References
[1] G. Hughes, M.A. Webber, Novel approaches to the treatment of
bacterial biofilm infections, British Journal of Pharmacology 174(14)
(2017) 2237-2246.
[2] H.K. Kang, H.Y. Kim, J.D. Cha, Synergistic effects between
silibinin and antibiotics on methicillin‐resistant Staphylococcus
aureus isolated from clinical specimens, Biotechnology Journal 6(11)
(2011) 1397-1408.
[3] R.A. Aleinein, H. Schäfer, M. Wink, Secretory ranalexin produced
in recombinant Pichia pastoris exhibits additive or synergistic
bactericidal activity when used in combination with polymyxin B or
linezolid against multi‐drug resistant bacteria, Biotechnology Journal
9(1) (2013) 110-119.
[4] C. Ferriol-González, P. Domingo-Calap, Phage Therapy in
Livestock and Companion Animals, Antibiotics 10(5) (2021) 559.
[5] Y. Sang, W. Li, H. Liu, L. Zhang, H. Wang, Z. Liu, J. Ren, X.
Qu, Construction of Nanozyme‐Hydrogel for Enhanced Capture and
Elimination of Bacteria, Advanced Functional Materials 29(22) (2019)
1900518.
[6] Y. Li, W. Ma, J. Sun, M. Lin, Y. Niu, X. Yang, Y. Xu,
Electrochemical generation of Fe3C/N-doped graphitic
carbon nanozyme for efficient wound healing in vivo, Carbon 159 (2020)
149-160.
[7] Z. Wang, K. Dong, Z. Liu, Y. Zhang, Z. Chen, H. Sun, J. Ren, X.
Qu, Activation of biologically relevant levels of reactive oxygen
species by Au/g-C3N4 hybrid nanozyme for
bacteria killing and wound disinfection, Biomaterials 113 (2017)
145-157.
[8] S. Lethongkam, J. Glaser, A.V. Ammanath, S.P. Voravuthikunchai,
F. Götz, In vitro and in vivo comparative analysis of antibacterial
activity of green‐synthesized silver nanoparticles, Biotechnology
Journal (2023) .
[9] S. Paosen, S. Bilhman, S. Wunnoo, S. Ramanathan, A.W. Septama,
S. Lethongkam, S.P. Voravuthikunchai, Control of biomaterial‐associated
infections through biofabrication of gold nanoparticles using Musa
sapientum extract, Biotechnology Journal 18(10) (2023).
[10] A.M. Khalil, A.H. Hashem, S. Kamel, Bimetallic hydrogels based
on chitosan and carrageenan as promising materials for biological
applications, Biotechnology Journal 18(10) (2023).
[11] Y. Qin, Y. Liu, L. Yuan, H. Yong, J. Liu, Preparation and
characterization of antioxidant, antimicrobial and pH-sensitive films
based on chitosan, silver nanoparticles and purple corn extract, Food
Hydrocolloids 96 (2019) 102-111.
[12] S. Paosen, S. Lethongkam, S. Wunnoo, N. Lehman, E.
Kalkornsurapranee, A.W. Septama, S.P. Voravuthikunchai, Prevention of
nosocomial transmission and biofilm formation on novel biocompatible
antimicrobial gloves impregnated with biosynthesized silver
nanoparticles synthesized using Eucalyptus citriodora leaf
extract, Biotechnology Journal 16(9) (2021).
[13] P. Nie, Y. Zhao, H. Xu, Synthesis, applications, toxicity and
toxicity mechanisms of silver nanoparticles: A review, Ecotoxicol
Environ Saf 253 (2023) 114636.
[14] K. Vijayaraghavan, S.P.K. Nalini, Biotemplates in the green
synthesis of silver nanoparticles, Biotechnology Journal 5(10) (2010)
1098-1110.
[15] G. Gahlawat, A.R. Choudhury, A review on the biosynthesis of
metal and metal salt nanoparticles by microbes, RSC Advances 9(23)
(2019) 12944-12967.
[16] J. Xi, G. Wei, Q. Wu, Z. Xu, Y. Liu, J. Han, L. Fan, L. Gao,
Light-enhanced sponge-like carbon nanozyme used for synergetic
antibacterial therapy, Biomaterials Science 7(10) (2019) 4131-4141.
