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The line of sight (LoS) probability is a key factor for the channel model-
ing of air-to-ground (A2G) communication. However, the existing LoS
probability models do not account for the effects of airframe shadow-
ing (AS) and building density, which can cause serious link obstruc-
tion and performance loss due to the six-dimensional (6D) mobility and
self-body of unmanned aerial vehicle (UAV). In this paper, a new LoS
probability model is proposed that considers the AS and building den-
sity for different UAV heights. Adding to this, the AS is derived in terms
of UAV framework and 6D mobility. Next, the machine learning (ML)
based graph neural network (GNN) method is developed to learn the
features and structure of the urban environment and predict the LoS
probability. Then, the GNN model is trained and evaluated based on
the ray tracing (RT) data to establish the relationship between model
parameters and UAV heights under the building density and AS factors.
The interpretation and explanation of the proposed GNN model and
prediction are also discussed in this paper. It is shown from the simu-
lation analysis that the GNN model accurately captures the effects of
AS, building height distributions, and UAV heights, with high accuracy
compared to the baseline 3GPP, GCM and NYU models.

Introduction: In recent years, unmanned aerial vehicles (UAVs) have
become increasingly useful in fields like disaster relief, agriculture,
emergency rescue, and are expected to be an emerging technology in
future wireless communication systems [1–4]. Unlike terrestrial mobile
communications, air-to-ground (A2G) communication operates with
three-dimensional (3D) scattering space. Therefore, it is important to
consider the communication terminals at different heights and build-
ing distributions, including the airframe shadowing (AS) due to six-
dimensional (6D) mobility. To ensure reliable communication links
between ground users (GU) and UAVs, one way is to increase the prob-
ability of a line of sight (LoS) connection [5, 6]. Hence, to better assist
A2G mmWave communication networks, it is essential to study the LoS
probability model considering the unique features of A2G communica-
tions.

In order to improve the reliability of A2G communication channels,
limited work has been done so far on LoS probability prediction mod-
els. Some researchers utilized accurate digital maps to determine the
LoS path through the deterministic method. However, this particular
method is only appropriate for a specific scenario and necessitates accu-
rate maps. In this case, stochastic methods [7] are more commonly used
and can be broadly classified into measurement-based empirical method,
simulation-based empirical method [8], and geometry-based analytical
method [9].

The measurement and simulation-based empirical methods establish
the stochastic path probability models by analyzing measured and sim-
ulation data. There are some representative standard models, including
the 5th generation channel model (5GCM) [10], third generation part-
nership project (3GPP) [11], wireless world initiative new radio (WIN-
NER) II [12] and international telecommunication union-radio (ITU-R)
M.21351 models. As obtaining measurement data is complex and costly,
several empirical models have been proposed based on simulation data
like ray-tracing (RT) and point cloud method. The amount of computa-
tions needed and the quality of the original data greatly affect the accu-
racy of these models.

The LoS probability predictions according to the geometric and elec-
tromagnetic wave propagation information of an environment come in

the analytical model category. The ITU-R Rec. P.1410 model is a well-
known analytical model, which describes the environment stochastically.
Researchers have been conducting studies to accurately determine the
probability of LoS for dependable A2G communication channels. In
[13–15], the authors have proposed an RT-based empirical model with
low mean square error, the LoS probability model based on a closed-
form empirical LoS probability model using the ITU model. Recently,
the application of machine learning (ML) techniques has gained signif-
icant attention in channel models and estimation by redefining param-
eter prediction to accurately find out the internal connection of param-
eters. The LoS probability model prediction is discussed in [16] using
a support vector machine (SVM) at 28 GHz. Similarly, the weighted
expectation maximization (WEM) and back-propagation neural network
(BPNN) are investigated in [17, 18] for predicting LoS and NLoS paths.
However, these proposed models contain several limitations, such as ele-
vation angle, LoS probability blockages because of 6D mobility of UAV
known as AS, and practical scenario based building distribution are not
considered. In addition, the building structures are assumed to be with
same height and equidistant, which is not applicable to a practical envi-
ronment.

