Acknowledgment
“This research was funded by Application of handheld Raman spectrometer
in rapid identification of antibody drugs, grant number 2020B2”
References
1. Briani, C.; Visentin, A. Therapeutic monoclonal antibody therapies in
chronic autoimmune demyelinating neuropathies. Neurotherapeutics2022 , 19 , 874–884.http://doi.org/10.1007/s13311-022-01222-x.
2. Mullard, A. FDA approves 100th monoclonal antibody product.Nat. Rev. Drug Discov. 2021 , 20 , 491–495.http://doi.org/10.1038/d41573-021-00079-7.
3. Beck, A.; Wagner-Rousset, E.; Ayoub, D.; Van Dorsselaer, A.;
Sanglier-Cianferani, S. Characterization of therapeutic antibodies and
related products. Anal. Chem. 2013 , 85 , 715–736.http://doi.org/10.1021/ac3032355.
4. Valentine, H.; Dawnay, A. The effect of paraprotein polymerisation on
quantitation by capillary zone electrophoresis and Hevylite®. Ann.
Clin. Biochem. 2021 , 58 , 586–592.http://doi.org/10.1177/00045632211029327.
5. Lokhov, P.G.; Tikhonova, O.V.; Moshkovskii, S.A.; Goufman, E.I.;
Serebriakova, M.V.; Maksimov, B.I.; Toropyguine, I.Y.; Zgoda, V.G.;
Govorun, V.M.; Archakov, A.I. Database search post-processing by neural
network: Advanced facilities for identification of components in protein
mixtures using mass spectrometric peptide mapping. Proteomics2004 , 4 , 633–642.http://doi.org/10.1002/pmic.200300580.
6. Rogers, R.S.; Nightlinger, N.S.; Livingston, B.; Campbell, P.;
Bailey, R.; Balland, A. Development of a quantitative mass spectrometry
multi-attribute method for characterization, quality control testing and
disposition of biologics. mAbs 2015 , 7 , 881–890.http://doi.org/10.1080/19420862.2015.1069454.
7. Bern, M.; Kil, Y.J.; Becker, C. Byonic: advanced peptide and protein
identification software. Curr. Protoc. Bioinformatics2012 , Chapter 13 , 13.20.11–13.20.14.http://doi.org/10.1002/0471250953.bi1320s40.
8. Cao, X.; Zhou, D.; Loussaert, J.A.; Meriage, D.S.; Levine, J.D.;
Gabrielson, J.P.; Wen, Z.Q. Rapid identification and characterization of
formulated protein products by raman spectroscopy coupled with
discriminant analysis. PDA J. Pharm. Sci. Technol. 2016 ,70 , 62–75.http://doi.org/10.5731/pdajpst.2015.005769.
9. Badgett, M.J.; Boyes, B.; Orlando, R. The separation and quantitation
of peptides with and without oxidation of methionine and deamidation of
asparagine using hydrophilic interaction liquid chromatography with mass
spectrometry (HILIC-MS). J. Am. Soc. Mass Spectrom.2017 , 28 , 818–826.http://doi.org/10.1007/s13361-016-1565-z.
10. Fekete, S.; Beck, A.; Fekete, J.; Guillarme, D. Method development
for the separation of monoclonal antibody charge variants in cation
exchange chromatography, Part I: salt gradient approach. J. Pharm.
Biomed. Anal. 2015 , 102 , 33–44.http://doi.org/10.1016/j.jpba.2014.08.035.
11. He, Y.; Isele, C.; Hou, W.; Ruesch, M. Rapid analysis of charge
variants of monoclonal antibodies with capillary zone electrophoresis in
dynamically coated fused-silica capillary. J. Sep. Sci.2011 , 34 , 548–555.http://doi.org/10.1002/jssc.201000719.
12. Cao, L.; Fabry, D.; Lan, K. Rapid and comprehensive monoclonal
antibody Characterization using microfluidic CE-MS. J. Pharm.
Biomed. Anal. 2021 , 204 , 114251.http://doi.org/10.1016/j.jpba.2021.114251.
13. Duan, Y.; Luo, J.; Liu, C.; Shan, L.; Dou, X.; Yang, S.; Yang, M.
Rapid identification of triptolide in Tripterygium wilfordii products by
gold immunochromatographic assay. J. Pharm. Biomed. Anal.2019 , 168 , 102–112.http://doi.org/10.1016/j.jpba.2019.02.020.
14. Chen, D.D.; Xie, X.F.; Ao, H.; Liu, J.L.; Peng, C. Raman
spectroscopy in quality control of Chinese herbal medicine. J.
Chin. Med. Assoc. 2017 , 80 , 288–296.http://doi.org/10.1016/j.jcma.2016.11.009.
15. Lunter, D.; Klang, V.; Kocsis, D.; Varga-Medveczky, Z.; Berko, S.;
Erdo, F. Novel aspects of Raman spectroscopy in skin research.Exp. Dermatol. 2022 , 31 , 1311–1329.http://doi.org/10.1111/exd.14645.
16. Kudelski, A. Analytical applications of Raman spectroscopy.Talanta 2008 , 76 , 1–8.http://doi.org/10.1016/j.talanta.2008.02.042.
17. Wang, W.T.; Zhang, H.; Yuan, Y.; Guo, Y.; He, S.X. Research progress
of raman spectroscopy in drug analysis. AAPS PharmSciTech2018 , 19 , 2921–2928.http://doi.org/10.1208/s12249-018-1135-8.
18. Makki, A.A.; Massot, V.; Byrne, H.J.; Respaud, R.; Bertrand, D.;
Mohammed, E.; Chourpa, I.; Bonnier, F. Understanding the discrimination
and quantification of monoclonal antibodies preparations using Raman
spectroscopy. J. Pharm. Biomed. Anal. 2021 , 194 ,
113734.http://doi.org/10.1016/j.jpba.2020.113734.
19. Matthews, T.E.; Coffman, C.; Kolwyck, D.; Hill, D.; Dickens, J.E.
Enabling robust and rapid raw material identification and release by
handheld raman spectroscopy. PDA J. Pharm. Sci. Technol.2019 , 73 , 356–372.http://doi.org/10.5731/pdajpst.2018.009563.
20. Zhang, C.; Springall, J.S.; Wang, X.; Barman, I. Rapid, quantitative
determination of aggregation and particle formation for antibody drug
conjugate therapeutics with label-free Raman spectroscopy. Anal.
Chim. Acta 2019 , 1081 , 138–145.http://doi.org/10.1016/j.aca.2019.07.007.
21. Le Basle, Y.; Chennell, P.; Tokhadze, N.; Astier, A.; Sautou, V.
Physicochemical stability of monoclonal antibodies: A review. J.
Pharm. Sci. 2020 , 109 , 169–190.http://doi.org/10.1016/j.xphs.2019.08.009.
22. McAvan, B.S.; Bowsher, L.A.; Powell, T.; O’Hara, J.F.; Spitali, M.;
Goodacre, R.; Doig, A.J. Raman spectroscopy to monitor
post-translational modifications and degradation in monoclonal antibody
therapeutics. Anal. Chem. 2020 , 92 , 10381–10389.http://doi.org/10.1021/acs.analchem.0c00627.
23. Zhang, S.; Chen, H.; Li, R.; Yu, Z.; Lu, F. Raman spectroscopy and
mapping technique for the identification of expired drugs.Spectrochim Acta A Mol. Biomol. Spectrosc. 2020 ,224 , 117407.http://doi.org/10.1016/j.saa.2019.117407.