[17] L. Gao, K.M. Giglio, J.L. Nelson, H. Sondermann, A.J. Travis,
Ferromagnetic nanoparticles with peroxidase-like activity enhance the
cleavage of biological macromolecules for biofilm elimination, Nanoscale
6(5) (2014) 2588-2593.
[18] H. Chen, X. Zhao, B. Cui, H. Cui, M. Zhao, J. Shi, J. Li, Z.
Zhou, Peroxidase-like MoS2/Ag nanosheets with
synergistically enhanced NIR-responsive antibacterial activities,
Frontiers in Chemistry 11 (2023).
[19] A. Shafiq, A.R. Deshmukh, K. AbouAitah, B.-S. Kim, Green
Synthesis of Controlled Shape Silver Nanostructures and Their
Peroxidase, Catalytic Degradation, and Antibacterial Activity, Journal
of Functional Biomaterials 14(6) (2023) 325.
[20] V.-D. Doan, V.-C. Nguyen, T.-L.-H. Nguyen, A.-T. Nguyen, T.-D.
Nguyen, Highly sensitive and low-cost colourimetric detection of glucose
and ascorbic acid based on silver nanozyme biosynthesized byGleditsia australis fruit, Spectrochimica Acta Part A: Molecular
and Biomolecular Spectroscopy 268 (2022) 120709.
[21] Y. Wu, J.-Y. Chen, W.-M. He, Surface-enhanced Raman
spectroscopy biosensor based on silver nanoparticles@metal-organic
frameworks with peroxidase-mimicking activities for ultrasensitive
monitoring of blood cholesterol, Sensors and Actuators B: Chemical 365
(2022) 154125.
[22] X. Tan, S. Liu, X. Hu, R. Zhang, X. Su, R. Qian, Y. Mai, Z. Xu,
W. Jing, W. Tian, L. Xie, Near-Infrared-Enhanced Dual Enzyme-Mimicking
Ag-TiO(2-x)@Alginate Microspheres with Antibactericidal
and Oxygeneration Abilities to Treat Periodontitis, ACS Appl Mater
Interfaces 15(1) (2023) 391-406.
[23] A. Mohammadzadeh, P. Pashazadeh-Panahi, M. Hasanzadeh, Visual
monitoring and optical recognition of digoxin by functionalized AuNPs
and triangular AgNPs as efficient optical nano-probes, J Mol Recognit
34(10) (2021) e2917.
[24] A. Xiao, B. Wang, L. Zhu, L. Jiang, Production of extracellular
silver nanoparticles by radiation-resistant Deinococcus
wulumuqiensis R12 and its mechanism perspective, Process Biochemistry
100 (2021) 217-223.
[25] X. Xu, L. Jiang, Z. Zhang, Y. Shi, H. Huang, Genome Sequence of
a Gamma- and UV-Ray-Resistant Strain, Deinococcus wulumuqiensisR12, Genome Announc 1(3) (2013) e00206-13.
[26] Y. Chen, Z. Yang, X. Zhou, M. Jin, Z. Dai, D. Ming, Z. Zhang,
L. Zhu, L. Jiang, Sequence, structure, and function of the Dps
DNA-binding protein from Deinococcus wulumuqiensis R12, Microb
Cell Fact 21(1) (2022) 132.
[27] S. Sun, B. Shen, L. Jiang, L. Zhu, Potential for efficient
microbial remediation of Cr(VI) in wastewater using Deinococcus
wulumuqiensis R12, Journal of Applied Microbiology 134(6) (2023).
[28] Y. Wu, J.-M. Zhou, Y.-S. Jiang, W. Li, M.-J. He, Y. Xiao, J.-Y.
Chen, Silver nanoparticles@metal-organic framework as peroxidase mimics
for colorimetric determination of hydrogen peroxide and blood glucose,
Chinese Journal of Analytical Chemistry 50(12) (2022).