In this paper, a new flexible LoS probability model is introduced
based on realistic scenarios. The RT methodology is combined with the
virtual scenario concept to conveniently derive AS, building density dis-
tribution, and characteristics for a realistic urban scenario such as build-
ing height and density and street layout and width, etc. This method
offers a cost-effective, accurate, and flexible procedure in comparison
to real based scenarios, which typically require substantial amounts of
data. The major contributions and novelties of this paper are listed as
follows.

1. A new flexible empirical LoS probability model is proposed for A2G
mmWave communications that consider the AS due 6D mobility
of the UAV and practical scenario based building distribution. The
model is compatible with different UAV altitudes and building den-
sities.

2. The interpretation and explanation of the GNN model are presented
and model parameters are estimated for LoS probability prediction.
The GNN is used to learn the features and structure of the urban
environment and classify the LoS and NLoS paths. The proposed
GNN model is trained and evaluated via RT simulation data based
on the realistic 3D environment.

3. The performance of the model is evaluated in terms of the parame-
ter estimation method under various UAV heights and building den-
sities. The accuracy and generalization of the proposed model are
achieved and capture the factors of AS, building distribution, space
and width, and UAV heights.

Proposed LoS Probability Model for A2G Channel Scenarios: Fig-
ure 1 illustrates the A2G communication scenario utilized for esti-
mating LoS probability. In this scenario, the environment based geo-
metric information is stochastically evaluated. The scenario considers
building heights, dispersion, and UAV 6D motion to accurately pre-
dict LoS probability. ℎTx and 𝑑Rx denote UAV height and ground dis-
tance between UAV and ground receiver, respectively. Similarly, 𝑊 , 𝑆,
and 𝜃𝑒𝑙 represent building width, building distance, and elevation angle,
respectively. The figure depicts UAVs Tx and Rx with 𝑀𝑅/𝑀𝑇 anten-
nas with 𝜉𝑝/𝜉𝑞 gaps. Additionally, the Tx and Rx antennas are indi-
cated by 𝐴𝑈

𝑝 and 𝐴𝐺
𝑞 , respectively. The starting horizontal and verti-

cal distances between Tx and Rx at azimuth and elevation planes are
denoted by 𝜒 (0) = [𝜒, 0, 0] and 𝜍 (0) = [0, 0, 𝜍 ], respectively. The
antenna vectors of 𝐴𝑈

𝑝 and 𝐴𝐺
𝑞 in local coordination system (LCS) are

denoted by 𝐴𝑈
𝑝 = [𝑥𝑈𝑝 , 𝑦𝑈𝑝 , 𝑧𝑈𝑝 ]𝑇 and 𝐴𝑈

𝑞 = [𝑥𝑈𝑞 , 𝑦𝑈𝑞 , 𝑧𝑈𝑞 ]𝑇 where the
𝑥𝑈𝑝 =

MT−2𝑝+1
2 𝜉𝑝 , 𝑥𝐺𝑝 =

MR−2𝑞+1
2 𝜉𝑞 , 𝑦𝑈𝑝 = 𝑧𝑈𝑝 = 0 and 𝑦𝐺𝑝 = 𝑧𝐺𝑝 = 0.

The 𝐴′𝑈
𝑝 = ℜ𝑈

𝑜 𝐴𝑈
𝑝 , and 𝐴′𝐺

𝑞 = ℜ𝐺𝐴𝐺
𝑞 exhibit the antenna vector in

ground coordinate system (GCS). Here ℜ𝑈
𝑜 depicts the rotation matrix

of UAV and ℜ𝐺 is the rotation matrix of GU.

Airframe Shadowing and Build-Up Factors: The UAV itself may block
the LoS path among UAV and GU due to 6D mobility, which is known as
AS. The AS is the main contribution of this letter for the LoS probability
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Fig 1 An illustration of A2G communication channels under built-up sce-
narios.

model, which can capture the realistic impact of the UAV 6D mobility
on the A2G channel. The angle of departure (AoD) and angle of arrival
(AoA) vary in all directions due to the 6D mobility of UAV. Figure 2
explains the main framework of AS and describes that the AoA/AoD
and LoS signals can be distorted due to the 6D mobility of UAVs.

