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Abstract

Oxygenation of tumours and the effect of hypoxia in cancer cell metabolism is a widely studied

subject. Hypoxia Inducible Factor (HIF), the main actor in the cell response to hypoxia, represents

a potential target in cancer therapy. HIF is involved in many biological processes such as cell pro-

liferation, survival, apoptosis, angiogenesis, iron metabolism and glucose metabolism. This protein

regulates the expressions of Lactate Dehydrogenase (LDH) and Pyruvate Dehydrogenase (PDH),

both essential for the conversion of pyruvate to be used in aerobic and anaerobic pathways. HIF

upregulates LDH, increasing the conversion of pyruvate into lactate which leads to higher secretion of

lactic acid by the cell and reduced pH in the microenvironment. HIF indirectly downregulates PDH,

decreasing the conversion of pyruvate into Acetyl Coenzyme A which leads to reduced usage of the

Tricarboxylic Acid (TCA) cycle in aerobic pathways. Upregulation of HIF may promote the use of

anaerobic pathways for energy production even in normal extracellular oxygen conditions. Higher use

of glycolysis even in normal oxygen conditions is called the Warburg effect. In this paper, we focus

on HIF variations during tumour growth and study, through a mathematical model, its impact on

the two metabolic key genes PDH and LDH, to investigate its role in the emergence of the Warburg

effect. Mathematical equations describing the enzymes regulation pathways were solved for each

cell of the tumour represented in an agent-based model to best capture the spatio-temporal oxygen

variations during tumour development caused by cell consumption and reduced diffusion inside the

tumour. Simulation results show that reduced HIF degradation in normoxia can induce higher lactic

acid production. The emergence of the Warburg effect appears after the first period of hypoxia before

oxygen conditions return to a normal level. The results also show that targeting the upregulation of

LDH and the downregulation of PDH could be relevant in therapy.
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Introduction

Cells rely on two main processes to produce ATP: Oxidative Phosphorylation (OXPHOS) by using oxygen,

and glycolysis by using glucose. Glycolysis is a pathway generating both ATP and pyruvate using glucose

as input [1, 2, 3]. Pyruvate produced by glycolysis can then be used to fuel the Tricarboxylic Acid

(TCA) cycle and produce the compounds involved in OXPHOS, the aerobic pathway. If oxygen is not

present, pyruvate is turned into lactate, this process is called fermentation [4]. Lactate formed during

fermentation is secreted into the microenvironment which causes a decrease in extracellular pH.

In 1927, Otto Warburg observed that the tumour consumed more glucose and produced more lactic

acid than normal tissues [5]. At first Warburg’s observation didn’t consider the presence of oxygen, yet

since increased lactic acid production was also observed when oxygen is available, it has slowly been

associated with aerobic glycolysis [6]. Nowaday, high rate of glycolysis, even if oxygen is available, is

known as the Warburg Effect [7, 8]. In this paper, we will retain this definition. Tumours can develop

anywhere, yet harsh conditions favour tumour appearance [9]. Most tumours have median oxygen levels

falling below 2%, the threshold at which the hypoxic response is half-maximal [10]. For this reason,

a lot of interest has been put in the effect of oxygenation on tumour metabolism and specifically on

the Hypoxia Inducible Factor (HIF) protein. This protein, being the main actor in the cell response to

hypoxia, is interesting to explore as a potential target for cancer therapy since hypoxic cells are more

radioresistant [10, 7].

HIF Structure and Mechanism of action

The HIF protein was discovered by Semenza and co-workers during a study on the erythropoietin (EPO)

gene, a gene encoding for the erythropoietin hormone involved in red blood cells production, in 1991

[11]. They found DNA sequences in the gene important for its transcriptional activation in hypoxic

conditions, now called Hypoxia Response Elements (HRE). The HIF protein is a heterodimer composed

of two subunits HIF-1α and HIF-1β, it acts as a transcription factor by binding to HRE in hypoxic

conditions. The subunit HIF-1α is oxygen-sensitive and degraded in presence of oxygen, compared to the

constitutively expressed HIF-1β subunit. Three isoforms of the α subunit have been identified: HIF-1α,

HIF2-α and HIF3-α. HIF-1α and HIF2-α are the most studied of the three homologs, HIF-1α is expressed

ubiquitously in the body while HIF2-α expression is tissue-specific [11]. It has been demonstrated that

overexpression or suppression of HIF-1α or HIF2-α influence each other in vitro and one homolog can

be more expressed than the other. Kidney lesions with early VHL inactivation show more activation of

HIF-1α than HIF-2α but this balance can change [12]. Transcriptional activity of HIF-1α requires the

binding of the co-factor CBP/p300 to the C-TAD domain of HIF-1α, then HIF will bind to HRE and

activate the transcription of its target genes [11, 13, 14].

HIF regulation

Oxygen-dependent regulation of HIF-1α is mainly done by Prolyl Hydroxylase (PHD) and FIH-1 en-

zymes. They act at the posttranslational level by inducing its degradation or disrupting its interaction
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with co-factors. Prolyl Hydroxylase (PHD) proteins catalyze the hydroxylation of proline residues, tar-

geting HIF-1α for proteasomal degradation by the Von Hippel-Lindau (VHL) tumour suppressor protein.

