References
1. Baxter AG. Louis Pasteur’s beer of revenge. Nat Rev Immunol. 2001 Dec;1(3):229-32. doi: 10.1038/35105083. PMID: 11905832.
2. Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008 Jun;8(6):473-80. doi: 10.1038/nrc2394. Epub 2008 May 12. PMID: 18469827.
3. Neu HC, Gootz TD. Antimicrobial Chemotherapy. In: Baron S, editor. Medical Microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 11. PMID: 21413283.
4. McNaught W. Limitations of the germ theory. Lancet. 1968 Jul 27;2(7561):220. doi: 10.1016/s0140-6736(68)92655-x. PMID: 4173435.
5. Pirofski LA, Casadevall A. Immunomodulators as an antimicrobial tool. Curr Opin Microbiol. 2006 Oct;9(5):489-95. doi: 10.1016/j.mib.2006.08.004. Epub 2006 Aug 22. PMID: 16931122; PMCID: PMC7108246.
6. Ramamurthy D, Nundalall T, Cingo S, Mungra N, Karaan M, Naran K, Barth S. Recent Advances in Immunotherapies Against Infectious Diseases. Immunotherapy Advances. 2020 Nov 25:ltaa007. doi: 10.1093/immadv/ltaa007. PMCID: PMC7717302.
7. Pathogenesis: of host and pathogen. Nat Immunol. 2006 Mar;7(3):217. doi: 10.1038/ni0306-217. PMID: 16482163.
8. Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol. 2010 Jul;10(7):514-26. doi: 10.1038/nri2802. PMID: 20577268; PMCID: PMC3899649.
9. Chitalia VC, Munawar AH. A painful lesson from the COVID-19 pandemic: the need for broad-spectrum, host-directed antivirals. J Transl Med. 2020 Oct 15;18(1):390. doi: 10.1186/s12967-020-02476-9. PMID: 33059719; PMCID: PMC7558548.
10. Kelleni MT. Tocilizumab, Remdesivir, Favipiravir, and Dexamethasone Repurposed for COVID-19: a Comprehensive Clinical and Pharmacovigilant Reassessment. SN Compr Clin Med. 2021 Feb 19:1-5. doi: 10.1007/s42399-021-00824-4. Epub ahead of print. PMID: 33644693; PMCID: PMC7894610.
11. Crua Asensio N, Muñoz Giner E, de Groot NS, Torrent Burgas M. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection. Nat Commun. 2017 Jan 16;8:14092. doi: 10.1038/ncomms14092. PMID: 28090086; PMCID: PMC5241799.
12. Casadevall A, Pirofski LA. Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun. 2000 Dec;68(12):6511-8. doi: 10.1128/IAI.68.12.6511-6518.2000. PMID: 11083759; PMCID: PMC97744.
13. Casadevall A, Pirofski LA. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun. 1999 Aug;67(8):3703-13. doi: 10.1128/IAI.67.8.3703-3713.1999. PMID: 10417127; PMCID: PMC96643.
14. Nash AA, Dalziel RG, Fitzgerald JR. Mechanisms of Cell and Tissue Damage. Mims’ Pathogenesis of Infectious Disease. 2015:171–231. doi: 10.1016/B978-0-12-397188-3.00008-1. Epub 2015 Feb 6. PMCID: PMC7158287.
15. Sen R, Nayak L, De RK. A review on host-pathogen interactions: classification and prediction. Eur J Clin Microbiol Infect Dis. 2016 Oct;35(10):1581-99. doi: 10.1007/s10096-016-2716-7. Epub 2016 Jul 29. PMID: 27470504.
16. Pitt TL, Barer MR. Classification, identification and typing of micro-organisms. Medical Microbiology. 2012:24–38. doi: 10.1016/B978-0-7020-4089-4.00018-4. Epub 2012 May 24. PMCID: PMC7171901.
17. Köhler JR, Casadevall A, Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med. 2014 Nov 3;5(1):a019273. doi: 10.1101/cshperspect.a019273. PMID: 25367975; PMCID: PMC4292074.
18. Pérez JC, Kumamoto CA, Johnson AD. Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit. PLoS Biol. 2013;11(3):e1001510. doi: 10.1371/journal.pbio.1001510. Epub 2013 Mar 19. PMID: 23526879; PMCID: PMC3601966.
19. Colson P, Raoult D. Fighting viruses with antibiotics: an overlooked path. Int J Antimicrob Agents. 2016 Oct;48(4):349-52. doi: 10.1016/j.ijantimicag.2016.07.004. Epub 2016 Aug 5. PMID: 27546219; PMCID: PMC7134768.
20. Casadevall A, Pirofski LA. The damage-response framework of microbial pathogenesis. Nat Rev Microbiol. 2003 Oct;1(1):17-24. doi: 10.1038/nrmicro732. PMID: 15040176; PMCID: PMC7097162.
21. Pirofski LA, Casadevall A. Pathogenesis of COVID-19 from the Perspective of the Damage-Response Framework. mBio. 2020 Jul 2;11(4):e01175-20. doi: 10.1128/mBio.01175-20. PMID: 32616514; PMCID: PMC7338079.