To illustrate the AS factor let’s consider the UAV is flying over an
urban area and communicating with GUs. The AS factor Λ can be mod-
eled as

Λ(Φ,Ω) = 𝑘𝑠ℎ .(𝐴0 + 𝑛(𝜑𝑒 − 𝜑0 ) + 𝜅𝑖, 𝑗 ) . 𝑓 (Φ,Ω) (1)

Where, Φ is further defined as Φ = (𝜈, 𝜑, L) , 𝑘𝑠ℎ is the shad-
owing constant that depends on the UAV material and design, and
Ω = (𝑋𝐿 , 𝑋𝐵 , 𝑤𝑏 , 𝑙𝑏 , 𝑤𝑤 , 𝑣, 𝑙𝑎 , 𝑜𝐵 , 𝑜𝐿 ) , where 𝑋𝐿 and 𝑋𝐵 denote
the leading edge sweep angle and backing edge sweep angle, respec-
tively, 𝑤𝑏 , 𝑙𝑏 , and 𝑤𝑤 denote the width, length of the airframe, and
the wingspan of the wing, respectively, 𝑣 denotes the dihedral angle, 𝑙𝑎

denotes the length of the antenna, 𝑜𝐵 and 𝑜𝐿 denotes the offset distance
from the origin. 𝜑0 denotes the minimum roll angle, 𝐴0 is used for the
AS measured at 𝜑0, 𝑛 (𝑑𝐵/𝑟𝑎𝑑) is the shadowing increasing rate, and
𝜅𝑖, 𝑗 is the zero mean Gaussian random variable. The normal 𝑁 ′𝑈 and
signal path vector between the UAV antenna and the ground receiver
antenna is written as

𝑁 ′𝑈 =


− cos(𝜙𝑒 ) sin(𝛼𝑒 ) sin( 𝜓̂𝑡 ) + sin(𝜙𝑒 )𝑐 ( 𝜓̂𝑡 )
cos(𝜙𝑒 ) sin(𝛼𝑒 )𝑐𝑜𝑠 ( 𝜓̂𝑡 ) + sin(𝜙𝑒 ) sin( 𝜓̂𝑡 )

cos(𝜙𝑒 ) cos(𝛼𝑒 )

 (2)

The distance from the edge of the UAV to the LoS path is expressed
as

𝜒𝑈
𝑑 = exp | |Λ.ℜ𝑈

𝑜 | | sin 𝜃 (3)

Fig 2 (a) Steady turn with bank angle and (b) circular movement with angle
of incidence.

Where ℜ𝑈
𝑜 is the rotation matrix, which is a function of the UAV

attitude angles roll 𝜈, pitch 𝜑, and yaw L. Roll is an x-axis rota-
tion that causes angular acceleration due to torque defined by angle
𝜈 (𝑡 ) ∈ (−𝜋, 𝜋 ) . Pitch and yaw represent 𝑦 and 𝑧 axis rotations which
are denoted by 𝜑 (𝑡 ) ∈ (−𝜋, 𝜋 ) and L(𝑡 ) ∈ (0, 2𝜋 ) , respectively. The
rotation matrix ℜ𝑈

𝑜 is defined in (4). The trajectory radius of UAV 𝑅𝑈

is denoted as 𝑅 = 𝜈/(𝑔𝑡𝑎𝑛𝜑𝑒 ) , where the 𝑔 is the gravitational con-
stant and 𝜈 is the tangential speed. At the angle of incidence 𝜅𝑒 the UAV
lift force is described as

𝐹𝑙 = 1/2𝑔𝜈2𝑠𝑤𝛶𝐿 (5)

Where the 𝛶𝐿 is the lift coefficient, 𝑠𝑤 is the wing area of the UAV.
This shows that considering the AS, UAV heights, and built-up scenario
factors makes the LoS probability for A2G channels more practical.