Hydroxylation of asparagine residues by Factor Inhibiting HIF-1 (FIH-1) inhibits the interaction between

HIF-1α and the important co-factor CBP/p300, preventing regulation of HIF-1α target genes. Since

PHD and FIH-1 need oxygen to hydroxylate HIF-1α residues, they act as oxygen sensors in the cell

response to hypoxia. Hypoxia promotes HIF-1α protein stability and transcriptional activity. Reactive

Oxygen Species (ROS) and oncometabolites such as succinate, fumarate, lactate upregulate HIF-1α [14].

Oxygen-independent mechanisms regulating HIF-1α transcription and translation include PI3K/Akt/

mTOR and RAS/RAF/MEK/ERK pathways. Multiple growth factors, oncogenes, mutations (such as

in the tumour suppressor genes PTEN and p53) or ROS may increase HIF-1α levels through PI3K and

RAS signalling cascade [14, 11, 13]. A study by The Cancer Genome Atlas (TCGA) identified the most

altered genes in glioblastoma, it reveals that RTK/RAS/PI3K are among the frequently altered pathways

in this disease [15]. It suggests that HIF is a strong candidate for cancer therapy, not only because of

its role in the cellular response to hypoxia but also for its frequent deregulation in cancer as well. HIF

regulation is summarized in figure 1.

Impact on cellular biological functions

The cell response to hypoxia initiated by HIF affects many biological processes such as cell proliferation,

survival, apoptosis, angiogenesis, iron metabolism and glucose metabolism [13]. Pathway enrichment

analysis of 98 HIF target genes revealed 20 pathways including those implicated in cancer, glycoly-

sis/gluconeogenesis and metabolism of carbohydrates [16].

HIF can prevent G1/S transition through the regulation of cyclin-dependent kinase inhibitors (p21,

p27) and cyclin proteins (cyclin G2, cyclin E) [17]. Cyclin E downregulation is mediated through the

inhibition of cyclin D by HIF causing a slowing down or arrest of the cell cycle in the G1 phase and

promoting the entry into quiescence, which can be a mechanism to escape chemotherapy [18].

The Warburg effect is caused by an increase in glucose utilization by the cells, the glycolysis being

one of the pathways affected by hypoxia. HIF increases the expression of glucose transporters GLUT1

and GLUT3 which contain HRE in their promoters, resulting in higher glucose uptake [19]. Furthermore,

HIF induces the overexpression of specific glycolytic isoforms for each enzyme involved in all the steps of

the glycolysis [20]. Thus, HIF upregulates the expression of Lactate Dehydrogenase (LDH), an enzyme

that catalyzes the reversible reaction in which pyruvate is converted to lactate, resulting in higher lactate

secretion which acidifies the microenvironment.

TCA cycle works in cooperation with the OXPHOS to produce ATP. Pyruvate produced by the last

steps of the glycolysis is turned into Acetyl Coenzyme A by Pyruvate Dehydrogenase (PDH) to fuel the

TCA cycle, promoting an oxidative metabolism. However, Pyruvate Dehydrogenase Kinase (PDK) an

inhibitor of PDH is upregulated by HIF [21]. Not only hypoxia will increase the use of glycolysis by the

cell, but it will also reduce the use of TCA cycle.

In this paper, we want to study how genetic (or epigenetic) regulations, between HIF and its two

targets LDH and PDH, may affect the emergence of the Warburg effect. The Warburg effect results in
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Figure 1: Regulation of Hypoxia Inducible Factor by oxygen-dependent and oxygen-independent mech-

anisms. PI3K/Akt/mTOR and RAS/RAF/ERK/MEK signalling pathways increase HIF transcription

and translation in an oxygen-independent way. The oxygen-dependent regulation relies mainly on the

two enzymes: PHD and FIH-1. PHD catalyzes the oxygen-dependent hydroxylation of proline residues

on the HIF protein, which is then targeted for proteasomal degradation by the VHL. FIH-1 catalyzes the

oxygen-dependent hydroxylation of asparagine residues, which inhibits the interaction between the HIF

protein and the CBP/p300 co-factor. Hydroxylation of HIF residues by PHD and FIH-1 is inhibited by

hypoxia, ROS and oncometabolites such as succinate, fumarate and lactate.
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an increased production of lactic acid by the tumour by metabolizing glucose, even in normoxia [22, 7,

8, 23, 24].

Material and Method

Genetic Regulations

Here, we assume that HIF plays a major role in mediating the cell response to hypoxia. We have

selected LDH and PDH to model the effect of hypoxia on metabolism since (1) they are key enzymes

for the conversion of pyruvate into lactate/AcetylCoA respectively after the glycolysis, and (2) they are

both regulated by HIF directly or indirectly. PDH is downregulated by HIF through its inhibitor PDK,

therefore PDK will be included in the model (see figure 2). Genetic regulations are based on the model

described by Li et al [21]. All genetic regulations are described by the following equations:

dHIF

dt
= AHIF −DHIF ×H+

O2→HIF ×HIF (1)

dLDH

dt
= ALDH ×H+

HIF→LDH −DLDH × LDH (2)

dPDK

dt
= APDK ×H+

HIF→PDK −DPDK × PDK (3)

dPDH

dt
= APDH ×H−

PDK→PDH −DPDH × PDH (4)

where A is a parameter for gene production and D for gene degradation. LDH and PDK upregulations by

HIF and PDH downregulations by PDK are described with a non-linear function named the shifted-Hill

function. In the same way, the increased HIF protein degradation in normoxia is described using the

same function. The shifted-Hill function has the form:

H
+/−
Y→Z =

Sn

Sn + Y n
+ γY→Z

Y n

Sn + Y n
.

