Nicola Mignoni

and 2 more

Photovoltaic (PV) technology is one of the most popular means of renewable generation, whose applications range from commercial and residential buildings to industrial facilities and grid infrastructures. The problem of determining a suitable layout for the PV arrays, on a given deployment region, is generally non-trivial and has a crucial importance in the planning phase of solar plants design and development. In this paper, we provide a mixed integer non-linear programming formulation of the PV arrays’ layout problem. First, we define the astronomical and geometrical models, considering crucial factors such as self-shadowing and irradiance variability, depending on the geographical position of the solar plant and yearly time window. Subsequently, we formalize the mathematical optimization problem, whose constraints’ set is characterized by non-convexities. In order to propose a computationally tractable approach, we provide a tight parametrized convex relaxation. The resulting optimization resolution procedure is tested numerically, using realistic data, and benchmarked against the traditional global resolution approach, showing that the proposed methodology yields near-optimal solutions in lower computational time. Note to Practitioners: The paper is motivated by the need for efficient algorithmic procedures which can yield near-optimal solutions to the PV arrays layout problem. Due to the strong non-convexity of even simple instances, the existing methods heavily rely on global or stochastic solvers, which are computationally demanding, both in terms of resources and run-time. Our approach acts as a baseline, from which practitioners can derive more elaborate instances, by suitably modifying both the objective function and/or the constraints. In fact, we focus on the minimum set of necessary geometrical (e.g., arrays position model), astronomical (e.g., irradiance variation), and operational (e.g., power requirements) constraints which make the overall problem hard. The Appendices provide a guideline for suitably choosing the optimization parameters. All data and simulation code are available on a public repository. This preprint has been accepted for publication in IEEE Transactions on Automation Science and Engineering. How to cite: N. Mignoni, R. Carli and M. Dotoli, "Layout Optimization for Photovoltaic Panels in Solar Power Plants via a MINLP Approach", in IEEE Transactions on Automation Science and Engineering.

Paolo Scarabaggio

and 3 more

The COVID-19 crisis is profoundly influencing the global economic framework due to restrictive measures adopted by governments worldwide. Finding real-time data to correctly quantify this impact is very significant but not as straightforward. Nevertheless, an analysis of the power demand profiles provides insight into the overall economic trends. To accurately assess the change in energy consumption patterns, in this work we employ a multi-layer feed-forward neural network that calculates an estimation of the aggregated power demand in the north of Italy, (i.e, in one of the European areas that were most affected by the pandemics) in the absence of the COVID-19 emergency. After assessing the forecasting model reliability, we compare the estimation with the ground truth data to quantify the variation in power consumption. Moreover, we correlate this variation with the change in mobility behaviors during the lockdown period by employing the Google mobility report data. From this unexpected and unprecedented situation, we obtain some intuition regarding the power system macro-structure and its relation with the overall people’s mobility. Postprint accepted for publication in the proceedings of the 2020 AEIT International Annual Conference (AEIT). How to cite: P. Scarabaggio, M. La Scala, R. Carli and M. Dotoli, ”Analyzing the Effects of COVID-19 Pandemic on the Energy Demand: the Case of Northern Italy,” 2020 AEIT International Annual Conference (AEIT), 2020. DOI: https://doi.org/10.23919/AEIT50178.2020.9241136  © 2020 AEIT 978-8-8872-3747-4. Personal use of this material is permitted. Permission must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Paolo Scarabaggio

and 2 more

Power distribution grids are commonly controlled through centralized approaches, such as the optimal power flow. However, the current pervasive deployment of distributed renewable energy sources and the increasing growth of active players, providing ancillary services to the grid, have made these centralized frameworks no longer appropriate. In this context, we propose a novel noncooperative control mechanism for optimally regulating the operation of power distribution networks equipped with traditional loads, distributed generation, and active users. The latter, also known as prosumers, contribute to the grid optimization process by leveraging their flexible demand, dispatchable generation capability, and/or energy storage potential. Active users participate in a noncooperative liberalized market designed to increase the penetration of renewable generation and improve the predictability of power injection from the high voltage grid. The novelty of our game-theoretical approach consists in incorporating economic factors as well as physical constraints and grid stability aspects. Lastly, by integrating the proposed framework into a rolling-horizon approach, we show its effectiveness and resiliency through numerical experiments. Postprint accepted for publication in IEEE Transactions on Control of Network Systems How to cite:  P. Scarabaggio, R. Carli and M. Dotoli, (2022)  “Noncooperative Equilibrium Seeking in Distributed Energy Systems Under AC Power Flow Nonlinear Constraints,” in IEEE Transactions on Control of Network Systems. DOI: https://doi.org/10.1109/TCNS.2022.3181527 © 2022 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Nicola Mignoni