The built-up scenario is another key factor that can distort the direct
LoS path among the A2G channel. The built-up scenario is described by
three parameters 𝜍𝐵 ∈ {𝛼, 𝛽, 𝛾}, where 𝛼 is the area of the covered
building in percent, 𝛽 explains the number of buildings per unit area
and random building height with probability density function (PDF) is
denoted by 𝛾. The PDF is evaluated in terms of 𝛾, which is given as

𝑃 (ℎ𝑎 ) =
ℎ𝑎

𝛾2 exp( −ℎ
2
𝑎

2𝛾2 ) (6)

The building width 𝑊 and space among buildings 𝑆 mentioned in Fig-
ure 1 are equal to 𝑊 = 1000

√︁
𝛼/𝛽 and 𝑆 = (1000/

√
𝛽) (1 −

√
𝛼) ) ,

respectively.

New LoS Probability Equation Description: To simplify the LoS prob-
ability model, the authors in [4, 20] have presented the model as

𝑃𝑈
𝐿𝑂𝑆 (ℎ𝑢 , 𝑑𝑅𝑋 ) =

𝑀∏
𝑛=0

1− exp
©­­«−

[
ℎ𝑏 − (𝑛+0.5) (ℎ𝑏−ℎ𝑢 )

𝑀+1

]2

2𝑐2

ª®®¬
 (7)

𝑃𝑏 (𝜔, ℎ)P(blockage | 𝜔, ℎ)

= 𝑒−𝜌𝑑𝑅𝑥2 (𝜔) +
𝑁 (𝜔)∑︁
𝑖=2

©­«
𝑖−1∏
𝑗=1

(1 − 𝑒−𝜌𝑑𝑅𝑥 )ª®¬ 𝑒−𝜌𝑑𝑅𝑥2 (𝜔) (8)

Where the 𝑁 =
𝑑Rx

√
𝑎𝛽

1000 − 1, 𝑑Rx is used for the horizontal distance
between 𝑅𝑥 and UAV and 𝑐 is related to the transmission environments.
These models are intended for estimating A2G LoS probability, which
takes into account different UAV heights. The models also adhered to
the ITU LoS models. However, these models have a number of limita-
tions based on current practical scenarios. For LoS probability among
Tx and Rx, perpendicular buildings of the same size are considered. In
other words, no alternate buildings or structures are proposed, nor is the
AoD assumed. Additionally, the LoS probability formulation produces
a product, which restricts its applicability.

In this study, we conducted a more comprehensive examination of
the formulation for LoS probability. It involves the Rayleigh distribu-
tion 𝐻, corresponding to the building height distributions, along with a
scaling factor 𝛾. Additionally, we consider AS with built-up scenarios
and altitudes, as well as angle of elevation and AoD. The updated sug-
gested model for evaluating LoS probability is discussed in (9), where
𝐷1, 𝐷2, 𝐷3 represent the breakpoints distance, decay parameter, and
balance parameter, respectively, depending on the UAV heights ℎTx, AS
factor Λ, and 𝜁B to ensure excellent model performance. A New York
University (NYU) LoS probability model is proposed in [19] based on
the 3GPP LoS probability model by introducing the square index. The
3GPP and NYU models, on the other hand, have good fitness with mea-
sured results only within a small range of altitude (about ten meters). The
𝑑Rx parameter specifies the distance between the receiver and the trans-
mitter, while the ℎTx parameter specifies the height of various regions
from the UAV to the GU. In (9), the shadowing effect due to AS and
built-up scenarios are added to make the LoS probability model more
realistic and accurate. Current research models were lacking in these
insights. The enhanced and accurate LoS probability can be obtained by
investigating the combined structure of buildings and the AS to ensure
seamless connectivity between GU and UAV.
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
cos 𝜑 cos L sin 𝜑 sin 𝜈 cos L − sin L cos 𝜈 sin 𝜑 cos L cos 𝜈 + sin L sin 𝜈

sin L cos 𝜑 sin 𝜑 sin L sin 𝜈 + cos L cos 𝜈 sin 𝜑 sin L cos 𝜈 − sin 𝜈 cos L
− sin 𝜑 sin 𝜈 cos 𝜑 cos 𝜑 cos 𝜈

 (4)

Fig 3 Flowchart of model parameter computation.