Here, HY→Z represents the effect of the regulating gene Y on the regulated gene Z. H+
Y→Z indicates an

upregulation, while H−
Y→Z is a downregulation. S is the gene level with a half-threshold of production.

The positive parameter γ represents an activation if > 1 or an inhibition if < 1. All genes levels are

dimensionless, parameters used in the equation above are summarised in table 1.

Cell Metabolism

Cells consume glucose and oxygen to produce ATP. Nutrient consumption rates change over time de-

pending on microenvironment conditions. In normoxia, cells mostly use aerobic pathways (glycolysis

+ OXPHOS) which produce more ATP per mole mole of glucose consumed than anaerobic pathways

(glycolysis + lactate production). In hypoxia, the cell metabolism transits toward a glycolytic pathway

involving lactate production. Cells consumption and production are derived from the model described by

[25]. Here, the impact of the level of genes on metabolism is modelled by a non-linear function to tune

the maximal consumption of oxygen and glucose. Furthermore, LDH and PDH levels are used to tune

glycolysis and TCA pathways in the model as they have an important role in the conversion of pyruvate
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Parameter Value Dimension Parameter Value Dimension

AHIF 0.05 1/min DHIF 0.005 1/min

ALDH 0.005 1/min DLDH 0.005 1/min

APDK 0.005 1/min DPDK 0.005 1/min

APDH 0.005 1/min DPDH 0.005 1/min

SO2→HIF 0.02085 mmol/L SHIF→LDH 4.48 -

SHIF→PDK 5.0 - SPDK→PDH 2.2 -

γO2→HIF 10.0 - γHIF→LDH 3.61 -

γHIF→PDK 6.97 - γPDK→PDH 0.14 -

Table 1: Parameters used in genetics regulations. The absence of unit means that the parameter is

dimensionless.

[26]. We define pO and pG, two terms to adjust the consumption rates of oxygen and glucose according

to their respective key enzyme level in the form:

pX =
pXMAX

− pXMIN

1 + exp (−lX(X −X0))
+ pXMIN

Here, pXMAX
and pXMIN

are both the maximal and minimal value of pX . X is the current level of genes,

X0 the midpoint of the function and lX is the steepness of the curve.

Oxygen consumption is determined using a Michaelis-Menten function [25]:

fO = pOVO
Oe

Oe +KO

PDH allows the pyruvate to enter the TCA cycle as Acetyl Coenzyme A, it is a limiting step in the aerobic

pathway. This is included in the model by adjusting the maximum oxygen consumption rate VO using the

term pO to represent PDH level effect on metabolism. Oe is the extracellular oxygen concentration. KO

is the extracellular oxygen concentration at which the cell oxygen consumption rate is half-maximum.

Following Robertson-Tessi et al [25], we assume that ATP demand drives glucose consumption. In low

oxygen conditions, the cell will consume more glucose to produce ATP in the last step of the glycolysis,

then pyruvate is turned into lactate by the LDH enzyme. An increase of LDH indicates an upregulation

of anaerobic pathways which means here, an increase in glucose consumption. We use the term pG to

describe this phenomenon in the equation [25]:

fG = (
pGA0

2
− 29fO

10
)

Ge

Ge +KG

A0 is the target ATP production. Ge is the extracellular glucose concentration. KG is the extracellular

glucose concentration at which the glucose consumption rate is half-maximal.

We take the same stoichiometric coefficients as in [25]: glycolysis uses 1 mole of glucose produces 2 moles

of ATP, aerobic pathway uses 1 mole of glucose and 5 moles of oxygen to produce 29 moles of ATP. We

can compute the ATP produced from the nutrients consumed using the yield from glycolysis and aerobic

pathway [25]:

fATP = 2fG +
29fO
5

6



Figure 2: Cell metabolism and genetic regulations implemented in the model. Green arrows represent

upregulation, red arrows represent inhibition.

Glycolysis produces 2 moles of pyruvate with 1 mole of glucose. If oxygen is absent, pyruvate is turned

into lactate, giving a total of 2 moles of lactate [4]. Lactic acid production is given by the glucose

consumed:

fH+ = kH2fG

kH is a fixed parameter for proton buffering (dimensionless).

Quantities consumed and produced by one cell are modelled using the ODE:

dX

dt
= fX (5)

with X is the molecule consumed or produced by the cell. The four variables described are oxygen (O),

glucose (G), ATP (ATP), and protons (H+).

