Margaret Corley

and 47 more

The Asian tiger mosquito, Aedes albopictus, is currently the most widespread invasive mosquito species in the world. It poses a significant threat to human health, as it is a vector for several arboviruses. We used a SNP chip to genotype 748 Ae. albopictus mosquitoes from 41 localities across Europe, 28 localities in the native range in Asia, and four in the Americas. Using multiple algorithms, we examined population genetic structure and differentiation within Europe and across our global dataset to gain insight into the origin of the invasive European populations. We also compared results from our SNP data to those obtained using genotypes from 11 microsatellite loci (N=637 mosquitoes from 25 European localities) to explore how sampling effort and the type of genetic marker used may influence conclusions about Ae. albopictus population structure. While some analyses detected more than 20 clusters worldwide, we found mosquitoes could be grouped into seven distinct genetic clusters, with most European populations originating in East Asia (Japan or China). Interestingly, some populations in Eastern Europe did not share genetic ancestry with any populations from the native range or Americas, indicating that these populations originated from areas not sampled in this study. The SNP and microsatellite datasets found similar patterns of genetic differentiation in Europe, but the microsatellite dataset could not detect the more subtle genetic structure revealed using SNPs. Overall, data from the SNP chip offered a higher resolution for detecting the genetic structure and the potential origins of invasions.

Yuanzhen Liu

and 6 more

Populations of many bumblebee species are in decline, with distributions shifting northwards to track suitable climates. Climate change is considered a major contributing factor. Arctic species are particularly vulnerable as they cannot shift further north, making assessment of their population viability important. Analysis of levels of whole-genome variation is a powerful way to analyse population declines and fragmentation. Here we use genome sequencing to analyse genetic variation in seven species of bumblebee from the Scandinavian mountains, including two classified as vulnerable. We sequenced 333 samples from across the ranges of these species in Sweden. Estimates of effective population size (NE) vary from ~55,000 for species with restricted high alpine distributions to 220,000 for more widespread species. Population fragmentation is generally very low or undetectable over large distances in the mountains, suggesting an absence of barriers to gene flow. The relatively high NE and low population structure indicate that none of the species are at immediate risk of negative genetic effects caused by high levels of genetic drift. However, reconstruction of historical fluctuations in NE indicates that the arctic specialist species Bombus hyperboreus has experienced population declines since the last ice age and we detected one highly inbred diploid male of this species close to the southern limit of its range, indicating elevated genetic load. Although levels of genetic variation in mountain bumblebee populations are currently relatively high, their ranges are predicted to shrink drastically due to the effects of climate change and monitoring is essential to detect future population declines.