Kieran Murphy

and 43 more

Climate change could irreversibly modify Southern Ocean ecosystems. Marine ecosystem model (MEM) ensembles can assist policy making by projecting future changes and allowing the evaluation and assessment of alternative management approaches. However, projected future changes in total consumer biomass from the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) global MEM ensemble highlight an uncertain future for the Southern Ocean, indicating the need for a region-specific ensemble. A large source of model uncertainty originates from the Earth system models (ESMs) used to force FishMIP models, particularly future changes to lower trophic level biomass and sea ice coverage. To build confidence in regional MEMs as ecosystem-based management tools in a changing climate that can better account for uncertainty, we propose the development of a Southern Ocean Marine Ecosystem Model Ensemble (SOMEME) contributing to the FishMIP 2.0 regional model intercomparison initiative. One of the challenges hampering progress of regional MEM ensembles is achieving the balance of global standardised inputs with regional relevance. As a first step, we design a SOMEME simulation protocol, that builds on and extends the existing FishMIP framework, in stages that include: detailed skill assessment of climate forcing variables for Southern Ocean regions, extension of fishing forcing data to include whaling, and new simulations that assess ecological links to sea-ice processes in an ensemble of candidate regional MEMs. These extensions will help advance assessments of urgently needed climate change impacts on Southern Ocean ecosystems.

Samik Datta

and 2 more

Climate change is already impacting ecosystem composition and species distributions. Here we study two different, but equally valuable New Zealand fisheries (Tasman Bay and Golden Bay, and Chatham Rise), and the potential impacts of climate change on ecosystem structure. We use mizer, a size-based multispecies modelling package, to simulate interacting fish species in each ecosystem. Utilising therMizer, an extension of mizer which incorporates temperature effects on species' metabolic rate and aerobic scope, we implement historical climate data from the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP). This enables us to recreate the historical time period of 1961–2010, deriving reasonable steady state biomasses closely matching past observations. We then carry out a controlled warming simulation experiment, allowing for temperature to remain steady or to increase for both ecosystems, both with and without fishing pressure. The shallower ecosystem of Tasman and Golden Bay has more thermally-tolerant species and experiences an overall increase in community biomass under warming, whilst the deeper ecosystem of Chatham Rise suffers an overall decline. In addition, fishing has a stronger negative impact on the Chatham Rise community. Smaller bodied animals also tend to be more resilient, both to warming and fishing impacts. Despite differences in community responses, the majority of important fisheries suffer reduced yields under warming in both ecosystems. Issues raised during the incorporation of temperature effects include species’ thermal tolerances and model calibration to data. This study facilitates ecosystem intercomparisons under climate change and offers insight into drivers of ecosystem responses.

Kelly Ortega-Cisneros

and 39 more

As the urgency to evaluate the impacts of climate change on marine ecosystems increases, there is a need to develop robust projections and improve the uptake of ecosystem model outputs in policy and planning. Standardising input and output data is a crucial step in evaluating and communicating results, but can be challenging when using models with diverse structures, assumptions, and outputs that address region-specific issues. We developed an implementation framework and workflow to standardise the climate and fishing forcings used by regional models contributing to the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) and to facilitate comparative analyses across models and a wide range of regions, in line with the FishMIP 3a protocol. We applied our workflow to three case study areas-models: the Baltic Sea Mizer, Hawai’i-based Longline fisheries therMizer, and the southern Benguela ecosystem Atlantis marine ecosystem models. We then selected the most challenging steps of the workflow and illustrated their implementation in different model types and regions. Our workflow is adaptable across a wide range of regional models, from non-spatially explicit to spatially explicit and fully-depth resolved models and models that include one or several fishing fleets. This workflow will facilitate the development of regional marine ecosystem model ensembles and enhance future research on marine ecosystem model development and applications, model evaluation and benchmarking, and global-to-regional model comparisons.

Julia L. Blanchard

and 42 more

There is an urgent need for models that can robustly detect past and project future ecosystem changes and risks to the services that they provide to people. The Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) was established to develop model ensembles for projecting long-term impacts of climate change on fisheries and marine ecosystems while informing policy at spatio-temporal scales relevant to the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) framework. While contributing FishMIP models have improved over time, large uncertainties in projections remain, particularly in coastal and shelf seas where most of the world’s fisheries occur. Furthermore, previous FishMIP climate impact projections have mostly ignored fishing activity due to a lack of standardized historical and scenario-based human activity forcing and uneven capabilities to dynamically model fisheries across the FishMIP community. This, in addition to underrepresentation of coastal processes, has limited the ability to evaluate the FishMIP ensemble’s ability to adequately capture past states - a crucial step for building confidence in future projections. To address these issues, we have developed two parallel simulation experiments (FishMIP 2.0) on: 1) model evaluation and detection of past changes and 2) future scenarios and projections. Key advances include historical climate forcing, that captures oceanographic features not previously resolved, and standardized fishing forcing to systematically test fishing effects across models. FishMIP 2.0 is a key step towards a detection and attribution framework for marine ecosystem change at regional and global scales, and towards enhanced policy relevance through increased confidence in future ensemble projections.