The extracellular quantities of three molecules oxygen (O), glucose (G) and protons (H+) are described

in the model by:

∂X

∂t
=

DX∇2X − f i
X , if X={O, G}

DX∇2X + f i
X , if X=H+

(6)

X is the diffusible molecule, DX is the diffusion coefficient for molecule X, f i
X describe the impact of

each cell i on the extracellular concentration.

Parameters used in those functions are summarised in table 2. The schematic in figure 2 shows the

cellular metabolism and the genetics regulation implemented in the model.

Numerical Implementation

The tumour microenvironment plays a vital role in the growth and progression of tumour cells. As the

tumour grows, intracellular and intercellular interactions influence the changes in its microenvironment,

which can further result in cells dynamic. Here, we aim to develop a modelling framework to simulate the

growth of a large population of cells cultured in vitro, each cell having its metabolism influenced by the
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Parameter Value Unit

VO 0.01875 mmol/L/min

KO 0.0075 mmol/L

KG 0.04 mmol/L

kH 2.5e-4 -

A0 0.10875 mmol/L/min

pGMAX
50 -

pGMIN 1 -

lG 4 -

LDH0 2.35 -

pOMAX
1 -

pOMIN 0 -

lO 15 -

PDH0 0.575 -

Table 2: Parameters for metabolism. Dimensionless unit are indicated with -.

microenvironment conditions to represent accurately the resources dynamics in the tumour. Therefore,

the numerical implementation of the model must have sufficient performance to simulate the behaviour

of thousands of cells. In this regard, we selected Physicell, an open-source C++ framework designed

to run simulations containing a large population of cells. This framework has good performance with a

low memory footprint, allows the user to implement his custom code and define custom cell types, run a

multi-agent-based simulation in 2D or 3D [27].

Here, the impact of extracellular oxygen concentration is studied considering different boundary con-

ditions: physiological normoxia at 0.056 mmol/L (5% O2), pathological hypoxia at 0.01112 mmol/L (1%

O2) and a last where boundary conditions are modified during the simulation from physiological normoxia

to pathological hypoxia. The hypoxia threshold is set at 0.02085 (2% O2), the level at which HIF has a

half-maximal response [10].

The governing ODEs (equation 1 - 5) and PDEs (equation 6) are run at each timestep to compute

cell nutrient consumption, energy and acidity production for that period. After each time step, the cell

state is updated according to the quantity of ATP generated and the extracellular pH. Therefore, cells

can proliferate and divide only if they were able to generate enough ATP and if extracellular pH is higher

than the acid resistance of the cell (6.1 [25]). If the quantity of ATP generated is less than a threshold

ATPquiescence, the cell enters quiescence and is then prevented to complete the G1 phase. If the quantity

of ATP generated is less than a threshold ATPdeath or if the pH is less than a threshold pHdeath, the

cell dies and enters into the death cycle where it is progressively removed from the microenvironment by

lysis. Cell cycle phase transition is handled by the PhysiCell software. Phases duration are 5h in G1, 8h

in S, 4h in G2 and 1h in M, for a total of 18h to complete a cell cycle [28].
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Results

Qualitative exploration of the model at the cell scale

A well-known phenomenon is the Warburg effect, increased production of lactic acid by the tumour [5]

even in normoxia [22, 7, 8]. A qualitative study of the genetic deregulations at the cell scale would reveal

how it impacts lactic-acid production to investigate the appearance of the Warburg effect. The primary

aim of this study is to investigate the role of genetic regulations in cell metabolic changes.

In our mathematical model, the regulating effect of a gene on another is mainly driven by the γ

parameter in the shifted-Hill function. Setting this parameter equal to 1 simulate a loss of the regulating

function. An over-sensitivity of a gene by its regulator is modelled by setting the γ parameter to 40, the

maximum defined in the model from [21]. Results of a few regulations are shown in figure 3.

When no genetic deregulations are applied to the model (figure 3.A), protons production range from

0.0001 mmol/L/min to 0.001 mmol/L/min with normal γ parameters. Around 0.01 mmol/L oxygen

(1%), the cell progressively increases its H+secretion rate from 0.0001 mmol/L/min to the maximum

0.001 mmol/L/min.

In our model, when HIF is not subjected to oxygen degradation (figure 3.B), the rate of H+production

is only influenced by glucose concentration. In this case, cell’s lactic-acid secretion rate can reach 0.001

mmol/L/min even in normal oxygen pressure, as a result of the Warburg effect. Increased degradation of

HIF in oxygen (figure 3.C) reduces the oxygen threshold at which the cell has a lactic-acid secretion rate

of 0.001 mmol/L/min. Lower levels of oxygen are needed to reach the maximal secretion rate compared

to the normal degradation rate of HIF. With no deregulation (figure 3.A), the lactic-acid secretion rate

starts to increase at around 0.019 mmol/L of oxygen and reach a maximum at around 0.08 mmol/L.

With increased HIF degradation by oxygen (figure 3.C), this span is reduced and lactic-acid secretion

increases at around 0.012 mmol/L of oxygen. Similar to our result, a model from [23] shows that a lower

degradation rate of HIF increases the chance that cells use glycolysis instead of OXPHOS, which will

increase lactic acid secretions.

