1 (t) =

{
σe–b1(1–λ)τ

1–e–b1τ
e–b1(t–(n–1)τ ), t ∈ ((n – 1)τ , (n + λ – 1)τ ],

σ
1–e–b1τ

e–b1(t–(n+λ–1)τ ), t ∈ ((n + λ – 1)τ , nτ ],
(2.3)

and

u∗2 (t) =
{ Gin

1–e–b2τ
e–b2(t–(n–1)τ ), t ∈ ((n – 1)τ , (n + λ – 1)τ ],

Gin
1–e–b2τ

e–b2(t–(n+λ–1)τ ), t ∈ ((n + λ – 1)τ , nτ ].
(2.4)

Lemma 3. Let V ∈ V0 and assume that
D+V(t, x) ≤ g(t, v(t, x)), t = (n + λ – 1)τ , t ̸= nτ ,
V(t, X(t+)) ≤ ϕn(V(t, X)), t = (n + λ – 1)τ ,
V(t, X(t+)) ≤ ϕn(V(t, X)), t = nτ ,

where g : R+ × R+ → R is continues in ((n – 1)τ , (n + λ – 1)τ ] × R+ ∪ ((n + λ – 1)τ , nτ ] × R+ and for each X(t) ∈ R2
+, n ∈ Z+,

lim
(t,s)→((n+λ–1)τ+,X)

g(t, s) = g((n + λ – 1)τ+, X),

lim
(t,s)→(nτ+,X)

g(t, s) = g(nτ+, X),

exist and is finite; Φn,Ψn : R+ → R+ are non-decreasing. Let R(t) be the maximal solution of the scalar impulsive differential
equation 

u′(t) = g(t, u(t)), t ̸= (n + λ – 1)τ , t ̸= nτ ,

u(t+) = Φn(u(t)), t = (n + λ – 1)τ ,

u(t+) = Ψn(u(t)), t = nτ ,

u(0+) = u0 ≥ 0,

(2.5)

defined on [0,∞). Then V(0+, x(0+)) ≤ u0 implies that

V(t, X(t)) ≤ R(t),

for all t ≥ 0, where X(t) = (G(t), I(t)) is any solution of system (1.1).

3 MATHEMATICAL ANALYSIS AND RESULTS

For system (1.1), when σ1 = 0 means that the pancreas does not secrete or releases very little insulin, and it is precisely
because of the impaired function of its own β islet cells in T1DM patients that the endogenous insulin pair is deficient. Thus the
model degrades to:
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

G′(t) = –(σ2 + a(c + mI(t)
k+I(t) ))G(t) + b̃,

I′(t) = – dI(t)
k+I(t) ,

}
t ̸= (n + λ – 1)τ , t ̸= nτ ,

G(t+) = G(t),
I(t+) = I(t) + σ̃,

}
t = (n + λ – 1)τ ,

G(t+) = qG(t) + Gin,
I(t+) = I(t),

}
t = nτ ,λ, q ∈ (0, 1).

(3.1)

Then we discuss the existence, uniqueness, persistence and global asymptotic stability of periodic solutions of model
system (3.1).

3.1 Existence and stability of periodic solutions in the model of T1DM

Theorem 1. Model system (3.1) have unique positive periodic solution (G∗(t), I∗(t)), if σ̃
τ < d.

Proof. According to model system (3.1), this is equivalent to ignoring the stimulation of insulin secretion caused by the increase
of blood glucose concentration, and only considering the degradation of insulin. Therefore, the degraded system does not appear
G(t) in the second equation, and the following subsystem is considered:

I′(t) = –
dI(t)

k + I(t)
, t ̸= (n + λ – 1)τ , t ̸= nτ ,

I(t+) = I(t) + σ̃, t = (n + λ – 1)τ ,

I(t+) = I(t+), t = nτ ,

I(0+) = I0 > 0,

(3.2)

from the first equation,
k + I(t)
–dI(t)

dI = dt, (3.3)

integrate Equ.(3.3) in t ∈ ((n – 1)τ , (n + λ – 1)τ ],

–
k
d

ln |
I((n – 1)τ+)

I(t)
| –

1
d

(I((n – 1)τ+) – I(t)) = (n – 1)τ – t,

then we have
I(t)
k

e
I(t)
k =

I((n – 1)τ+)
k

exp
}1

k
(–d(t – (n – 1)τ ) + I((n – 1)τ+))

}
,

by Definition 3., the equation is constant positive, which can be solved by the upper branch of Lambert W function

I∗(t) = kLambert W(
I((n – 1)τ+)

k
exp

{1
k

(–d(t – (n – 1)τ ) + I((n – 1)τ+))
}

), (3.4)

similarly, when t ∈ ((n + λ – 1)τ , nτ ],

I∗(t) = kLambert W(
I((n + λ – 1)τ+)

k
exp

{1
k

(–d(t – (n + λ – 1)τ ) + I((n + λ – 1)τ+))
}

), (3.5)

thus, if satisfied σ̃
τ < d, I∗(t) given by ( the detailed mathematical analysis is given in Appendix A)