and 2 more

In this paper, we propose a novel control strategy for the optimal scheduling of an energy community constituted by prosumers and equipped with unidirectional vehicle-to-grid (V1G) and vehicle-to-building (V2B) capabilities. In particular, V2B services are provided by long-term parked electric vehicles (EVs), used as temporary storage systems by prosumers, who in turn offer the V1G service to EVs provisionally plugged into charging stations. To tackle the stochastic nature of the framework, we assume that EVs communicate their parking and recharging time distribution to prosumers, allowing them to improve the energy allocation process. Acting as selfish agents, prosumers and EVs interact in a rolling horizon control framework with the aim of achieving an agreement on their operating strategies. The resulting control problem is formulated as a generalized Nash equilibrium problem, addressed through the variational inequality theory, and solved in a distributed fashion leveraging on the accelerated distributed augmented Lagrangian method, showing sufficient conditions for guaranteeing convergence. The proposed model predictive control approach is validated through numerical simulations under realistic scenarios. This preprint has been accepted for publication in IEEE Transactions on Control Systems Technology. How to cite: N. Mignoni, R. Carli and M. Dotoli, “Distributed Noncooperative MPC for Energy Scheduling of Charging and Trading Electric Vehicles in Energy Communities,” in IEEE Transactions on Control Systems Technology.

Nicola Mignoni

and 2 more

Cuckoo is a popular card game, which originated in France during the 15th century and then spread throughout Europe, where it is currently well-known under distinct names and with different variants. Cuckoo is an imperfect information game-of-chance, which makes the research regarding its optimal strategies determination interesting. The rules are simple: each player receives a covered card from the dealer; starting from the player at the dealer’s left, each player looks at its own card and decides whether to exchange it with the player to their left, or keep it; the dealer plays at last and, if it decides to exchange card, it draws a random one from the remaining deck; the player(s) with the lowest valued card lose(s) the round. We formulate the gameplay mathematically and provide an analysis of the optimal decision policies. Different card decks can be used for this game, e.g., the standard 52-card deck or the Italian 40-card deck. We generalize the decision model for an arbitrary number decks’ cards, suites, and players. Lastly, through numerical simulations, we compare the determined optimal decision strategy against different benchmarks, showing that the strategy outperforms the random and naive policies and approaches the performance of the ideal oracle. This preprint has been accepted for publication in IEEE Transactions on Games. How to cite: N. Mignoni, R. Carli and M. Dotoli, “Optimal Decision Strategies for the Generalized Cuckoo Card Game,” in IEEE Transactions on Games. © 2023 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Nicola Mignoni

and 3 more

Recently, the decreasing cost of storage technologies and the emergence of economy-driven mechanisms for energy exchange are contributing to the spread of energy communities. In this context, this paper aims at defining innovative transactive control frameworks for energy communities equipped with independent service-oriented energy storage systems. The addressed control problem consists in optimally scheduling the energy activities of a group of prosumers, characterized by their own demand and renewable generation, and a group of energy storage service providers, able to store the prosumers’ energy surplus and, subsequently, release it upon a fee payment. We propose two novel resolution algorithms based on a game theoretical control formulation, a coordinated and an uncoordinated one, which can be alternatively used depending on the underlying communication architecture of the grid. The two proposed approaches are validated through numerical simulations on realistic scenarios. Results show that the use of a particular framework does not alter fairness, at least at the community level, i.e., no participant in the groups of prosumers or providers can strongly benefit from changing its strategy while compromising othersâ\euro™ welfare. Lastly, the approaches are compared with a centralized control method showing better computational results. This preprint has been accepted for publication in Control Engineering Practice, Elsevier. How to cite: Nicola Mignoni, Paolo Scarabaggio, Raffaele Carli, Mariagrazia Dotoli, “Control frameworks for transactive energy storage services in energy communities”, Control Engineering Practice, Volume 130, 2023, 105364, ISSN 0967-0661, https://doi.org/10.1016/j.conengprac.2022.105364. © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