Inhibiting LDH sensitivity to HIF (figure 3.D) causes the maximum lactic-acid secretion rate to fall

to 0.0008 mmol/L/min. Increasing LDH sensitivity to HIF does not permit the cell to have a higher

H+production rate in normoxia, while a decrease prevents a high H+production rate in hypoxia (results

not shown).

Interfering with PDK sensitivity to HIF or PDH sensitivity to PDK seems to have no effect on acid

production in the model but on oxygen consumption by the cell (results not shown).

Exploration of environment and genetic properties on the emergence of the Warburg phe-

notype

Influence of environmental oxygen conditions

The Warburg effect is currently defined as high production of acidity due to the use of glycolysis even in

normoxia [23, 24, 9]. We ran several simulations with different environmental oxygen conditions to assess
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Figure 3: Influence of genetic upregulation or inhibition on the production rate of protons at different

glucose and oxygen concentrations. (A) Result with no genetic deregulation. (B) Result with inhibition

of the oxygen-dependant degradation of HIF. (C) Result with over-degradation of HIF by oxygen. (D)

Result with loss of upregulation of LDH by HIF.
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Figure 4: Evolution of tumour growth at different times in different conditions. In oscillating conditions,

the oxygen concentration is slowly decreased from normoxia to hypoxia during 6 hours, then cells are

slowly put back in normoxia at the same rate. This process is repeated until the end of the simulation.

whether microenvironmental conditions only, can induce a Warburg effect in the model.

Figure 4 shows how oxygen conditions affect tumour growth. In oscillating conditions, the oxygen

concentration varies between physiological normoxia and pathological hypoxia and reverse every 6 hours

until the end of the simulation. Kinetics of HIF show a peak after 6h and a decrease to an equilibrium

state after 24h-48h. We choose to simulate 6h-period of hypoxia/normoxia to avoid the cell reaching an

equilibrium and to simulate stressful conditions with a high response to a low level of oxygen. Constant

hypoxia slows down tumour growth and reduces tumour diameter compared to normoxia. In all 3 dif-

ferent conditions, the centre of the tumour is composed of dead cells surrounded by living cells at the

periphery. Only in normoxia and varying oxygen conditions, some cells in the centre of the tumour do

continue to divide (only visible after 7 days of growth). This may be due to the changes in the tumour

microenvironment with the increased cell death at the centre. As the cells die, more nutrients will be

available to quiescent cells to enable them to renter proliferating phase. Moreover, spatial changes due

to the shrinkage of dead cells can influence the availability of nutrients at the centre. This might show a

mechanism by which the tumour can grow back after a period of harsh conditions, for example quiescence
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Figure 5: Picture of a spheroid grown for 30 days. Cells were marked using the fluorescent proteins

Green FLuorescent Protein (GFP) and Sulforhodamine B (SRB). Living cells are colored in green, dying

cells appear in red. The centre of the tumour is composed of hypoxic and dead cells, both do not emit

fluorescence.

can be a mechanism to avoid drugs effect for the tumour cell [29]. Necrotic core has been observed in

biological experiments run in the lab (figure 5).

It seems that varying the concentration of oxygen from normoxia to hypoxia, and reversing this

process, every 6 hours doesn’t affect the diameter of the tumour at the end of the simulation. However,

a ring of necrotic cells in the swelling phase appears thicker than in other conditions.

Results in figure 6 show acid production according to the extracellular oxygen concentration. Red

line y-axis intercept is equal to 0.02085 mmol/L (2% O2), which corresponds to the threshold of hypoxia

in physiological conditions. It is the level at which HIF has a half-maximal response as well [10]. Cells

above this level are considered to be in normoxia while the rest of the cells are in hypoxia. Levels of

extracellular oxygen fall below the hypoxia threshold after 2 days of growth in normoxic conditions (a

necrotic core in the centre of the tumour has already formed). Due to poor oxygen concentration, cells

with higher glycolytic activity appear and reach a H+production rate of almost 5 × 10−4mmol/L/min.

The maximum glycolytic activity of cells falls at 7 days of growth because of reduced glucose availability.

When tumour growth is started in hypoxic conditions, high glycolytic activity is present after only one

day of growth. In those conditions, the way the cell produces its energy is influenced only by glucose

concentrations (similar to the result shown in figure 3). Therefore, hypoxic conditions directly select cells

with high glycolytic activity.

The fact that, in the model, hypoxia may select cells with high glycolytic activity is supported by the

levels of LDH/PDH genes presented in figure 7. In normoxia, cells have a level of LDH and PDH of 1 for

both, it can be associated to an oxidative state. In hypoxia, LDH level reaches 3.0 and PDH level falls to

0.25, it can be associated to a glycolytic state. At the beginning of the simulation in normoxic conditions,

