Albert R Cerrone

and 6 more

Global and coastal ocean surface water elevation prediction skill has advanced considerably with improved algorithms, more refined discretizations and high-performance parallel computing. Model skill is tied to mesh resolution, the accuracy of specified bathymetry/topography, dissipation parameterizations, air-sea drag formulations, and the fidelity of forcing functions. Wind forcing skill can be particularly prone to errors, especially at the land-ocean interface. The resulting biases and errors can be addressed holistically with a machine-learning (ML) approach. Herein, we weakly couple the Temporal Fusion Transformer to the National Oceanic and Atmospheric Administration’s (NOAA) Storm and Tide Operational Forecast System (STOFS 2D Global) to improve its forecasting skill throughout a 7-day horizon. We demonstrate the transformer’s ability to enrich the hydrodynamic model’s output at 228 observed water level stations operated by NOAA’s National Ocean Service. We conclude that the transformer is a rapid way to correct STOFS 2D Global forecasted water levels provided that sufficient covariates are supplied. For stations in wind-dominant areas, we demonstrate that including past and future wind-speed covariates make for a more skillful forecast. In general, while the transformer renders consistent corrections at both tidally and wind-dominant stations, it does so most aggressively at tidally-dominant stations. We show notable improvements in Alaska and the Atlantic and Pacific seaboards of the United States. We evaluate several transformers instantiated with different hyperparameters, covariates, and training data to provide guidance on how to enhance performance.
This study showcases a global, heterogeneously coupled total water level system wherein salinity and temperature outputs from a coarse-resolution ($\sim$12 km) ocean general circulation model are used to calculate density-driven terms within a global, high-resolution ($\sim$2.5 km) depth-averaged total water level model. We demonstrate that the inclusion of baroclinic forcing in the barotropic model requires careful treatment of the internal wave drag term in order to maintain the fidelity of tidal results from the purely barotropic model. By accurately capturing the internal tide dissipation within the coupled system, the resulting heterogeneously coupled model has deep-ocean tidal errors of 2.27 cm, outperforming global, depth-resolving ocean models in representing global tides. Moreover, global median root mean square errors as compared to observations of total water levels, 30-day sea levels, and non-tidal residuals improve by 1.86, 2.55, and 0.36 cm respectively. The drastic improvement in model performance highlights the importance of including density-driven effects within global hydrodynamic models and will help to improve the results of both hindcasts and forecasts in modeling extreme and nuisance flooding. With only an 11\% increase in computational time as compared to the fully barotropic total water level model, this efficient approach paves the way for high resolution coastal water level and flood models to be used directly alongside climate models, improving operational forecasting of total water levels.