I∗(t) =


kLambert W( I∗(0+)

k exp
{ 1

k (–d(t – (n – 1)τ + I∗(0+))
}

),
t ∈ ((n – 1)τ , (n + λ – 1)τ ],

kLambert W( I∗((n+λ–1)τ+)
k exp

{ 1
k (–d(t – (n + λ – 1)τ + I∗((n + λ – 1)τ+))

}
),

t ∈ ((n + λ – 1)τ , nτ ],

(3.6)
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where

I(0+) = I(nτ+) = kLambert W(
σ̃exp{ σ̃exp{ 1

k (σ̃–dτ )}
k(1–exp{ 1

k (σ̃–dτ )}) }

k(exp{ 1
k (d(1 – λ)τ – σ̃)} – exp{– dλτ

k })
),

I((n + λ – 1)τ+) =
σ̃

1 – exp{ 1
k (σ – dτ )}

.

Substituting the subsystem periodic solution (3.3) into model system (3.1) gives
G′(t) = –(σ2 + a(c +

mI∗(t)
k + I∗(t)

))G(t) + b̃, t ̸= (n + λ – 1)τ , t ̸= nτ

G(t+) = G(t), t = (n + λ – 1)τ ,

G(t+) = qG(t) + Gin, t = nτ ,

G(0+) = G0 > 0.

(3.7)

To solve this impulse equation by integration, according to the fixed time, we can obtain:
(1) t ∈ ((n – 1)τ , (n + λ – 1)τ ],

G(t) = G((n – 1)τ+)e–
∫ t

(n–1)τ+ ac+σ2+ amI∗ (s)
k+I∗ (s) ds + b̃

∫ t

(n–1)τ+
e–

∫ t
u ac+σ2+ amI∗ (s)

k+I∗ (s) dsdu,

by G(t+) = qG(t) + Gin,

G(t) = (qG((n – 1)τ + Gin)e–
∫ t

(n–1)τ+ ac+σ2+ amI∗ (s)
k+I∗ (s) ds + b̃

∫ t

(n–1)τ+
e–

∫ t
u ac+σ2+ amI∗ (s)

k+I∗ (s) dsdu,

Further, according to system (3.1), ∃k1, k2 ∈ [(n – 1)τ+, (n + λ – 1)τ ], and k1 ≤ k2, obtain

e–am
∫ k2

k1
I∗ (s)

k+I∗ (s) ds = e
am
d

∫ k2
k1

–dI∗ (s)
k+I∗ (s) ds

= e
am
d

∫ k2
k1

I′(s)ds

= e
am
d (I(k2)–I(k1)),

therefore,
G(t) = (qG((n – 1)τ ) + Gin)e(–(ac+σ2)(t–(n–1)τ ))+ am

d (I∗(t)–I∗(0+))

+ b̃
∫ t

(n–1)τ+
e(–(ac+σ2)(t–u))+ am

d (I∗(t)–I∗(u))du,

when t = (n + λ – 1)τ ,
G((n + λ – 1)τ ) = (qG(n – 1)τ + Gin)e(–(ac+σ2)λτ )+ am

d (I∗(λτ )–I∗(0+))

+ b̃
∫ λτ

0+
e(–(ac+σ2)(λτ–u))+ am

d (I∗(λτ )–I∗(u))du,
(3.8)

(2) t ∈ ((n + λ – 1)τ , nτ ],

G(t) = G((n + λ – 1)τ+)e–
∫ t

n+λ–1τ+ (ac+σ2+ amI∗ (s)
k+I∗ (s) )ds + b̃

∫ t

n+λ–1τ+
e–

∫ t
v (ac+σ2+ amI∗ (s)

k+I∗ (s) )dsdv

= G((n + λ – 1)τ )e–
∫ t

n+λ–1τ+ (ac+σ2+ amI∗ (s)
k+I∗ (s) )ds + b̃

∫ t

n+λ–1τ+
e–(ac+σ2)(t–v)e–

∫ t
v

amI∗ (s)
k+I∗ (s) )dsdv,

(3.9)

in the same way,
G(t) = G((n + λ – 1)τ )e–(ac+σ2)(t–λτ )+ am

d (I∗(t)–I∗(λτ+))

+ b̃
∫ t

(n+λ–1)τ+
e–(ac+σ2)(t–v)+ am

d (I∗(t)–I∗(v))dv,
(3.10)

then
G(nτ ) = G((n + λ – 1)τ )e–(ac+σ2)((1–λ)τ )+ am

d (I∗(τ )–I∗(λτ+))

+ b̃
∫ τ

λτ+
e–(ac+σ2)(τ–v)+ am

d (I∗(τ )–I∗(v))dv,
(3.11)
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Equ.(3.8) and Equ.(3.11) can be obtained simultaneously,{
G((n + λ – 1)τ ) = AλG((n + λ – 2)τ ) + BλGin + Cλ,