22. Tauber SC, Nau R. Immunomodulatory properties of antibiotics. Curr Mol Pharmacol. 2008 Jan;1(1):68-79. PMID: 20021425.
23. Pasquale TR, Tan JS. Nonantimicrobial effects of antibacterial agents. Clin Infect Dis. 2005 Jan 1;40(1):127-35. doi: 10.1086/426545. Epub 2004 Dec 1. PMID: 15614702.
24. Heaton SM. Harnessing host-virus evolution in antiviral therapy and immunotherapy. Clin Transl Immunology. 2019 Jul 8;8(7):e1067. doi: 10.1002/cti2.1067. PMID: 31312450; PMCID: PMC6613463.
25. Duffy S. Why are RNA virus mutation rates so damn high? PLoS Biol. 2018 Aug 13;16(8):e3000003. doi: 10.1371/journal.pbio.3000003. PMID: 30102691; PMCID: PMC6107253.
26. Prussia A, Thepchatri P, Snyder JP, Plemper RK. Systematic approaches towards the development of host-directed antiviral therapeutics. Int J Mol Sci. 2011;12(6):4027-52. doi: 10.3390/ijms12064027. Epub 2011 Jun 15. PMID: 21747723; PMCID: PMC3131607.
27. Estrin MA, Hussein ITM, Puryear WB, Kuan AC, Artim SC, Runstadler JA. Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One. 2018 May 18;13(5):e0197246. doi: 10.1371/journal.pone.0197246. PMID: 29775471; PMCID: PMC5959063.
28. Watanabe T, Kawaoka Y. [Neo-Virology: the raison d’etre of viruses]. Uirusu. 2016;66(2):155-162. Japanese. doi: 10.2222/jsv.66.155. PMID: 29081467.
29. Wang QC, Nie QH, Feng ZH. RNA interference: antiviral weapon and beyond. World J Gastroenterol. 2003 Aug;9(8):1657-61. doi: 10.3748/wjg.v9.i8.1657. PMID: 12918096; PMCID: PMC4611519.
30. Guo X, Carroll JW, Macdonald MR, Goff SP, Gao G. The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J Virol. 2004 Dec;78(23):12781-7. doi: 10.1128/JVI.78.23.12781-12787.2004. PMID: 15542630; PMCID: PMC525010.
31. Mihara T, Nishimura Y, Shimizu Y, Nishiyama H, Yoshikawa G, Uehara H, Hingamp P, Goto S, Ogata H. Linking Virus Genomes with Host Taxonomy. Viruses. 2016 Mar 1;8(3):66. doi: 10.3390/v8030066. PMID: 26938550; PMCID: PMC4810256.
32. Godkin A, Smith KA. Chronic infections with viruses or parasites: breaking bad to make good. Immunology. 2017 Apr;150(4):389-396. doi: 10.1111/imm.12703. Epub 2017 Jan 19. PMID: 28009488; PMCID: PMC5343343.
33. Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis. 2017 Dec 14;11(12):e0006052. doi: 10.1371/journal.pntd.0006052. PMID: 29240765; PMCID: PMC5730103.
34. Lamotte S, Späth GF, Rachidi N, Prina E. The enemy within: Targeting host-parasite interaction for antileishmanial drug discovery. PLoS Negl Trop Dis. 2017 Jun 8;11(6):e0005480. doi: 10.1371/journal.pntd.0005480. PMID: 28594938; PMCID: PMC5464532.
35. You L, Yao C, Yang F, Yang Q, Lan J, Song X, Shen J, Sheng X, Chen X, Tang H, Jiang H, Wu H, Qian S, Meng H. Echinocandins versus Amphotericin B Against Candida tropicalis  Fungemia in Adult Hematological Patients with Neutropenia: A Multicenter Retrospective Cohort Study. Infect Drug Resist. 2020 Jul 10;13:2229-2235. doi: 10.2147/IDR.S258744. PMID: 32764998; PMCID: PMC7360406.
36. Sam QH, Yew WS, Seneviratne CJ, Chang MW, Chai LYA. Immunomodulation as Therapy for Fungal Infection: Are We Closer? Front Microbiol. 2018 Jul 25;9:1612. doi: 10.3389/fmicb.2018.01612. PMID: 30090091; PMCID: PMC6068232.
37. Ademe M. Immunomodulation for the Treatment of Fungal Infections: Opportunities and Challenges. Front Cell Infect Microbiol. 2020 Sep 15;10:469. doi: 10.3389/fcimb.2020.00469. PMID: 33042859; PMCID: PMC7522196.
38. Simitsopoulou M, Roilides E, Walsh TJ. Immunomodulatory properties of antifungal agents on phagocytic cells. Immunol Invest. 2011;40(7-8):809-24. doi: 10.3109/08820139.2011.615877. PMID: 21985307.