Machine Learning Based Model Parameters:

Overview of Model Parameter Computation: The impressive capabili-
ties of ML methods for flexible, reliable, and comprehensive data struc-
tures are discussed in [14, 15]. Figure 3 depicts the process of parameter
estimation using ML. Because field measurements for A2G transmission
are difficult and expensive, RT simulation data is used as training data in
this paper. The proposed model parameter estimation techniques, on the
other hand, can be applied to field measured data.

The presented model’s procedure begins with the classification of
the input data into LoS and NLoS components. The graph neural net-
work (GNN) algorithm is used for this purpose. The 𝑃

𝑗,𝑘

𝐿𝑜𝑆
with 𝑗𝑡ℎ

distance and 𝑘𝑡ℎ height represents the proportion of the total path and
LoS path. The LoS probability at a given height and distance is writ-
ten as (𝑃 𝑗

𝐿𝑜𝑆
; 𝑑 𝑗

𝑅𝑥
) , 𝑗 = 1, 2, 3.....99. To estimate the LoS probability

of a specific area and distance, the building height and distance distri-
bution, 6D UAV orientation at different heights with AS, and angle of
elevation 𝜃𝑒𝑙 are used. Following that, the least squares (LS) methodol-
ogy is used to fit 𝐷1, 𝐷2 and 𝐷3 with (ℎTx,Λ, 𝜁B ) at 𝑚 different alti-
tudes to obtain the training sets [𝐷𝑘

1 ; (ℎTx,Λ, 𝜁B )], [𝐷𝑘
2 ; (ℎTx,Λ, 𝜁B )],

[𝐷𝑘
3 ; (ℎTx,Λ, 𝜁B )]. In the final step, a subset of the data set is chosen to

test the GNN training procedure and obtain the (ℎTx,Λ, 𝜁B)-dependent
parameters.

Instead of field measurements, the RT simulation now provides high-
performance computing and is widely used in channel modeling and
verification. The RT technique is based on electromagnetic wave propa-
gation, which includes the processes of direction, reflection, and diffrac-
tion. If there is no obstruction between Tx and Rx and the electrical field
intensity is high, the direct ray or LoS path is attained. In this paper,
a typical urban scenario is proposed, with the statistical parameters 𝜓

chosen according to [10]. For building distributions with random heights
and street distances, the Rayleigh distribution method is used.

LoS and NLoS Classification and Parameter Estimation: RT simulation
data yields channel metrics including angle of elevation, AoD, delay,
path loss, built-up scenario, and 6D UAV mobility. This study uses the
GNN mechanism to determine LoS or NLoS data. Pre-labeled training
and input data are measured for Euclidean distance to construct this algo-
rithm. Then the nearest points to fresh data are chosen. The data will be
LoS if the proportion is maximal. The LoS probability is calculated ver-
sus heights, distances, AS due to 6D UAV mobility and built-up scenario.

In addition, the Euclidean distance gives different ranges for different
elements; thus, to address this issue, the linear normalization method is
used, which is written as

𝑥′ =
𝑥 − 𝑚𝑖𝑛(𝑥 )

𝑚𝑎𝑥 (𝑥 ) − 𝑚𝑖𝑛(𝑥 ) (10)

where 𝑥′ denotes the normalized value and 𝑥 is the input value. The
distance for newly input data in terms of different characteristic param-
eters is calculated in (11), where the parameters 𝑃𝐿𝑢, 𝜏𝑢, 𝜃𝑒𝑙,𝑢 and
𝐴𝑜𝐷𝑢 are applied for newly added data, while the above elements with
term 𝑣 present the already labeled data in the GNN network.