G(nτ ) = AλG((n – 1)τ ) + BλΛGin + Dλ,
(3.12)

where
Aλ = qe–(ac+σ2)τ+ am

d (I∗(λτ )–I∗(λτ+)),

Bλ = e–(ac+σ2)λτ+ am
d (I∗(λτ )–I∗(0+)),

Cλ = b̃e–(ac+σ2)λτ+ am
d (I∗(λτ )–I∗(0+))

∫ τ

λτ+
e–(ac+σ2)(τ–v)+ am

d (I∗(τ )–I∗(v))dv

+ b̃
∫ λτ

0+
e–(ac+σ2)(λτ–u)+ am

d (I∗(λτ )–I∗(u))du,

Λ = e–(ac+σ2)(1–λ)τ+ am
d (I∗(τ )–I∗(λτ+)),

Dλ = b̃ · Λ ·
∫ λτ

0+
e–(ac+σ2)(λτ–u)+ am

d (I∗(λτ )–I∗(u))du · e–(ac+σ2)λτ+ am
d (I∗(λτ )–I∗(0+))

+ b̃
∫ τ

λτ+
e–(ac+σ2)(τ–v)+ am

d (I∗(τ )–I∗(v))dv.

Definitely, by I(λτ+) = I(λτ ) + σ̃, obtain 0 < Aλ < 1 i.e. τ > amσ̃+d ln q
(ac+σ2)d , thus Equ.(3.12) has a unique fixed point:

G∗ =


BλGin + Cλ

1 – Aλ
, t ∈ ((n – 1)τ , (n + λ – 1)τ ],

BλΛGin + Dλ

1 – Aλ
, t ∈ ((n + λ – 1)τ , nτ ],

(3.13)

and Equ.(3.13) is globally asymptotically stable23, and its periodic solution G∗(t) is also globally asymptotically stable17,24,
where

G∗(t) =



(q
BλGin + Cλ

1 – Aλ
+ Gin)e(–(ac+σ2)(t–(n+λ–1)τ ))+ am

d (I∗(t)–I∗(0+))

+ b̃
∫ t

(n–1)τ+
e(–(ac+σ2)(t–u))+ am

d (I∗(t)–I∗(u))du,

 t ∈ ((n – 1)τ , (n + λ – 1)τ ],

BλΛGin + Dλ

1 – Aλ
e(–(ac+σ2)(t–(n+λ–1)τ ))+ am

d (I∗(t)–I∗(λτ+))

+ b̃
∫ t

(n+λ–1)τ+
e(–(ac+σ2)(t–v))+ am

d (I∗(t)–I∗(v))dv,

 t ∈ ((n + λ – 1)τ , nτ ],

(3.14)

with 
G∗(0+) = G∗(nτ+) =

BλΛGin + Dλ

1 – Aλ
,

G∗((n + λ – 1)τ+) =
BλGin + Cλ

1 – Aλ
.

Thus the unique positive periodic solution (G∗(t), I∗(t)) of model system (3.1) is obtained.

3.2 Stability of periodic solutions in the model of T1DM

Theorem 2. The positive periodic solution (G∗(t), I∗(t)) of system (3.1) is globally asymptotically stable.

Proof. Suppose (G(t), I(t)) is any solution of system (3.1), first of all, using the Floquet multiplier theory that (G∗(t), I∗(t)) is local
stability. To this end, adding the consideration of small amplitude disturbance behavior ω1(t) and ω2(t) , namely, it holds that:

G(t) = G∗(t) + ω1(t),

I(t) = I∗(t) + ω2(t).
(3.15)
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By using the Taylor expansion Equ.(3.15) and ignoring the higher-order terms, the linearized system can be obtained as
follows. (

ω1(t)

ω2(t)

)
= Φ(t)

(
ω1(0)

ω2(0)

)
, (3.16)

and satisfied
dΦ(t)

dt
=

(
–(ac + σ2) – amI∗(t)

k+I∗(t) – amkG∗(t)
(k+I∗(t))2

0 – dk
(k+I∗(t))2

)
, (3.17)

where

Φ(t) =

(
exp[(

∫ t
0 –(ac + σ2) – amI∗(t)

k+I∗(t) )dt] ∗
0 exp(

∫ t
0 – dk

(k+I∗(t))2 dt)

)
,

obviously, Φ(0) = I, where ∗ is not discussed because it does not affect the stability analysis, and I is the identity matrix.
Equ.(3.15) has a reset pulse condition(

ω1((n + λ – 1)τ+)

ω2((n + λ – 1)τ+)

)
=
(

1 0
0 1

)(
ω1((n + λ – 1)τ )

ω2((n + λ – 1)τ )

)
,

and (
ω1(nτ+)

ω2(nτ+)

)
=
(

q 0
0 1

)(
ω1(nτ )

ω2(nτ )

)
,

Let

M =
(

1 0
0 1

)(
q 0
0 1

)
Φ(τ )

=

(
q exp[(–

∫ τ

0 ac+σ2 + amI∗(t)
k+I∗(t) )dt] ∗

0 exp[–
∫ τ

0
dk

(q+I∗(t))2 dt]

)
,

(3.18)

where

Φ(τ ) =

(
exp(

∫ τ

0 –(ac + σ2) – amI∗(t)
k+I∗(t) )dt ∗

0 exp(
∫ τ

0 – dk
(k+I∗(t))2 )

)
.