39. Alto NM, Orth K. Subversion of cell signaling by pathogens. Cold Spring Harb Perspect Biol. 2012 Sep 1;4(9):a006114. doi: 10.1101/cshperspect.a006114. PMID: 22952390; PMCID: PMC3428769.
40. Pieters VM, Co IL, Wu NC, McGuigan AP. Applications of Omics Technologies for Three-Dimensional In Vitro  Disease Models. Tissue Eng Part C Methods. 2021 Mar;27(3):183-199. doi: 10.1089/ten.TEC.2020.0300. Epub 2021 Feb 22. PMID: 33406987.
41. Ling KM, Garratt LW, Gill EE, Lee AHY, Agudelo-Romero P, Sutanto EN, Iosifidis T, Rosenow T, Turvey SE, Lassmann T, Hancock REW, Kicic A, Stick SM. Rhinovirus Infection Drives Complex Host Airway Molecular Responses in Children With Cystic Fibrosis. Front Immunol. 2020 Jul 16;11:1327. doi: 10.3389/fimmu.2020.01327. PMID: 32765492; PMCID: PMC7378398.
42. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009 Jan;10(1):57-63. doi: 10.1038/nrg2484. PMID: 19015660; PMCID: PMC2949280.
43. Pattin KA, Moore JH. Role for protein-protein interaction databases in human genetics. Expert Rev Proteomics. 2009 Dec;6(6):647-59. doi: 10.1586/epr.09.86. PMID: 19929610; PMCID: PMC2813729.
44. Jensen C, Teng Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front Mol Biosci. 2020 Mar 6;7:33. doi: 10.3389/fmolb.2020.00033. PMID: 32211418; PMCID: PMC7067892.
45. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009 Apr;22(2):240-73, Table of Contents. doi: 10.1128/CMR.00046-08. PMID: 19366914; PMCID: PMC2668232.
46. Gürtler C, Bowie AG. Innate immune detection of microbial nucleic acids. Trends Microbiol. 2013 Aug;21(8):413-20. doi: 10.1016/j.tim.2013.04.004. Epub 2013 May 29. PMID: 23726320; PMCID: PMC3735846.
47. Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol. 2020 Sep;20(9):537-551. doi: 10.1038/s41577-020-0288-3. Epub 2020 Mar 13. PMID: 32203325; PMCID: PMC7094958.
48. Li Z, Cai S, Sun Y, Li L, Ding S, Wang X. When STING Meets Viruses: Sensing, Trafficking and Response. Front Immunol. 2020 Sep 29;11:2064. doi: 10.3389/fimmu.2020.02064. PMID: 33133062; PMCID: PMC7550420.
49. Marinho FV, Benmerzoug S, Oliveira SC, Ryffel B, Quesniaux VFJ. The Emerging Roles of STING in Bacterial Infections. Trends Microbiol. 2017 Nov;25(11):906-918. doi: 10.1016/j.tim.2017.05.008. Epub 2017 Jun 15. PMID: 28625530; PMCID: PMC5650497.
50. Su T, Zhang Y, Valerie K, Wang XY, Lin S, Zhu G. STING activation in cancer immunotherapy. Theranostics. 2019 Oct 15;9(25):7759-7771. doi: 10.7150/thno.37574. PMID: 31695799; PMCID: PMC6831454.
51. Ahn J, Barber GN. STING signaling and host defense against microbial infection. Exp Mol Med. 2019 Dec 11;51(12):1-10. doi: 10.1038/s12276-019-0333-0. PMID: 31827069; PMCID: PMC6906460.
52. McKnight KL, Swanson KV, Austgen K, Richards C, Mitchell JK, McGivern DR, Fritch E, Johnson J, Remlinger K, Magid-Slav M, Kapustina M, You S, Lemon SM. Stimulator of interferon genes (STING) is an essential proviral host factor for human rhinovirus species A and C. Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27598-27607. doi: 10.1073/pnas.2014940117. Epub 2020 Oct 15. PMID: 33060297; PMCID: PMC7959528.
53. Savigny F, Schricke C, Lacerda-Queiroz N, Meda M, Nascimento M, Huot-Marchand S, Da Gama Monteiro F, Ryffel B, Gombault A, Le Bert M, Couillin I, Riteau N. Protective Role of the Nucleic Acid Sensor STING in Pulmonary Fibrosis. Front Immunol. 2021 Jan 8;11:588799. doi: 10.3389/fimmu.2020.588799. PMID: 33488589; PMCID: PMC7820752.
54. Welte T. Azithromycin: The Holy Grail to Prevent Exacerbations in Chronic Respiratory Disease? Am J Respir Crit Care Med. 2019 Aug 1;200(3):269-270. doi: 10.1164/rccm.201903-0706ED. PMID: 30986361; PMCID: PMC6680302.
55. DiNicolantonio JJ, Barroso-Aranda J, McCarty MF. Azithromycin and glucosamine may amplify the type 1 interferon response to RNA viruses in a complementary fashion. Immunol Lett. 2020 Dec;228:83-85. doi: 10.1016/j.imlet.2020.09.008. Epub 2020 Sep 28. PMID: 33002511; PMCID: PMC7521214.
56. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, Ionescu C, Berindan-Neagoe I. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel). 2019 Oct 22;11(10):1618. doi: 10.3390/cancers11101618. PMID: 31652660; PMCID: PMC6827047.
57. Kuriakose S, Onyilagha C, Singh R, Olayinka-Adefemi F, Jia P, Uzonna JE. TLR-2 and MyD88-Dependent Activation of MAPK and STAT Proteins Regulates Proinflammatory Cytokine Response and Immunity to Experimental Trypanosoma congolense  Infection. Front Immunol. 2019 Nov 22;10:2673. doi: 10.3389/fimmu.2019.02673. PMID: 31824484; PMCID: PMC6883972.
58. Sharp LL, Schwarz DA, Bott CM, Marshall CJ, Hedrick SM. The influence of the MAPK pathway on T cell lineage commitment. Immunity. 1997 Nov;7(5):609-18. doi: 10.1016/s1074-7613(00)80382-9. PMID: 9390685.
59. Rincón M, Flavell RA, Davis RJ. Signal transduction by MAP kinases in T lymphocytes. Oncogene. 2001 Apr 30;20(19):2490-7. doi: 10.1038/sj.onc.1204382. PMID: 11402343.
60. Krachler AM, Woolery AR, Orth K. Manipulation of kinase signaling by bacterial pathogens. J Cell Biol. 2011 Dec 26;195(7):1083-92. doi: 10.1083/jcb.201107132. Epub 2011 Nov 28. PMID: 22123833; PMCID: PMC3246894.
61. Kumar R, Khandelwal N, Thachamvally R, Tripathi BN, Barua S, Kashyap SK, Maherchandani S, Kumar N. Role of MAPK/MNK1 signaling in virus replication. Virus Res. 2018 Jul 15;253:48-61. doi: 10.1016/j.virusres.2018.05.028. Epub 2018 Jun 1. PMID: 29864503; PMCID: PMC7114592.
62. Zhanel GG, Dueck M, Hoban DJ, Vercaigne LM, Embil JM, Gin AS, Karlowsky JA. Review of macrolides and ketolides: focus on respiratory tract infections. Drugs. 2001;61(4):443-98. doi: 10.2165/00003495-200161040-00003. PMID: 11324679.
63. Kanoh S, Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev. 2010 Jul;23(3):590-615. doi: 10.1128/CMR.00078-09. PMID: 20610825; PMCID: PMC2901655.
64. Bosnar M, Čužić S, Bošnjak B, Nujić K, Ergović G, Marjanović N, Pašalić I, Hrvačić B, Polančec D, Glojnarić I, Eraković Haber V. Azithromycin inhibits macrophage interleukin-1β production through inhibition of activator protein-1 in lipopolysaccharide-induced murine pulmonary neutrophilia. Int Immunopharmacol. 2011 Apr;11(4):424-34. doi: 10.1016/j.intimp.2010.12.010. Epub 2010 Dec 30. PMID: 21195124.
65. Yang J. Mechanism of azithromycin in airway diseases. J Int Med Res. 2020 Jun;48(6):300060520932104. doi: 10.1177/0300060520932104. PMID: 32589092; PMCID: PMC7323306.
66. Mohanta TK, Arina P, Sharma N, Defilippi P. Role of azithromycin in antiviral treatment: enhancement of interferon-dependent antiviral pathways and mitigation of inflammation may rely on inhibition of the MAPK cascade? Am J Transl Res. 2020 Dec 15;12(12):7702-7708. PMID: 33437355; PMCID: PMC7791480.
67. Singh N, Narayan S. Nitazoxanide : A Broad Spectrum Antimicrobial. Med J Armed Forces India. 2011 Jan;67(1):67-8. doi: 10.1016/S0377-1237(11)80020-1. Epub 2011 Jul 21. PMID: 27365765; PMCID: PMC4920633.
68. Shou J, Kong X, Wang X, Tang Y, Wang C, Wang M, Zhang L, Liu Y, Fei C, Xue F, Li J, Zhang K. Tizoxanide Inhibits Inflammation in LPS-Activated RAW264.7 Macrophages via the Suppression of NF-κB and MAPK Activation. Inflammation. 2019 Aug;42(4):1336-1349. doi: 10.1007/s10753-019-00994-3. PMID: 30937840.
69. Cheng B, Morales LD, Zhang Y, Mito S, Tsin A. Niclosamide induces protein ubiquitination and inhibits multiple pro-survival signaling pathways in the human glioblastoma U-87 MG cell line. PLoS One. 2017 Sep 6;12(9):e0184324. doi: 10.1371/journal.pone.0184324. PMID: 28877265; PMCID: PMC5587337.
70. Jiang L, Wang P, Sun YJ, Wu YJ. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. J Exp Clin Cancer Res. 2019 Jun 18;38(1):265. doi: 10.1186/s13046-019-1251-7. PMID: 31215501; PMCID: PMC6580523.