12



Figure 6: Acid production rate following oxygen extracellular concentrations at different times in different

conditions. The red line indicates the hypoxia threshold. In oscillating conditions, oxygen concentration

is slowly decreased from normoxia to hypoxia during 6h, then oxygen is increased to normoxia at the

same rate. This process is repeated until the end of the simulation. Only living cells are represented on

the graph. The green rectangle represents the region corresponding to a Warburg effect.
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Figure 7: Plot of level of PDH against the level of LDH coloured by the extracellular oxygen concen-

tration. The graph shows the results at different times for different conditions. In oscillating conditions,

oxygen concentration is slowly decreased from normoxia to hypoxia during 6h, then oxygen is increased

to normoxia at the same rate. This process is repeated until the end of the simulation. Only living cell

are represented on the graph.
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cells have 1:1 LDH/PDH levels. As the simulation goes, oxygen becomes less available. Thus LDH level

increases while PDH level decreases. The result in normoxic conditions shows that cells migrate from an

oxidative to a glycolytic state as oxygen concentration decreases. Cells around 2:0.5 LDH/PDH levels

have a hybrid state where they rely on both nutrients to produce ATP. Again hypoxia selects for cells

with high levels of LDH and low levels of PDH, suppressing the possibility for the cell to adopt a hybrid

state.

Interestingly, extracellular oxygen concentration after 7 days is higher when oxygen varies between

normoxia and hypoxia every 6 hours than in constant normoxia. Since cells are put in hypoxia several

times a day, they rely more on glycolysis and consume less oxygen. Cells with higher glycolytic activity

(2.5 × 10−4mmol/L/min) even above the threshold of hypoxia appear at 2 days. It suggests that the

Warburg Effect can be caused by environmental conditions with rapid variations. Combined with figure

7, genetic levels seems to indicate that cells cannot enter a complete oxidative state and are trapped

either in a hybrid or a glycolytic state.

Influence of the intrinsic genetic properties of the cell

In figure 8, tumour growth is initiated in normoxia. Extracellular oxygen concentrations only vary due

to cells consumption and reduced diffusion in the tumour. Only genetics regulations have been modified

between each simulation to assess the impact of different genetic deregulations (mutations or epigenetic

alterations) on tumour growth and cell metabolism. Results are similar to normoxic conditions with no

genetic deregulations (figure 4). When reducing inhibition of PDH by PDK, tumour radius at 7 days of

growth is lower than in normoxia and higher than in hypoxia with no mutation.

Figure 9 shows that cells start to become hypoxic after day 1, reaching a majority by day 2. After 7

days with a reduced HIF degradation rate by oxygen, extracellular oxygen goes back to normoxic levels

yet cells have a higher acid production rate that corresponds to a Warburg effect. In this case, we suppose

that cells slowly drain oxygen levels in the environment to a point where hypoxia is reached. Due to

poor oxygen conditions, cells adapt their metabolism to enter a glycolytic state that they keep even if the

oxygen supply goes back above 2 %O2. Together with the result in figure 10, this might be caused by a

delay in the response from returning to normal conditions since HIF regulation by O2 is affected. While

some cells have levels of LDH greater than 2 and PDH lower than 0.50 (hybrid to glycolytic state), some

have a ratio of LDH/PDH almost equal to 1:1. This suggests that the Warburg Effect isn’t irreversible

with a reduced HIF degradation rate by oxygen alone.

As expected, reducing the increase in LDH levels due to HIF response doesn’t induce a high acid-

ification rate in normoxia but affects the maximum acid production rate and level of LDH. Instead of

inducing a glycolytic phenotype, it seems to repress it.

Reducing the inhibiting power of PDK on PDH allows the cell to keep a higher PDH level, a key

enzyme for oxygen consumption and oxidative state in the model. Cells exhibit an acid production rate

similar to those in hypoxic conditions after 2 and 7 days, compared to other genetics deregulation. While

in normoxia with no genetic deregulation cells seem to fluctuate around the threshold of hypoxia, here

they are all below this level. Since PDH isn’t effectively regulated by HIF, the cell tends to stay in an
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Figure 8: Evolution of tumour growth at different time with different genetic perturbations: reduced

oxygen induced degradation of HIF (γO2 → HIF = 8.0), lower use of glycolysis in hypoxic conditions

( γHIF → LDH = 2.0) and lower effect of hypoxia on oxygen consumption ( γPDK → PDH = 0.7).

The normoxia conditions represent the growth with base parameters or no genetic deregulation (γO2 →

HIF = 10.0, γHIF → LDH = 3.61, γPDK → PDH = 0.14). New values have been selected following

a qualitative exploration of the parameters effect on the model at the cell scale. Tumour growth was

initiated in normoxia in all the simulations.
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Figure 9: Acid production rate following oxygen extracellular concentrations at different times with dif-

ferent genetic perturbations. The red line indicates the hypoxia threshold. Only living cell are represented

on the graph. Three genetics pertubations have been selected: reduced oxygen induced degradation of

HIF (γO2 → HIF = 8.0), lower use of glycolysis in hypoxic conditions ( γHIF → LDH = 2.0) and

lower effect of hypoxia on oxygen consumption ( γPDK → PDH = 0.7). Tumour growth was initiated

in normoxia. The green rectangle represents the region corresponding to a Warburg effect.
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Figure 10: Plot of level of PDH against the level of LDH coloured by the extracellular oxygen concentra-

tion. The graph shows the results at different times with three different genetic perturbations: reduced

oxygen induced degradation of HIF (γO2 → HIF = 8.0), lower use of glycolysis in hypoxic conditions

( γHIF → LDH = 2.0) and lower effect of hypoxia on oxygen consumption ( γPDK → PDH = 0.7).