According to Floquet multiplier theory, (G∗(t), I∗(t)), the local stability of decided by the eigenvalues of Equ.(3.18), and
the eigenvalues for

λ1 = q exp[–(
∫ τ

0
ac + σ2 +

amI∗(t)
k + I∗(t)

dt] < 1,

λ2 = exp[–
∫ τ

0

dk
(k + I∗(t))2 dt] < 1,

thus, the positive periodic solution (G∗(t), I∗(t)) is locally stable.
Secondly, to obtain that (G∗(t), I∗(t)) is globally asymptotically stable, using Lemma2.3, since

lim
t→∞

I(t) = I∗(t),

so that for ∀ε1 > 0,
I∗(t) – ε1 < I∗(t) < I∗(t) + ε1,

where, t is large enough to facilitate discussion as follows t ≥ 0. The inequation is substituted into model system (3.1) to obtain

–(ac + σ2)G(t) –
am(I∗(t) + ε1)
k + I∗(t) + ε1

G(t) + b̃ ≤ G′(t) ≤ –(ac + σ2)G(t) –
am(I∗(t) – ε1)
k + I∗(t) – ε1

G(t) + b̃. (3.19)

Then we discuss the subsystem formed by the two subsystems:
G′

1(t) = –(ac + σ2)G(t) –
am(I∗(t) + ε1)
k + I∗(t) + ε1

G(t) + b̃, t ̸= (n + λ – 1)τ , t ̸= nτ ,

G1(t+) = G1(t), t = (n + λ – 1)τ ,

G1(t+) = qG(t) + Gin, t = nτ ,

(3.20)
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and 
G′

2(t) = –(ac + σ2)G(t) –
am(I∗(t) – ε1)
k + I∗(t) – ε1

G(t) + b̃, t ̸= (n + λ – 1)τ , t ̸= nτ ,

G2(t+) = G2(t), t = (n + λ – 1)τ ,

G2(t+) = qG(t) + Gin, t = nτ .

(3.21)

Obviously, according to the above proof procedure, the unique globally asymptotically stable periodic solutions G∗
1 (t) and G∗

2 (t)
can be obtained, then for sufficiently small ∀ε > 0, it follows from Theorem 1., then by Lemma 3.:

G∗
1 (t) – ε < G1(t) ≤ G(t) ≤ G2(t) < G∗

2 (t) + ε,

let ε → 0, have G∗
1 (t) → G∗(t), G∗

2 (t) → G∗(t),
i.e.

G(t) → G∗(t),

where t → ∞.
This proves that (G∗(t), I∗(t)) is globally asymptotically stable.

3.3 Permanence of model system with T2DM

The diagnostics of T2DM and prediabetes are hyperglycemia and hyperinsulinmia, which are most likely caused by insulin
resistance. Pancreatic β–cells still secrete insulin and might possibly secrete extra insulin to compensate the insulin resistance in
this case, although the compensation is not enough for T2DM to uptake glucose. In this subsection, we study the permanence of
system (1.1) with T2DM. This result means that both episodes of hyperglycemia and hypoglycemia can be avoided during the
design regimes of exogenous insulin injection.

Theorem 3. System (1.1) is permanent, if σ1 > 0 and σ1 – d < 0.

Proof. The second equation of system satisfied

–
dI(t)

k + I(t)
≤ I′(t) ≤ σ1 –

dI(t)
k + I(t)

(3.22)

thus, consider the following two impulsive differential subsystem:
I′1(t) = –

dI(t)
k + I(t)

, t ̸= (n + λ – 1)τ , t ̸= nτ ,

I1(t+) = I(t) + σ̃, t = (n + λ – 1)τ ,

I1(t+) = I(t), t = nτ ,

I1(t+
0 ) = I0 > 0,

(3.23)

and 
I′2(t) = σ1 –

dI(t)
k + I(t)

, t ̸= (n + λ – 1)τ , t ̸= nτ ,

I2(t+) = I(t) + σ̃, t = (n + λ – 1)τ ,

I2(t+) = I(t), t = nτ ,

I2(t+
0 ) = I0 > 0.

(3.24)

By above proof, system (3.23) has an unique globally asymptotically stable positive periodic solutions:

I∗1 (t) =


σ̃e–d(1–λ)τ

1 – e–dτ e–d(t–(n–1)τ ), t ∈ ((n – 1)τ , (n + λ – 1)τ ],

σ̃

1 – e–dτ e–d(t–(n+λ–1)τ ), t ∈ ((n + λ – 1)τ , nτ ].
(3.25)

Notice the first equation of model system (3.24), the explicit solution has been investigated by25. We present the positive
completely analytical formula for any solution of the model system (3.24)(The detailed mathematical calculation is given in



10 Liu ET AL.

Appendix B.):