71. Kindrachuk J, Ork B, Hart BJ, Mazur S, Holbrook MR, Frieman MB, Traynor D, Johnson RF, Dyall J, Kuhn JH, Olinger GG, Hensley LE, Jahrling PB. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob Agents Chemother. 2015 Feb;59(2):1088-99. doi: 10.1128/AAC.03659-14. Epub 2014 Dec 8. PMID: 25487801; PMCID: PMC4335870.
72. DuShane JK, Maginnis MS. Human DNA Virus Exploitation of the MAPK-ERK Cascade. Int J Mol Sci. 2019 Jul 12;20(14):3427. doi: 10.3390/ijms20143427. PMID: 31336840; PMCID: PMC6679023.
73. Ghasemnejad-Berenji M, Pashapour S. SARS-CoV-2 and the Possible Role of Raf/MEK/ERK Pathway in Viral Survival: Is This a Potential Therapeutic Strategy for COVID-19? Pharmacology. 2021;106(1-2):119-122. doi: 10.1159/000511280. Epub 2020 Oct 2. PMID: 33011728; PMCID: PMC7573895.
74. Levine BC. Autophagy Modulators as Novel Broad-Spectrum Anti-Infective Agents. https://grantome.com/grant/NIH/U19-AI142784-01.
75. Münz C. Beclin-1 targeting for viral immune escape. Viruses. 2011 Jul;3(7):1166-78. doi: 10.3390/v3071166. Epub 2011 Jul 12. PMID: 21994775; PMCID: PMC3185790.
76. Sorouri M, Chang T, Jesudhasan P, Pinkham C, Elde NC, Hancks DC. Signatures of host-pathogen evolutionary conflict reveal MISTR-A conserved MItochondrial STress Response network. PLoS Biol. 2020 Dec 28;18(12):e3001045. doi: 10.1371/journal.pbio.3001045. PMID: 33370271; PMCID: PMC7793259.
77. Quezada H, Martínez-Vázquez M, López-Jácome E, González-Pedrajo B, Andrade Á, Fernández-Presas AM, Tovar-García A, García-Contreras R. Repurposed anti-cancer drugs: the future for anti-infective therapy? Expert Rev Anti Infect Ther. 2020 Jul;18(7):609-612. doi: 10.1080/14787210.2020.1752665. Epub 2020 Apr 15. PMID: 32290720.
78. Kaufmann SH. Stressproteine: Virulenzfaktoren intrazellulärer Krankheitserreger? [Stress proteins: virulence factors of intracellular disease agents?]. Immun Infekt. 1989 Aug;17(4):124-8. German. PMID: 2673993.
79. Polla BS. Heat shock proteins in host-parasite interactions. Immunol Today. 1991 Mar;12(3):A38-41. doi: 10.1016/S0167-5699(05)80011-8. PMID: 2069677.
80. Rochani AK, Singh M, Tatu U. Heat shock protein 90 inhibitors as broad spectrum anti-infectives. Curr Pharm Des. 2013;19(3):377-86. doi: 10.2174/138161213804143608. PMID: 22920905.
81. Li Y, Zhang T, Schwartz SJ, Sun D. New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist Updat. 2009 Feb-Apr;12(1-2):17-27. doi: 10.1016/j.drup.2008.12.002. PMID: 19179103; PMCID: PMC2692088.
82. Ramos CHI, Ayinde KS. Are Hsp90 inhibitors good candidates against Covid-19? Curr Protein Pept Sci. 2020 Nov 11. doi: 10.2174/1389203721666201111160925. Epub ahead of print. PMID: 33176644.
83. Montoya MC, Krysan DJ. Repurposing Estrogen Receptor Antagonists for the Treatment of Infectious Disease. mBio. 2018 Dec 18;9(6):e02272-18. doi: 10.1128/mBio.02272-18. PMID: 30563895; PMCID: PMC6299222.
84. Dolan K, Montgomery S, Buchheit B, Didone L, Wellington M, Krysan DJ. Antifungal activity of tamoxifen: in vitro and in vivo activities and mechanistic characterization. Antimicrob Agents Chemother. 2009 Aug;53(8):3337-46. doi: 10.1128/AAC.01564-08. Epub 2009 Jun 1. PMID: 19487443; PMCID: PMC2715577.
85. Beggs WH. Anti-Candida activity of the anti-cancer drug tamoxifen. Res Commun Chem Pathol Pharmacol. 1993 Apr;80(1):125-8. PMID: 8488339.
86. Laurence J, Cooke H, Sikder SK. Effect of tamoxifen on regulation of viral replication and human immunodeficiency virus (HIV) long terminal repeat-directed transcription in cells chronically infected with HIV-1. Blood. 1990 Feb 1;75(3):696-703. PMID: 2297571.
87. Weinstock A, Gallego-Delgado J, Gomes C, Sherman J, Nikain C, Gonzalez S, Fisher E, Rodriguez A. Tamoxifen activity against Plasmodium in vitro and in mice. Malar J. 2019 Nov 27;18(1):378. doi: 10.1186/s12936-019-3012-7. PMID: 31775753; PMCID: PMC6882195.