Tumour growth was initiated in normoxia.
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oxidative state and rely less on glycolysis. We can suppose that cells consume oxygen even when the level

fall, creating further harder conditions. Results also show that adaptation to hypoxia is delayed and the

cell only adopts a glycolytic state at oxygen conditions near-pathological hypoxia. PDH levels don’t fall

far below 0.75 even after 7 days of growth compared to others conditions, indicating that cells can only

adopt an oxidative or hybrid state.

Discussion

In this paper, we formulated a mathematical model to study the impact of HIF on LDH and PDH,

key enzymes of glycolysis and TCA cycle and thus investigating its role in cellular metabolism. Since

its discovery, HIF has been actively studied by the scientific community. There are several modelling

approaches to study the effects of HIF [25, 21, 18, 23] and here, we investigate its role using a multi-agent

model, considering a heterogeneous environment that changes over time. Furthermore, the model is used

to investigate the impact of genes on metabolism and the effect of different environmental conditions and

different genetic deregulations (such as mutations or epigenetic alterations) can have on the Warburg

Effect, an overproduction of acidity due to and increased glycolysis even in normoxia. Over-production

of lactate can also be caused by reduced use of pyruvate in the mitochondria, remaining pyruvate is then

turned into lactate.

Using the level of LDH and PDH genes as markers, we can define three different metabolic states like

[21, 23]: oxidative, glycolytic and hybrid. The oxidative state corresponds to a high level of PDH and

a low level of LDH, and inversely in a glycolytic state. The hybrid state then corresponds to medium

levels of both enzymes, 2:0.5 for LDH and PDH respectively. As expected, normoxia strongly selects for

the first state while hypoxia selects for the second one. The hybrid state is observed as the oxygen levels

change over time due to tumour growth. Thus it appears that the cell adopts this state when adapting

to changing oxygen conditions or when oxygen levels vary between normoxia and hypxia several times

during tumour growth (oscillating conditions in the model).

We observed some differences between our model and the model in a recent paper from Li et al [21]: (1)

they identified a normal state with a level of LDH at 1 and a level of PDH at 0.1, (2) their oxidative

and glycolytic states have different levels of genes than those present in our model. This difference in the

result can be explained by the fact that we only include a small fraction of their gene regulation network

in our model, to only account for the effect caused by HIF.

We have simulated tumour growth when oxygen supply doesn’t vary over time, hence differences in

extracellular oxygen level can only be caused by cell consumption or reduced diffusion owing to higher

cell density. We found that when there are rapid changes in oxygen supply to the tumour, cells with

higher glycolytic rates above the threshold of hypoxia appear. It shows that varying microenvironmental

conditions are sufficient to induce a Warburg phenotype for the cell. The results are inline with the

findings by Damaghi et al [9]. However, the model doesn’t include sudden genetic mutation which can be

caused by harsh conditions. Therefore, in our case cell would not be trapped into a Warburg phenotype

and this state can be reversed to a normal state if the cell is given enough time in favourable conditions.
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Lactate secretion, which decreases the extracellular pH, depends on glucose consumption. A study from

Casciari et al [30] has shown that a lower extracellular pH decreases dramatically glucose consumption,

the Warburg effect could also be inhibited by low pH (6.95). We may suppose that after difficult conditions

genes may be over-expressed or inhibited which will force the cell to adopt a Warburg phenotype.

The importance of HIF degradation in normoxia is further highlighted by the model results. We

were also able to induce a Warburg effect by reducing the degradation rate of HIF by oxygen-dependent

enzymes. Our results show that this effect only appears after a first period of hypoxia. It suggests that

HIF accumulation forces the cell to adopt a glycolytic state and prevent it from returning to an oxidative

state in normoxia. HIF inhibition therapy would prevent the appearance of Warburg cell type in cancer.

PI3K and mTOR, two genes that increase HIF level independently of the level of oxygen [11, 14, 13], are

studied as potential targets in anti-cancer therapy due to their altered expression in cancer and their role

in signalling pathways affecting many biological functions [31, 32], possibly causing HIF overexpression.

AMPK enzyme is known to interact with HIF [23] and inhibits its expression, some evidence link this

gene to anti-tumour activity [33]. Those interactions could be added in further modelling work to study

their impact on the Warburg effect as they may be important players interacting with HIF.

It has been shown that extracellular pH can (1) influence the cell metabolism (reduce glucose con-

sumption, increase the cells doubling time) [30], (2) affect the ability of tumour cells to form metastasis,

invade other tissue or migrate [34] and (3) could be a mechanism of invasion [35]. Currently, therapy

targeting extracellular pH in the tumour are under development. Moreover, pH also affects the efficiency

of different drugs such as temozolomide [36]. Reducing the increase in LDH level by the cell response

to hypoxia lowered the rate of acid production in our simulation. Inhibitor of LDH could be used in

combination with pH targeting therapy to improve treatment outcomes.