I∗2 (t) = –
σ1k

σ1 – d
–

kd
σ1 – d

Lambert W(–(
σ1

d
+

kd
σ1 – d

I0) exp{–(
kd

σ1 – d
I0 +

(kd)2

σ1 – d
(t0 – t) +

σ1

d
}), (3.26)

and the condition of positivity and boundedness is
δ = σ1 – d < 0. (3.27)

By Lemma 3., for any ϵ2 > 0 is small enough, holds t large enough, then get

I∗1 (t) – ϵ2 < I1(t) ≤ I(t) ≤ I2(t) < I∗2 (t) – ϵ2. (3.28)

Furthermore,

m1 ≜
σ̃e–dτ

1 – e–dτ

= lim inf
t→∞

I∗1 (t)

≤ lim inf
t→∞

I(t)

≤ lim sup
t→∞

I(t)

≤ lim sup
t→∞

I∗2 (t)

= max I0, –
σ1k

σ1 – d
≜ M1.

(3.29)

Therefore I(t) is ultimately positively bounded. For G(t) which is ultimately positively bounded, if there exists constants
m2, M2 > 0 such that m2 ≤ lim

t→∞
inf G(t) ≤ lim

t→∞
sup G(t) ≤ M2, holds for t large enough.

By inequation (3.29) and the first equation of system (1.1), have

b̃ – (ac + σ2)G(t) –
amM1G(t)

k + M1
≤ G′(t) ≤ b̃ – (ac + σ2)G(t) –

amm1G(t)
k + m1

, (3.30)

similar to (3.24)∼(3.29), consider the two impulsive equations
G′

1(t) = b̃ – (ac + σ2 +
amM1

k + M1
)G1(t), t ̸= (n + λ – 1)τ , t ̸= nτ ,

G1(t+) = G1(t), t = (n + λ – 1)τ ,

G1(t+) = qG1(t) + Gin, t = nτ ,

G1(0+) = G0 > 0,

(3.31)

and 
G′

2(t) = b̃ – (ac + σ2 +
amm1

k + m1
)G2(t), t ̸= (n + λ – 1)τ , t ̸= nτ ,

G2(t+) = G2(t), t = (n + λ – 1)τ ,

G2(t+) = qG2(t) + Gin, t = nτ ,

G2(0+) = G0 > 0,

(3.32)

By Lemma 2., system (3.31) and (3.32) have unique globally asymptotically stable positive periodic solutions:

G∗
1 (t) =


b̃
h

+ (G∗
1 (0+) –

b̃
h

)e–h(t–(n–1)τ ), t ∈ ((n – 1)τ , (n + λ – 1)τ ],

b̃
h

+ (G∗
1 ((n + λ – 1)τ+) –

b̃
h

)e–h(t–(n+λ–1)τ ), t ∈ ((n + λ – 1)τ , nτ ],
(3.33)
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with
h = ac + σ2 +

amM1

k + M1
,

G∗
1 (0+) = G∗

1 (nτ+) =
b̃(1 – e(–hτ ))
h(q – e(–hτ ))

+
Gin

q – e–hτ ,

G∗
1 ((n + λ – 1)τ+) =

b̃(1 – e–hλτ )
h(1 – qe–hλτ )

+
Gine–hλτ

1 – qe–hλτ ,

(3.34)

and

G∗
2 (t) =


b̃
H

+ (G∗
2 (0+) –

b̃
H

)e–H(t–(n–1)τ ), t ∈ ((n – 1)τ , (n + λ – 1)τ ],

b̃
H

+ (G∗
2 ((n + λ – 1)τ+) –

b̃
H

)e–H(t–(n+λ–1)τ ), t ∈ ((n + λ – 1)τ , nτ ],
(3.35)

with
H = ac + σ2 +

amm1

k + m1
,

G∗
2 (0+) = G∗

2 (nτ+) =
b̃(1 – e(–Hτ ))
H(q – e(–Hτ ))

+
Gin

q – e–Hτ
,

G∗
2 ((n + λ – 1)τ+) =

b̃(1 – e–Hλτ )
H(1 – qe–Hλτ )

+
Gine–Hλτ

1 – qe–Hλτ
.

(3.36)

By Lemma 2. and Lemma 3., for any ϵ3 > 0 is small enough, holds t large enough, then get

G∗
1 (t) – ϵ3 < G1(t) ≤ G(t) ≤ G2(t) < G∗

2 (t) – ϵ3, (3.37)

thus,

m2 ≜
b̃(1 – e–hλτ )

h(1 – qe–hλτ )
+

Gine–hλτ

1 – qe–hλτ

= lim inf
t→∞

G∗
1 (t)

≤ lim inf
t→∞

G(t)

≤ lim sup
t→∞

G(t)

≤ lim sup
t→∞

G∗
2 (t)

=
b̃(1 – e(–Hτ ))
H(q – e(–Hτ ))

+
Gin

q – e–Hτ
≜ M2.

(3.38)

Therefore I(t) is ultimately positively bounded. By Equ.(3.29) and Equ.(3.38), the system (1.1) with T2DM is permanent.