In the proposed model to train the GNN network and estimate the
average LoS probability, 1000 sets of simulation data are applied at
different regions and distances. The data matrix for parameter like 𝜏,
𝑃𝐿, 𝜃𝑒𝑙 and 𝐴𝑜𝐷 is categorized into training set (80%) and valida-
tion set (20%). The error and system performance can be validated and
tested after training the network. Judgment error, representing the rela-
tion between incorrect judgments and the validated datasets, is formu-
lated as

𝐽𝑢𝑔𝑒𝑟𝑟𝑜𝑟 = 𝑁𝑖/𝑁 ′
𝑖 (12)

where 𝑁 ′
𝑖

is the total number of sets and 𝑁𝑖 defines the incorrect judg-
ment.

Following the classification of LoS and NLoS, parameters are fur-
ther evaluated through the GNN method in terms of 𝑑Rx, ℎTx, Λ, and

𝑃LoS (𝑑Rx, ℎTx,Λ, 𝜁B ) = min
(
𝐷1 (ℎTx,Λ, 𝜁B )

𝑑Rx
, 1

)
·
[
1 − exp

(
− 𝑑Rx

𝐷2 (ℎTx,Λ, 𝜁B )

)]
+ exp

(
− 𝑑Rx

𝐷2 (ℎTx,Λ, 𝜁B )

)
𝐷3 (ℎTx ,Λ,𝜁B ) (9)
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Γ𝑛𝑒𝑤 =

√︃
(𝑃𝐿𝑢 − 𝑃𝐿𝑣 )2 + (𝜏𝑢 − 𝜏𝑣 )2 + (𝜃𝑒𝑙,𝑢 − 𝜃𝑒𝑙,𝑣 )2 + (𝐴𝑜𝐷𝑢 − 𝐴𝑜𝐷𝑣 )2 (11)

Table 1. List of simulation parameters.

Used parameter Size

Building density(/km2) 750, 500, 300, 300

𝛼, 𝛽, 𝛾 0.8, 300, 20

Transmitter height 5 to 2000 m

Building height distribution Rayleigh

Building location distribution random distribution

Receiver height 2 m

Rx distance 0 to 1000 m

Antenna Type Unidirectional

Building width and spacing random

Carrier frequency 28 GHz

UAV geometry (length, width, and height) 2, 1, and 0.5 meters

UAV orientation (roll, pi, yaw) 100, 200 and 300

𝜁B. The LS fitting is employed to get the data set [𝐷𝑘
1 ; (ℎTx,Λ, 𝜁B )],

[𝐷𝑘
2 ; (ℎTx,Λ, 𝜁B )], [𝐷𝑘

3 ; (ℎTx,Λ, 𝜁B )]. In order to obtain the relation
among heights, UAV orientation, and model parameters, the GNN is
trained and evaluated with an 8:2 ratio. The GNN architecture contains
multiple layers and is expressed as

ℎ
(𝑙+1)
𝑗

= 𝜎

(
𝑁∑︁
𝑖=1

𝐴
(𝑙)
𝑖 𝑗

ℎ
(𝑙)
𝑖

𝑊
(𝑙)
𝑖 𝑗

+ 𝑏
(𝑙)
𝑗

)
(13)

𝑃
(𝑚,𝑛)
LoS = 𝑓 ( (𝐷𝑘

1 ; (ℎTx,Λ, 𝜁B ) , 𝐷𝑘
2 ; (ℎTx,Λ, 𝜁B ) , 𝐷𝑘

3 ; (ℎTx,Λ, 𝜁B ) )
(14)

where ℎ
(𝑙)
𝑗

is the hidden state of node 𝑗 in layer 𝑙, 𝐴(𝑙)
𝑖 𝑗

is the adja-

cency matrix, 𝑊 (𝑙)
𝑖 𝑗

is the weight matrix, 𝑏 (𝑙)
𝑗

is the bias, 𝜎 is the activa-
tion function, and 𝑓 is the final output function. The best fitting results
can be obtained by minimizing the loss function 𝐿 𝑓 𝑡𝑛, which is defined
as