88. Miguel DC, Yokoyama-Yasunaka JK, Uliana SR. Tamoxifen is effective in the treatment of Leishmania amazonensis infections in mice. PLoS Negl Trop Dis. 2008 Jun 11;2(6):e249. doi: 10.1371/journal.pntd.0000249. PMID: 18545685; PMCID: PMC2398787.
89. Jordan VC. New insights into the metabolism of tamoxifen and its role in the treatment and prevention of breast cancer. Steroids. 2007 Nov;72(13):829-42. doi: 10.1016/j.steroids.2007.07.009. Epub 2007 Jul 27. PMID: 17765940; PMCID: PMC2740485.
90. Butts A, Martin JA, DiDone L, Bradley EK, Mutz M, Krysan DJ. Structure-activity relationships for the antifungal activity of selective estrogen receptor antagonists related to tamoxifen. PLoS One. 2015 May 27;10(5):e0125927. doi: 10.1371/journal.pone.0125927. PMID: 26016941; PMCID: PMC4446328.
91. Wilson DW, Goodman CD, Sleebs BE, Weiss GE, de Jong NW, Angrisano F, Langer C, Baum J, Crabb BS, Gilson PR, McFadden GI, Beeson JG. Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum. BMC Biol. 2015 Jul 18;13:52. doi: 10.1186/s12915-015-0162-0. PMID: 26187647; PMCID: PMC4506589.
92. Kadappu KK, Nagaraja MV, Rao PV, Shastry BA. Azithromycin as treatment for cryptosporidiosis in human immunodeficiency virus disease. J Postgrad Med. 2002 Jul-Sep;48(3):179-81. PMID: 12432190.
93. Burns AL, Sleebs BE, Siddiqui G, De Paoli AE, Anderson D, Liffner B, Harvey R, Beeson JG, Creek DJ, Goodman CD, McFadden GI, Wilson DW. Retargeting azithromycin analogues to have dual-modality antimalarial activity. BMC Biol. 2020 Sep 29;18(1):133. doi: 10.1186/s12915-020-00859-4. PMID: 32993629; PMCID: PMC7526119.
94. Hoffman PS, Sisson G, Croxen MA, Welch K, Harman WD, Cremades N, Morash MG. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni. Antimicrob Agents Chemother. 2007 Mar;51(3):868-76. doi: 10.1128/AAC.01159-06. Epub 2006 Dec 11. PMID: 17158936; PMCID: PMC1803158.
95. Shakya A, Bhat HR, Ghosh SK. Update on Nitazoxanide: A Multifunctional Chemotherapeutic Agent. Curr Drug Discov Technol. 2018;15(3):201-213. doi: 10.2174/1570163814666170727130003. PMID: 28748751.
96. Hickson SE, Margineantu D, Hockenbery DM, Simon JA, Geballe AP. Inhibition of vaccinia virus replication by nitazoxanide. Virology. 2018 May;518:398-405. doi: 10.1016/j.virol.2018.03.023. Epub 2018 Apr 3. PMID: 29625403; PMCID: PMC5929478.
97. Petersen T, Lee YJ, Osinusi A, Amorosa VK, Wang C, Kang M, Matining R, Zhang X, Dou D, Umbleja T, Kottilil S, Peters MG. Interferon Stimulated Gene Expression in HIV/HCV Coinfected Patients Treated with Nitazoxanide/Peginterferon-Alfa-2a and Ribavirin. AIDS Res Hum Retroviruses. 2016 Jul;32(7):660-7. doi: 10.1089/aid.2015.0236. Epub 2016 Mar 14. PMID: 26974581; PMCID: PMC4931749.
98. Jasenosky LD, Cadena C, Mire CE, Borisevich V, Haridas V, Ranjbar S, Nambu A, Bavari S, Soloveva V, Sadukhan S, Cassell GH, Geisbert TW, Hur S, Goldfeld AE. The FDA-Approved Oral Drug Nitazoxanide Amplifies Host Antiviral Responses and Inhibits Ebola Virus. iScience. 2019 Sep 27;19:1279-1290. doi: 10.1016/j.isci.2019.07.003. Epub 2019 Aug 8. PMID: 31402258; PMCID: PMC6831822.
99. Müller J, Wastling J, Sanderson S, Müller N, Hemphill A. A novel Giardia lamblia nitroreductase, GlNR1, interacts with nitazoxanide and other thiazolides. Antimicrob Agents Chemother. 2007 Jun;51(6):1979-86. doi: 10.1128/AAC.01548-06. Epub 2007 Apr 16. PMID: 17438059; PMCID: PMC1891416.
100. Amsden GW. Anti-inflammatory effects of macrolides–an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J Antimicrob Chemother. 2005 Jan;55(1):10-21. doi: 10.1093/jac/dkh519. Epub 2004 Dec 8. PMID: 15590715.