4 NUMERICAL SIMULATION

In this section, the analytical findings will be verified numerically. It is still controversial whether the use of AGIs in
addition to insulin can improve HbA1c and affect the risk of hypoglycemia in clinical insulin therapies. Therefore, this study
systematically evaluated the effects of insulin combined with AGIs on blood glucose control in adult patients with T1DM, in
order to provide evidence for the use of AGIs in adult patients with T1DM. The dynamics of model (3.1) is explored and give a
method for combine insulin injection dose with alpha glucosidase inhibitors to control glucose levels within an ideal range with
impulsive injection at different fixed times to avoid both hyperglycemia and hypoglycemia. Model variables, parameter values
and their symbols are shown in Table.1.

The glucose control ability of two different clinical treatment strategies was compared, and the following results were
obtained: Figure.3. Obviously, the treatment strategy of exogenous insulin injection combined with AGIs can lower the blood
glucose concentration better under the same initial value, control the blood glucose concentration within the appropriate range
and less insulin dose, thereby reducing the dose of exogenous insulin or the number of injections can take a more active role in
treatment.
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T A B L E 1 T1DM numerical simulation of parameters

Parameter/variable definition Symbol Baseline value[Range] Unit

Glucose production rate b̃ 100 mg/dl min
Glucose clearance independent of insulin c 40 /min

Rates of insulin – induced glucose saturase reactions m 900 /min
Michaelis – Menten constant k/em 60 /min

Insulin saturates the maximum degradation rate d 169 /min
Proportionally functional term of alpha glucosidase inhibitors q 0.24 –

The amount of exogenous insulin injected σ̃ 23 mIU/ml
The amount of exogenous eating glucose injected Gin 70 mg/dl

Insulin I [0 – 25] mIU/ml
Glucose G [70 – 200] mg/dl
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F I G U R E 2 (a) initial values (G, I) = (210, 20), (b) initial values (G, I) = (180, 0).

Simulations of T1DM model system have the periodic solution with two different initial conditions in Figure.2. Different
initial values have little effect on the periodic solution, which means that the clinical application of this treatment strategy is
feasible in theory. However, adverse symptoms such as sudden hypoglycemia still need to be paid attention.
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F I G U R E 3 (Initial values is (G, I) = (105, 50))Strategy (a) is only exogenous insulin treatment; Strategy (b) is exogenous insulin combined with AGIs.

If the duration of use of AGIs was unchanged, but the duration of exogenous insulin injection was doubled or more,
numerical simulations (as given in Figure.3) showed that the drug still had a better therapeutic effect on glucose control.
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F I G U R E 4 (Initial values is (G, I) = (105, 50))Figure (a) is twice the injection period ; Strategy (b) is four times the injection period
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These results suggest that compared with exogenous insulin exclusively, which combined with AGIs in the treatment of
adult patients with T1DM can have better result, such as improving blood glucose levels , glycemic variability and reducing
the total daily insulin dose. Moreover according to the clinical efficacy, insulin combined with AGIs in the treatment of adult
patients with T1DM does not increase cardiovascular risk factors (body weight and lipid) and the hypoglycemia. However, it
is still necessary to pay attention to the occurrence of adverse reactions, especially gastrointestinal adverse reactions because
of their influence adherence of the patients. AGIs are mainly used in the treatment of T2DM patients, but in recent years, the
role of AGIs in the treatment of T1DM patients has been explored at home and abroad26,27. The glucose-lowering mechanism
of AGIs does not depend on the spontaneous release of insulin secreted by the organism, which lays the foundation for the
feasibility of using AGIs drugs in T1DM. Based on the current medical clinical experiments and research, this paper proves the
existence of the periodic solution and the global asymptotic stable periodic solution of a novel impulsive model by the theory
of impulsive differential equations for T1DM. The permanence of system for T2DM means the glucose concentration level is
uniformly bounded. The all conclusion means that the glucose of patients can be controlled in the ideal range under the treatment
of exogenous insulin combined with AGIs. The results of numerical investigations indicate that the pulse period and the insulin
dose are crucial for insulin therapies, and the results provide clinical strategies for insulin-administration practices.
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APPENDIX

A

For t ∈ ((n – 1)τ , (n + λ – 1)τ ], the Equ.(3.4) satisfies

I((n + λ – 1)τ+) = kLambertW(
I(n – 1)τ+

k
exp{

1
k

(–dλτ + I((n – 1)τ+))}) + σ̃, (A1)

by Lambert W function definition,

(
I((n + λ – 1)τ+)

k
–
σ̃

k
) exp

{ I((n + λ – 1)τ+)
k

–
σ̃

k

}
=

I((n – 1)τ+)
k

exp
{1

k
(–dλτ + I((n – 1)τ+))