Reducing the down-regulation of PDH by HIF in the model forces the cell to rely as much as possible

on oxygen to produce its energy. Herein, changes in metabolism toward glycolytic activity requires lower

levels of oxygen. A study has shown that inhibition of HIF resulted in reduced lactate production, increase

in oxygen consumption and radiotherapy sensitivity [7]. Whether increasing oxygen consumption by PDH

upregulation would result in better outcomes in therapy in the model remains to be studied.

Conclusion

The main interest of the model is its ability to qualitatively describe HIF expression in tumour devel-

opment over time with oxygen diffusion that depends on both cell consumption and cell density in the

tumour to obtain a more realistic diffusion. Results of the model show that varying oxygen levels and

reduced HIF degradation can cause increased glycolytic activity in normal oxygen levels. In the model,

the emergence of the Warburg effect is preceded by a first period of hypoxia before returning to normoxic

concentrations. This suggests that adaptation to environmental conditions is the primary phenomenon

to understanding the Warburg effect. Interfering with the genetic activity of HIF or its effect on LDH

and PDH may be used in therapy to induce specific behaviour in the cell.
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[26] Jerry J. Zimmerman, Amélie von Saint André-von Arnim, and Jerry McLaughlin. Cellular Respi-

ration. Fourth Edi. Elsevier, 2011, pp. 1058–1072. isbn: 9780323073073. doi: 10.1016/B978-0-

323-07307-3.10074-6. url: http://dx.doi.org/10.1016/B978-0-323-07307-3.10074-6.

[27] Ahmadreza Ghaffarizadeh et al. “PhysiCell: An open source physics-based cell simulator for 3-D

multicellular systems”. In: PLOS Computational Biology 14.2 (Feb. 2018), e1005991. issn: 1553-

7358. doi: 10.1371/JOURNAL.PCBI.1005991. url: https://journals.plos.org/ploscompbiol/

article?id=10.1371/journal.pcbi.1005991.

[28] Geoffrey M Cooper. “The Eukaryotic Cell Cycle”. In: (2000). url: https://www.ncbi.nlm.nih.

gov/books/NBK9876/.

[29] Tomás Alarcón and Henrik Jeldtoft Jensen. “Quiescence: A mechanism for escaping the effects of

drug on cell populations”. In: Journal of the Royal Society Interface 8.54 (2011), pp. 99–106. issn:

17425662. doi: 10.1098/rsif.2010.0130. arXiv: 1002.4579.

23

https://doi.org/10.2174/138955709788922610
http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-5575&volume=9&issue=9&spage=1084
http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-5575&volume=9&issue=9&spage=1084
http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-5575&volume=9&issue=9&spage=1084
https://doi.org/10.1016/j.isci.2020.101002
https://doi.org/10.1016/j.isci.2020.101002
https://doi.org/10.1016/j.isci.2020.101002
https://doi.org/10.1016/J.JTBI.2006.09.010
https://pubmed.ncbi.nlm.nih.gov/17055536/
https://doi.org/10.1073/pnas.1816391116
https://pubmed.ncbi.nlm.nih.gov/30733294/
https://pubmed.ncbi.nlm.nih.gov/30733294/
https://doi.org/10.1007/s11033-015-3858-x
https://doi.org/10.1007/s11033-015-3858-x
https://doi.org/10.1158/0008-5472.CAN-14-1428
http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-14-1428
http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-14-1428
https://doi.org/10.1016/B978-0-323-07307-3.10074-6
https://doi.org/10.1016/B978-0-323-07307-3.10074-6
http://dx.doi.org/10.1016/B978-0-323-07307-3.10074-6
https://doi.org/10.1371/JOURNAL.PCBI.1005991
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005991
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005991
https://www.ncbi.nlm.nih.gov/books/NBK9876/
https://www.ncbi.nlm.nih.gov/books/NBK9876/
https://doi.org/10.1098/rsif.2010.0130
https://arxiv.org/abs/1002.4579


[30] Joseph J. Casciari, Stratis V. Sotirchos, and Robert M. Sutherland. “Variations in tumor cell growth

rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH”. In:

Journal of Cellular Physiology 151.2 (1992), pp. 386–394. issn: 10974652. doi: 10.1002/jcp.

1041510220.

[31] Jing Yang et al. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. 2019. doi:

10.1186/s12943-019-0954-x.

[32] Tian Tian, Xiaoyi Li, and Jinhua Zhang. mTOR signaling in cancer and mtor inhibitors in solid

tumor targeting therapy. 2019. doi: 10.3390/ijms20030755.

[33] Weidong Li et al. Targeting AMPK for cancer prevention and treatment. 2015. doi: 10.18632/

oncotarget.3629.

[34] S. D. Webb, J. A. Sherratt, and R. G. Fish. “Mathematical Modelling of Tumor Acidity: Regulation

of Intracellular pH”. In: Journal of Theoretical Biology 196.2 (Jan. 1999), pp. 237–250. issn: 0022-

5193. doi: 10.1006/JTBI.1998.0836. url: https://doi.org/10.1006/jtbi.1998.0836.

[35] Kieran Smallbone, Robert A. Gatenby, and Philip K. Maini. “Mathematical modelling of tumour

acidity”. In: Journal of Theoretical Biology 255.1 (2008), pp. 106–112. issn: 00225193. doi: 10.

1016/j.jtbi.2008.08.002.
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