101. Banjanac M, Munić Kos V, Nujić K, Vrančić M, Belamarić D, Crnković S, Hlevnjak M, Eraković Haber V. Anti-inflammatory mechanism of action of azithromycin in LPS-stimulated J774A.1 cells. Pharmacol Res. 2012 Oct;66(4):357-62. doi: 10.1016/j.phrs.2012.06.011. Epub 2012 Jul 3. PMID: 22766077.
102. Zimmermann P, Ziesenitz VC, Curtis N, Ritz N. The Immunomodulatory Effects of Macrolides-A Systematic Review of the Underlying Mechanisms. Front Immunol. 2018 Mar 13;9:302. doi: 10.3389/fimmu.2018.00302. PMID: 29593707; PMCID: PMC5859047.
103. Li H, Zhou Y, Fan F, Zhang Y, Li X, Yu H, Zhao L, Yi X, He G, Fujita J, Jiang D. Effect of azithromycin on patients with diffuse panbronchiolitis: retrospective study of 51 cases. Intern Med. 2011;50(16):1663-9. doi: 10.2169/internalmedicine.50.4727. Epub 2011 Aug 15. PMID: 21841323.
104. Oliver ME, Hinks TSC. Azithromycin in viral infections. Rev Med Virol. 2021 Mar;31(2):e2163. doi: 10.1002/rmv.2163. Epub 2020 Sep 23. PMID: 32969125; PMCID: PMC7536932.
105. Firth A, Prathapan P. Broad-spectrum therapeutics: A new antimicrobial class. Current Research in Pharmacology and Drug Discovery. 2021;2:100011. doi: 10.1016/j.crphar.2020.100011. Epub 2020 Dec 11. PMCID: PMC8035643.
106. Oprea TI, Overington JP. Computational and Practical Aspects of Drug Repositioning. Assay Drug Dev Technol. 2015 Jul-Aug;13(6):299-306. doi: 10.1089/adt.2015.29011.tiodrrr. PMID: 26241209; PMCID: PMC4533090.
107. Gatti M, De Ponti F. Drug Repurposing in the COVID-19 Era: Insights from Case Studies Showing Pharmaceutical Peculiarities. Pharmaceutics. 2021 Feb 25;13(3):302. doi: 10.3390/pharmaceutics13030302. PMID: 33668969; PMCID: PMC7996547.
108. Kshirsagar NA, Gogtay NJ, Moran D, Utz G, Sethia A, Sarkar S, Vandenbroucke P. Treatment of adults with acute uncomplicated malaria with azithromycin and chloroquine in India, Colombia, and Suriname. Res Rep Trop Med. 2017 Oct 13;8:85-104. doi: 10.2147/RRTM.S129741. PMID: 30050349; PMCID: PMC6038897.
109. Doan T, Hinterwirth A, Arzika AM, et al. Reduction of coronavirus burden with mass azithromycin distribution. Clin Infect Dis . 2020;ciaa606. doi:10.1093/cid/ciaa606. Online ahead of print.
110. Kawamura K, Ichikado K, Takaki M, Eguchi Y, Anan K, Suga M. Adjunctive therapy with azithromycin for moderate and severe acute respiratory distress syndrome: a retrospective, propensity score-matching analysis of prospectively collected data at a single center. Int J Antimicrob Agents . 2018;51 (6):918-924.
111. Lee N, Wong CK, Chan MCW, et al. Anti-inflammatory effects of adjunctive macrolide treatment in adults hospitalized with influenza: a randomized controlled trial. Antiviral Res . 2017;144 :48-56.
112. Ashraf, S., Chaudhry, U., Raza, A. et al.  In vitro activity of ivermectin against Staphylococcus aureus  clinical isolates. Antimicrob Resist Infect Control  7,  27 (2018). https://doi.org/10.1186/s13756-018-0314-4
113. Rajter JC, Sherman MS, Fatteh N, Vogel F, Sacks J, Rajter JJ. Use of Ivermectin Is Associated With Lower Mortality in Hospitalized Patients With Coronavirus Disease 2019: The Ivermectin in COVID Nineteen Study. Chest. 2021 Jan;159(1):85-92. doi: 10.1016/j.chest.2020.10.009. Epub 2020 Oct 13. PMID: 33065103; PMCID: PMC7550891.
114. Lv C, Liu W, Wang B, Dang R, Qiu L, Ren J, Yan C, Yang Z, Wang X. Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo. Antiviral Res. 2018 Nov;159:55-62. doi: 10.1016/j.antiviral.2018.09.010. Epub 2018 Sep 26. PMID: 30266338.
115. Rajamuthiah R, Fuchs BB, Conery AL, Kim W, Jayamani E, Kwon B, Ausubel FM, Mylonakis E. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus. PLoS One. 2015 Apr 21;10(4):e0124595. doi: 10.1371/journal.pone.0124595. PMID: 25897961; PMCID: PMC4405337.
116. Imperi F, Massai F, Ramachandran Pillai C, Longo F, Zennaro E, Rampioni G, Visca P, Leoni L. New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother. 2013 Feb;57(2):996-1005. doi: 10.1128/AAC.01952-12. Epub 2012 Dec 17. PMID: 23254430; PMCID: PMC3553739.
