loading page

Genome-scale metabolic model of oleaginous yeast Papiliotrema laurentii
  • +2
  • Rafaela Ventorim,
  • Maurício Ferreira,
  • Eduardo Luís de Almeida,
  • Eduard Kerkhoven,
  • Wendel Silveira
Rafaela Ventorim
Universidade Federal de Vicosa
Author Profile
Maurício Ferreira
Universidade Federal de Vicosa
Author Profile
Eduardo Luís de Almeida
Universidade Federal de Vicosa
Author Profile
Eduard Kerkhoven
Chalmers University of Technology
Author Profile
Wendel Silveira
Universidade Federal de Vicosa

Corresponding Author:wendel.silveira@ufv.br

Author Profile

Abstract

Oleaginous yeasts are promising candidates as single cell oil (SCO) platforms to meet energy demand due to their high growth rate, easy scaling and the possibility of being cultivated in culture media based on lignocellulosic biomass. The oleaginous yeast Papiliotrema laurentii UFV-1 is able to reach high lipid contents in short periods, besides its composition of fatty acids is suitable in terms of quality standards required for biodiesel production. However, little is known about the regulation of its metabolism. We present here the first genome-scale metabolic reconstruction of P. laurentii, papla-GEM. The reconstruction was based on homology to another oleaginous yeast and the model was subjected to intensive manual curation throughout the reconstruction stages to find out the metabolic specificities of this yeast. The final model includes 764 genes, 2447 reactions and 2112 metabolites, and its biomass equation is based on direct measurements of all major biomass components. The validation step was performed using experimental data obtained in this work, and simulation results evaluated the growth and lipid accumulation physiology of P. laurentii. Therefore, the papla-GEM will lead to a better understanding of the metabolic capabilities of P. laurentii and thus will be useful in systems metabolic engineering approaches.