[29] E. Jamróz, P. Kopel, L. Juszczak, A. Kawecka, Z. Bytesnikova,
V. Milosavljević, M. Kucharek, M. Makarewicz, V. Adam, Development and
characterisation of furcellaran-gelatin films containing SeNPs and AgNPs
that have antimicrobial activity, Food Hydrocolloids 83 (2018) 9-16.
[30] D. Feng, R. Zhang, M. Zhang, A. Fang, F. Shi, Synthesis of
Eco-Friendly Silver Nanoparticles Using Glycyrrhizin and Evaluation of
Their Antibacterial Ability, Nanomaterials 12(15) (2022) 2636.
[31] S.-P. Deng, J.-Y. Zhang, Z.-W. Ma, S. Wen, S. Tan, J.-Y. Cai,
Facile Synthesis of Long-Term Stable Silver Nanoparticles by Kaempferol
and Their Enhanced Antibacterial Activity Against Escherichia
coli and Staphylococcus aureus , Journal of Inorganic and
Organometallic Polymers and Materials 31(7) (2021) 2766-2778.
[32] Y. Wang, Y. Liu, N. Zhao, J. Wang, Y. Yang, D. Cui, M. Zhao,
Fe3O4 nanozyme coating enhances
light‐driven biohydrogen production in self‐photosensitizedShewanella oneidensis ‐CdS hybrid systems, Biotechnology Journal
(2023).
[33] X. Tian, X. Jiang, C. Welch, T.R. Croley, T.Y. Wong, C. Chen,
S. Fan, Y. Chong, R. Li, C. Ge, C. Chen, J.J. Yin, Bactericidal Effects
of Silver Nanoparticles on Lactobacilli and the Underlying
Mechanism, ACS Appl Mater Interfaces 10(10) (2018) 8443-8450.
[34] B. Lu, F. Lu, Y. Zou, J. Liu, B. Rong, Z. Li, F. Dai, D. Wu, G.
Lan, In situ reduction of silver nanoparticles by chitosan-l-glutamic
acid/hyaluronic acid: Enhancing antimicrobial and wound-healing
activity, Carbohydrate Polymers 173 (2017) 556-565.
[35] M.S. Mechouche, F. Merouane, C.E.H. Messaad, N. Golzadeh, Y.
Vasseghian, M. Berkani, Biosynthesis, characterization, and evaluation
of antibacterial and photocatalytic methylene blue dye degradation
activities of silver nanoparticles from Streptomyces tuirusstrain, Environmental Research 204 (2022) 112360-112373.
[36] Y. Zaman, M.Z. Ishaque, S. Ajmal, M. Shahzad, A.B. Siddique,
M.U. Hameed, H. Kanwal, R.J. Ramalingam, M. Selvaraj, G. Yasin, Tamed
synthesis of AgNPs for photodegradation and anti-bacterial activity:
Effect of size and morphology, Inorganic Chemistry Communications 150
(2023) 110523-110529.
[37] G. Rajkumar, R. Sundar, Biogenic one-step synthesis of silver
nanoparticles (AgNPs) using an aqueous extract of Persea
americana seed: Characterization, phytochemical screening,
antibacterial, antifungal and antioxidant activities, Inorganic
Chemistry Communications 143 (2022) 109817.
[38] X. Li, M. Liu, H. Cheng, Q. Wang, C. Miao, S. Ju, F. Liu,
Development of ionic liquid assisted-synthesized nano‑silver combined
with vascular endothelial growth factor as wound healing in the care of
femoral fracture in the children after surgery, J Photochem Photobiol B
183 (2018) 385-390.
[39] A.O. Fadaka, S. Meyer, O. Ahmed, G. Geerts, M.A. Madiehe, M.
Meyer, N.R.S. Sibuyi, Broad Spectrum Anti-Bacterial Activity and
Non-Selective Toxicity of Gum Arabic Silver Nanoparticles, Int J Mol Sci
23(3) (2022) 1799.
[40] S. Palithya, S.A. Gaddam, V.S. Kotakadi, J. Penchalaneni, V.N.
Challagundla, Biosynthesis of silver nanoparticles using leaf extract ofDecaschistia crotonifolia and its antibacterial, antioxidant, and
catalytic applications, Green Chemistry Letters and Reviews 14(1) (2021)
137-152.