117. Tam J, Hamza T, Ma B, Chen K, Beilhartz GL, Ravel J, Feng H, Melnyk RA. Host-targeted niclosamide inhibits C. difficile virulence and prevents disease in mice without disrupting the gut microbiota. Nat Commun. 2018 Dec 7;9(1):5233. doi: 10.1038/s41467-018-07705-w. PMID: 30531960; PMCID: PMC6286312.
118. Kao JC, HuangFu WC, Tsai TT, Ho MR, Jhan MK, Shen TJ, Tseng PC, Wang YT, Lin CF. The antiparasitic drug niclosamide inhibits dengue virus infection by interfering with endosomal acidification independent of mTOR. PLoS Negl Trop Dis. 2018 Aug 20;12(8):e0006715. doi: 10.1371/journal.pntd.0006715. PMID: 30125275; PMCID: PMC6117097.
119. Musher DM, Logan N, Hamill RJ, Dupont HL, Lentnek A, Gupta A, Rossignol JF. Nitazoxanide for the treatment of Clostridium difficile colitis. Clin Infect Dis. 2006 Aug 15;43(4):421-7. doi: 10.1086/506351. Epub 2006 Jul 11. PMID: 16838229.
120. Musher DM, Logan N, Bressler AM, Johnson DP, Rossignol JF. Nitazoxanide versus vancomycin in Clostridium difficile infection: a randomized, double-blind study. Clin Infect Dis. 2009 Feb 15;48(4):e41-6. doi: 10.1086/596552. PMID: 19133801.
121. Haffizulla J, Hartman A, Hoppers M, Resnick H, Samudrala S, Ginocchio C, Bardin M, Rossignol JF; US Nitazoxanide Influenza Clinical Study Group. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis. 2014 Jul;14(7):609-18. doi: 10.1016/S1473-3099(14)70717-0. Epub 2014 May 19. PMID: 24852376; PMCID: PMC7164783.
122. Firth A, Prathapan P. Azithromycin: The First Broad-spectrum Therapeutic. Eur J Med Chem. 2020 Dec 1;207:112739. doi: 10.1016/j.ejmech.2020.112739. Epub 2020 Aug 19. PMID: 32871342; PMCID: PMC7434625.
123. Maynard RM, Tetley TD. Bioterrorism: the lung under attack. Thorax 2004;59: 188-189.
124. Waterer GW, Robertson H. Bioterrorism for the respiratory physician. Respirology. 2009 Jan;14(1):5-11. doi: 10.1111/j.1440-1843.2008.01446.x. PMID: 19144044.
125. Yan S, Ci X, Chen N, Chen C, Li X, Chu X, Li J, Deng X. Anti-inflammatory effects of ivermectin in mouse model of allergic asthma. Inflamm Res. 2011 Jun;60(6):589-96. doi: 10.1007/s00011-011-0307-8. Epub 2011 Jan 29. PMID: 21279416.
126. Cabrita I, Benedetto R, Schreiber R, Kunzelmann K. Niclosamide repurposed for the treatment of inflammatory airway disease. JCI Insight. 2019 Aug 8;4(15):e128414. doi: 10.1172/jci.insight.128414. PMID: 31391337; PMCID: PMC6693830.
127. Danielsson J, Perez-Zoghbi J, Bernstein K, Barajas MB, Zhang Y, Kumar S, Sharma PK, Gallos G, Emala CW. Antagonists of the TMEM16A calcium-activated chloride channel modulate airway smooth muscle tone and intracellular calcium. Anesthesiology. 2015 Sep;123(3):569-81. doi: 10.1097/ALN.0000000000000769. PMID: 26181339; PMCID: PMC4543527.
128. Miner K, Labitzke K, Liu B, Wang P, Henckels K, Gaida K, Elliott R, Chen JJ, Liu L, Leith A, Trueblood E, Hensley K, Xia XZ, Homann O, Bennett B, Fiorino M, Whoriskey J, Yu G, Escobar S, Wong M, Born TL, Budelsky A, Comeau M, Smith D, Phillips J, Johnston JA, McGivern JG, Weikl K, Powers D, Kunzelmann K, Mohn D, Hochheimer A, Sullivan JK. Drug Repurposing: The Anthelmintics Niclosamide and Nitazoxanide Are Potent TMEM16A Antagonists That Fully Bronchodilate Airways. Front Pharmacol. 2019 Feb 14;10:51. doi: 10.3389/fphar.2019.00051. PMID: 30837866; PMCID: PMC6382696.
129. Hayden EC. Biodefence since 9/11: The price of protection. Nature. 2011 Sep 7;477(7363):150-2. doi: 10.1038/477150a. PMID: 21900990.
130. Hayden EC. Pentagon rethinks bioterror effort. Nature. 2011 Sep 21;477(7365):380-1. doi: 10.1038/477380a. PMID: 21938042.
131. Fauci AS. Bioterrorism: defining a research agenda. Food Drug Law J. 2002;57(3):413-21. PMID: 12703508.