}
=

I((n – 1)τ+)
k

exp{
I((n – 1)τ+)

k
} exp

{
–

d
k
λτ
}

,
(A2)

similarly, for t ∈ ((n + λ – 1)τ , nτ ], we have

I(nτ+) = kLambert W(
I((n + λ – 1)τ+)

k
exp

{1
k

(–d(1 – λ)τ + I((n + λ – 1)τ+))
}

), (A3)

i.e.
I(nτ+)

k
exp{

I(nτ+)
k

} =
I((n + λ – 1)τ+)

k
exp

{1
k

(–d(1 – λ)τ + I((n + λ – 1)τ+))
}

, (A4)

notice I(nτ+) = I((n – 1)τ+) = I(0+), substitute Equ.(A4) into Equ.(A2),

(
I(n + λ – 1)τ+

k
–
σ̃

k
) exp{

I((n + λ – 1)τ+)
k

–
σ̃

k
} =

I((n + λ – 2)τ+)
k

exp
{1

k
(–d(1 – λ)τ

+ I((n + λ – 2)τ+)) –
d
k
λτ
}

=
I((n + λ – 2)τ+)

k
exp

{1
k

(–dτ + I((n + λ – 2)τ+))
}

,

(A5)
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If we denote In = I((n + λ – 1)τ+) then it satisfies the following difference equation

(
In

k
–
σ̃

k
) exp{

In

k
–
σ̃

k
} =

In–1

k
exp{

1
k

(–dτ + In–1)}, (A6)

the difference Equ.(A6) has a unique steady state I∗ and satisfies

I∗ = I((n + λ – 1)τ+) =
σ̃

1 – exp{ 1
k (σ̃ – dτ )}

. (A7)

we should observe I(t) is concentration that can not be negative, which implies I(t) exists only if I((n +λ– 1)τ+) is satisfied, that is

σ̃

τ
< d. (A8)

By Equ.(A4), we can obtain

I((n + λ – 1)τ+)
k

exp{
I((n + λ – 1)τ+)

k
} =

I(nτ+)
k

exp{
I(nτ+)

k
} exp{

1
k

d(1 – λ)τ}, (A9)

i.e.
(
I((n + λ – 1)τ+)

k
–
σ̃

k
) exp{

I((n + λ – 1)τ+)
k

–
σ̃

k
} =

I(nτ+)
k

exp{
I(nτ+)

k
} exp{

d
k

(1 – λ)τ –
σ̃

k
}

–
σ̃

k
exp{–

σ̃

k
} exp{

I((n + λ – 1)τ+)
k

},
(A10)

substitute the left of Equ.(A2),

I((n – 1)τ+)
k

exp{
I((n – 1)τ+)

k
} exp{

dλτ
k

} =
I(nτ+)

k
exp{

I(nτ+)
k

} exp{
d
k

(1 – λ)τ –
σ̃

k
}

–
σ̃

k
exp{–

σ̃

k
} exp{

I((n + λ – 1)τ+)
k

},
(A11)

Let In = I(nτ+), Equ.(A11) corresponding to following difference equation

In–1

k
exp{

In–1

k
} exp{

dλτ
k

} =
In

k
exp{

In

k
} exp{

d
k

(1 – λ)τ –
σ̃

k
}

–
σ̃

k
exp{–

σ̃

k
} exp{

I((n + λ – 1)τ+)
k

},
(A12)

which has an unique fixed point I∗ and by Equ.(A7) satisfies

I∗

k
exp{

I∗

k
} =

σ̃e
σ̃e

1
k (σ̃–dτ )

k(1–e
1
k (σ̃–dτ )

)

k(e
1
k (d(1–λ)τ–σ̃) – e– dλτ

k )
, (A13)

consider the signal of Equ.(A13) is positive, thus the equation can be solved by the upper branch of Lambert W function

I∗ = I(nτ+) = I(0+) = kLambert W(
σ̃e

σ̃e
1
k (σ̃–dτ )

k(1–e
1
k (σ̃–dτ )

)

k(e
1
k (d(1–λ)τ–σ̃) – e– dλτ

k )
). (A14)

Consequently, if satisfy Equ.(A8) the initial value of subsystem (3.2) is

I(0+) = I(nτ+) = kLambert W(
σ̃e

σ̃e
1
k (σ̃–dτ )

k(1–e
1
k (σ̃–dτ )

)

k(e
1
k (d(1–λ)τ–σ̃) – e– dλτ

k )
),

I((n + λ – 1)τ+) =
σ̃

1 – e
1
k (σ–dτ )

.
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B

For model system (3.24), the explicit solution of the first equation had been investigated, based on this, the analytical
formula depends on the relations between σ1 and d. Fristly, for the sake of convenience, introduce the parameterization:

ζ = kd, δ = σ1 – d, γ = σ1k,

so the first equation can be rewrite as

I′2(t) =
σ1k + σ1I2(t) – dI2(t)

k + I2(t)
=
δ(–γ

ζ – δ
ζ I2(t))

1 – γ
ζ – δ

ζ I2(t)
. (B1)

In t ∈ (t0, t), the Equ.(B1) can be integrated

ζ

δ
ln |

γ
ζ + δ

ζ I2(t)
γ
ζ + δ

ζ I2(t0)
| – I2(t) + I2(t0) = –δ(t – t0), (B2)

we can obtain after calculation

–(
γ

ζ
+
δ

ζ
I2(t)) exp{–(

γ

ζ
+
δ

ζ
I2(t))} = –(

γ

ζ
+
δ

ζ
I2(t0)) exp{–(

δ

ζ
I2(t0) +

δ2

ζ
(t – t0) +

γ

ζ
)}. (B3)