[41] H.-z. Qi, W.-z. Wang, J.-y. He, Y. Ma, F.-z. Xiao, S.-y. He,
Antioxidative system of Deinococcus radiodurans , Research in
Microbiology 171(2) (2020) 45-54.
[42] H. Sun, A. Zhao, N. Gao, K. Li, J. Ren, X. Qu, Deciphering a
nanocarbon-based artificial peroxidase: chemical identification of the
catalytically active and substrate-binding sites on graphene quantum
dots, Angew Chem Int Ed Engl 54(24) (2015) 7176-80.
[43] X. Shu, Y. Chang, H. Wen, X. Yao, Y. Wang, Colorimetric
determination of ascorbic acid based on carbon quantum dots as
peroxidase mimetic enzyme, RSC Advances 10(25) (2020) 14953-14957.
[44] K. Gudikandula, S. Charya Maringanti, Synthesis of silver
nanoparticles by chemical and biological methods and their antimicrobial
properties, Journal of Experimental Nanoscience 11(9) (2016) 714-721.
[45] M. Mousavi-Khattat, M. Keyhanfar, A. Razmjou, A comparative
study of stability, antioxidant, DNA cleavage and antibacterial
activities of green and chemically synthesized silver nanoparticles,
Artificial Cells, Nanomedicine, and Biotechnology 46(sup3) (2018)
1022-1031.
[46] N. Yu, T. Cai, Y. Sun, C. Jiang, H. Xiong, Y. Li, H. Peng, A
novel antibacterial agent based on AgNPs and
Fe3O4 loaded chitin microspheres with
peroxidase-like activity for synergistic antibacterial activity and
wound-healing, International Journal of Pharmaceutics 552(1-2) (2018)
277-287.
[47] A.A. Dayem, B. Kim, S. Gurunathan, H.Y. Choi, G. Yang, S.K.
Saha, D. Han, J. Han, K. Kim, J.H. Kim, S.G. Cho, Biologically
synthesized silver nanoparticles induce neuronal differentiation of
SH‐SY5Y cells via modulation of reactive oxygen species, phosphatases,
and kinase signaling pathways, Biotechnology Journal 9(7) (2014)
934-943.
[48] M.A. Quinteros, C.A. Viviana, R. Onnainty, V.S. Mary, M.G.
Theumer, G.E. Granero, M.G. Paraje, P.L. Páez, Biosynthesized silver
nanoparticles: Decoding their mechanism of action inStaphylococcus aureus and Escherichia coli , The
International Journal of Biochemistry & Cell Biology 104 (2018) 87-93.
[49] H. Wang, Y. Jiang, Y. Zhang, Z. Zhang, X. Yang, M.A. Ali, E.M.
Fox, K.S. Gobius, C. Man, Silver nanoparticles: A novel antibacterial
agent for control of Cronobacter sakazakii, Journal of Dairy Science
101(12) (2018) 10775-10791.
[50] S. Liao, Y. Zhang, X. Pan, F. Zhu, C. Jiang, Q. Liu, Z. Cheng,
G. Dai, G. Wu, L. Wang, L. Chen, Antibacterial activity and mechanism of
silver nanoparticles against multidrug-resistant Pseudomonas
aeruginosa , Int J Nanomedicine 14 (2019) 1469-1487.
[51] J.C. Ontong, S. Paosen, S. Shankar, S.P. Voravuthikunchai,
Eco-friendly synthesis of silver nanoparticles using Senna alatabark extract and its antimicrobial mechanism through enhancement of
bacterial membrane degradation, J Microbiol Methods 165 (2019) 105692.
[52] H.S. Jiang, Y. Zhang, Z.W. Lu, R. Lebrun, B. Gontero, W. Li,
Interaction between Silver Nanoparticles and Two Dehydrogenases: Role of
Thiol Groups, Small 15(27) (2019) 1900860.
[53] M.A. Quinteros, V. Cano Aristizábal, P.R. Dalmasso, M.G.
Paraje, P.L. Páez, Oxidative stress generation of silver nanoparticles
in three bacterial genera and its relationship with the antimicrobial
activity, Toxicology in Vitro 36 (2016) 216-223.