𝐿 𝑓 𝑡𝑛 =

√√√
1
𝑁

𝑁∑︁
𝑛=1

(𝑑𝑘 (ℎTx,Λ, 𝜁B )𝑛 − 𝑑𝑛
𝑘
)2 (15)

Simulation Results: The accuracy and effectiveness of the LoS proba-
bility model based on different heights and AS are assessed in this sec-
tion. Based on the measured data, the standard LoS probability mod-
els such as 3GPP, ITU-R, GCM, and NYM have provided empirical
models, which are generally consistent with the real situation. However,
they have shortcomings like long testing cycles, high cost of measuring
equipment, and limited test scenarios. To overcome these shortcomings
of measurement, the composite RT technology under urban, including
virtual scenario construction, is applied in this paper. The aim of creating
a virtual based built-up area is to replicate the real scenario parameters
(𝛼, 𝛽, 𝛾) characteristics than the current model. The list of parameters
used for simulation analysis with their descriptions is presented in Table
1.

The comparison with the reference models [9, 10] and RT-based mod-
els are analyzed to demonstrate the validity of the presented LoS proba-
bility model. Figure 4 shows how the LoS probability estimation consid-
ering AS improves the realism of scenario prediction. The results also
show that the prediction of RT data and LoS probability supports the
reference model. Figure 4 also investigates the correlation between the
standard models like 3GPP, GCM, and NYU, and the proposed model
is satisfactory by applying the GNN algorithm and considering the AS
built-up factors.

Our presented model is also capable of high altitudes as the evalua-
tion is performed at 700 m height, determining that the prediction results
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0 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig 5 Comparison of LoS probability at different heights.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

(d)

Fig 6 PDF of LoS probability at different heights of (a) 65 m (b) 700 m (c)
800 m and (d) 1000 m.

become more practical by considering the AS and built-up scenario fac-
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tors. The comparison of the proposed model with the existing models in
Figure 4 shows that the LoS probability prediction is more accurate.

Figure 5 depicts the validation of RT data with different heights, such
as 700 m, 800 m, and 1000 m, which are chosen based on the random
distribution of buildings. Furthermore, the comparison investigations are
also shown in Figure 5 based on managed AS and without managed AS
factor for 700 m, 800 m, and 1000 m altitudes. This explains that the
UAV self-body has a key contribution in blocking the LoS path among
aerial and ground users. The simulation outcomes also prove that with
minimum heights, the building distribution density and AS factors have
a significant impact on LoS probability.

For these altitudes, the 0.6 threshold range is chosen, and it can be
seen from Figure 5 that the LoS probability model with managed AS
factor has outcomes within the threshold. In addition, there is good con-
sistency between the RT data and the proposed model. The PDF of shad-
owing and corresponding Gaussian distribution fitting results are shown
in Figure 6, which shows a good consistency for LoS probability esti-
mation and RT distribution.

Conclusion: In this paper, the understanding of LoS probability has
been advanced for the A2G mmWave communication network. A novel
LoS probability model has been introduced that integrates critical factors
like AS due to 6D mobility, built-up scenarios, and different heights of
UAV. A method for combining RT technology with virtual scenarios has
been proposed. An ML-based GNN model has been developed, leverag-
ing its capability to learn the features and structures of urban environ-
ments. The model has predicted unique LoS probability by considering
AS, built-up scenario, and varying heights of UAV. The GNN model has
been trained and tested against RT data to establish a strong link between
model parameters and UAV heights under AS and built-up scenario fac-
tors. The simulation results have shown that the proposed model is supe-
rior at representing the complicated effects of AS, built-up scenarios, and
UAV altitudes. The accuracy of the GNN model is comparable to that of
the baseline 3GPP, GCM, and NYU models, providing a more thorough
insight into the A2G communication channel. In order to improve the
accuracy, our future efforts will focus on performing more real-world
testing scenarios, thoroughly examining additional important elements,
and extending the model’s applicability to new fields.
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