Sree Krishna Das

and 4 more

The increasing popularity of Internet of Things (IoT)-based wireless services highlights the urgent need to upgrade fifth-generation (5G) wireless networks and beyond to accommodate these services. Although 5G networks currently support a variety of wireless services, they might not fully meet the high computational and communication resource demands of new applications. Issues such as latency, energy consumption, network congestion, signaling overhead, and potential privacy breaches contribute to this limitation. Machine learning (ML) frequently offers solutions to these problems. As a result, sixth-generation (6G) wireless technologies are being developed to address the deficiencies of 5G networks. Traditional ML methods are generally centralized. However, the vast amount of wireless data generated, growing privacy concerns, and the increasing computational capabilities of edge devices have led to a shift towards optimizing system performance in a distributed manner. This paper provides a thorough analysis of distributed learning techniques, including federated learning (FL), multi-agent reinforcement learning (MARL), and the multi-agent federated reinforcement learning (FRL) framework. It explains how these techniques can be effectively and efficiently implemented in wireless networks. These methods offer potential solutions to the challenges faced by current wireless networks, promising to create a more robust, capable, and versatile network that meets the growing demands of IoT and other emerging applications. Implementing the FRL framework can significantly improve the learning efficiency of wireless networks. To tackle the challenges posed by rapidly changing radio channels, we propose a robust FRL framework that enables local users to perform distributed power allocation, bandwidth allocation, interference mitigation, and communication mode selection. Finally, the paper outlines several future research directions aimed at effectively integrating the FRL framework into wireless networks.

Sree Krishna Das

and 6 more

Sixth generation (6G) internet of things (IoT) networks will modernize the applications and satisfy user demands through implementing smart and automated systems. Intelligence-based infrastructure, also called reconfigurable intelligent surfaces (RISs), have been introduced as a potential technology striving to improve system performance in terms of data rate, latency, reliability, availability, and connectivity. A huge amount of cost-effective passive components are included in RISs to interact with the impinging electromagnetic waves in a smart way. However, there are still some challenges in RIS system, such as finding the optimal configurations for a large number of RIS components. In this paper, we first provide a complete outline of the advancement of RISs along with machine learning (ML) algorithms and overview the working regulations as well as spectrum allocation in intelligent IoT systems. Also, we discuss the integration of different ML techniques in the context of RIS, including deep reinforcement learning (DRL), federated learning (FL), and FL-deep deterministic policy gradient (FL-DDPG) techniques which are utilized to design the radio propagation atmosphere without using pilot signals or channel state information (CSI). Additionally, in dynamic intelligent IoT networks, the application of existing integrated ML solutions to technical issues like user movement and random variations of wireless channels are surveyed. Finally, we present the main challenges and future directions in integrating RISs and other prominent methods to be applied in upcoming IoT networks.