Obviously, Equ.(B3) fits the definition of Lambert W function. Due to the sign positive(negative) and increase(decrease)
characteristics of Equ.(B3), depends on δ that will be decided which branch of Lambert W function the analytical solution is,
specifically in the following three cases:
(1) If δ > 0, γ

ζ + δ
ζ I2(t) > 0 always holds true, the right term of Equ.(B3)

–(
γ

ζ
+
δ

ζ
I2(t0)) exp{–(

δ

ζ
I2(t0) +

δ2

ζ
(t – t0) +

γ

ζ
)} ∈ [–e–1, 0),

for all t ≥ t0(considering the properties of the function f (x) = xe–x, the function has unique maximum e–1 when x > 0, so
–xe–x ≥ –e–1 always holds ture if x ≥ 0). Further, the right term of Equ.(B3) satifies

lim
t→∞

–(
γ

ζ
+
δ

ζ
I2(t0)) exp{–(

δ

ζ
I2(t0) +

δ2

ζ
(t – t0) +

γ

ζ
)} = 0,

that implies two posibilities:
1. γ

ζ + δ
ζ I2(t) → 0 which is term in the left equation of Equ.(B3) as t → ∞.

2. γ
ζ + δ

ζ I2(t) → ∞ as t → ∞.
but the first situation exists if I2(t) = –γ

δ < 0 and I2(t) is not negative, thus just the second situation exists and implies I2(t) → ∞.
Consequently,

lim
t∈∞

–(
γ

ζ
+
δ

ζ
I2(t)) exp{–(

γ

ζ
+
δ

ζ
I2(t))} = 0,

as
γ

ζ
+
δ

ζ
I2(t) → +∞,

therefore, Equ.(B3) can be solved by the lower branch of Lambert W function(see Figure.(1)) if δ > 0,

I2(t) = –
γ

δ
–
ζ

δ
Lambert W(–(

γ

ζ
+
δ

ζ
I2(t0)) exp{–(

δ

ζ
I2(t0) +

δ2

ζ
(t – t0) +

γ

ζ
)}), (B4)

where

Lambert W(–(
γ

ζ
+
δ

ζ
I2(t0)) exp{–(

δ

ζ
I2(t0) +

δ2

ζ
(t – t0) +

γ

ζ
)}) < –1 (B5)

for all t ≥ t0, and I2(t) is monotonically increasing. Obviously, but, the model system (3.24) has an unique positive state
I∗2 = – σ1k

σ–d = –γ
δ if δ ̸= 0, which is a concentration thus it is not negative, so the model system does not have any positive state
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when δ > 0.
(2) If δ = 0, in t ∈ (t0, t), the formula in Equ.(B1) can be easily obtained and it is given by

I2(t) = –k + ((k + I2(t0)2) + 2γ(t – t0))
1
2 (B6)

and Equ.(B6) is obviously monotonically increasing with respect to t and unboundedness.
(3) If δ < 0, we assume I∗2 ̸= I(t0) and Z(I2(t)) = γ

ζ + δ
ζ I2(t), the sign of the function

Z(I2(t0)) =
γ

ζ
+
δ

ζ
I2(t0) =

δ

ζ
(I∗2 + I2(t0))

depends on the relations between the I∗2 and I2(t0).

Z(I2(t0)) > 0 if I∗2 > I2(t0), therefore, Z1 = –γ+δI2(t0)
ζ exp{–γ+δI2(t0)+δ2(t–t0)

ζ } ∈ (–e–1, 0), for all t ≥ 0. Since

Z2 =
dLambert W(Z1)

dt
=

δ2Lambert W(Z1)
ζ(1 + Lambert W(Z1))

> 0,

which implies the solution is monotonically increasing. Similarly, it is the first situation of (1) in this case, which implies
I2(t) → I∗2 , the solution will asymptotically tend to I∗2 . Thus, the uniqueness of solution can be solved by the real upper branch
of Lambert W function. Z(I2(t0)) < 0 if I∗2 < I2(t0), Z1 ≤ –γ+δI2(t0)

ζ exp{–γ+δI2(t0)+δ2(t–t0)
ζ } ∈ (–e–1, 0) and Z2 < 0, thus I2(t) is

monotonically decreasing and will asymptotically tend to I∗2 , the solution can be solved by the real upper branch of Lambert W
funciton.

In general, if δ < 0, the analytical solution of Equ.(B3) is given by

I2(t) = –
γ

δ
–
ζ

δ
Lambert W(–(

γ

ζ
+
δ

ζ
I2(t0)) exp{–(

δ

ζ
I2(t0) +

δ2

ζ
(t – t0) +

γ

ζ
)}), (B7)

and it has two possible upper bounds, depending on the relation between I∗2 and I2(t0),
1. if I∗2 > I2(t0), the upper bound is I∗2 .
2. if I∗2 < I2(t0), the upper bound is I2(t0).
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