Raffaele Carli

and 4 more

This paper focuses on the control of microgrids where both gas and electricity are provided to the final customer, i.e., multi-carrier microgrids. Hence, these microgrids include thermal and electrical loads, renewable energy sources, energy storage systems, heat pumps, and combined heat and power units. The parameters characterizing the multi-carrier microgrid are subject to several disturbances, such as fluctuations in the provision of renewable energy, variability in the electrical and thermal demand, and uncertainties in the electricity and gas pricing. With the aim of accounting for the data uncertainties in the microgrid, we propose a Robust Model Predictive Control (RMPC) approach whose goal is to minimize the total economical cost, while satisfying comfort and energy requests of the final users. In the related literature various RMPC approaches have been proposed, focusing either on electrical or on thermal microgrids. Only a few contributions have addressed the robust control of multi-carrier microgrids. Consequently, we propose an innovative RMPC algorithm that employs on an uncertainty set-based method and that can provide better performance compared with deterministic model predictive controllers applied to multi-carrier microgrids. With the aim of mitigating the conservativeness of the approach, we define suitable robustness factors and we investigate the effects of such factors on the robustness of the solution against variations of the uncertain parameters. We show the effectiveness of the proposed RMPC approach by applying it to a realistic residential multi-carrier microgrid and comparing the obtained results with the ones of a baseline robust method. Postprint accepted for publication in IEEE Transactions on Automation Science and Engineering (T-ASE). How to cite: R. Carli, G. Cavone, T. Pippia, B. De Schutter, and M. Dotoli, ”Robust Optimal Control for Demand Side Management of Multi-Carrier Microgrids,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 3, pp. 1338-1351, July 2022. DOI:  https://doi.org/10.1109/TASE.2022.3148856

Paolo Scarabaggio

and 4 more

The recent trends of the COVID-19 research are being devoted to disease transmission modeling in presence of vaccinated individuals, while the emerging needs are being focused on developing effective strategies for the optimal distribution of vaccine between population. In this context, we propose a novel non-linear time-varying model that effectively supports policy-makers in predicting and analyzing the dynamics of COVID-19 when partially and fully immune individuals are included in the population. Specifically, this paper proposes an accurate SIRUCQHE epidemiological model, with eight compartments (namely, Susceptible, Infected, Removed, Unsusceptible, Contagious, Quarantined, Hospitalized, and Extinct). Differently from the related literature, where the common strategies typically rely on the prioritization of the different classes of individuals, we propose a novel Model Predictive Control approach to optimally control the multi-dose vaccine administration in the case the available number of doses is not sufficient to cover the whole population. Focusing on the minimization of the expected number of deaths, the approach discriminates between the number of first and second doses, thus considering also the possibility that some individuals may receive only one injection if the resulting expected fatalities are low. To show the effectiveness of the resulting strategies, we first calibrate the model on the Israeli scenario using real data to get reliable predictions on the pandemic dynamics. Lastly, we estimate the impact of the vaccine administration on the virus dynamics and, in particular, based on validated model, we assess the impact of the first dose of the Pfitzer’s vaccine confirming the results of clinical tests. Extended version of the paper published in Proceedings of the IEEE 16th International Conference on Automation Science and Engineering (CASE) How to cite: Scarabaggio, P., Carli, R., Cavone, G., Epicoco, N., & Dotoli, M. “Modeling, Estimation, and Optimal Control of Anti-COVID-19 Multi-dose Vaccine Administration.” In 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE) (pp. 990-995). IEEE. DOI: https://doi.org/10.1109/CASE49439.2021.9551418  © 2021 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Paolo Scarabaggio

and 4 more

This paper proposes a stochastic non-linear model predictive controller to support policy-makers in determining robust optimal non-pharmaceutical strategies to tackle the COVID-19 pandemic waves. First, a time-varying SIRCQTHE epidemiological model is defined to get predictions on the pandemic dynamics. A stochastic model predictive control problem is then formulated to select the necessary control actions (i.e., restrictions on the mobility for different socio-economic categories) to minimize the socio-economic costs. In particular, considering the uncertainty characterizing this decision-making process, we ensure that the capacity of the healthcare system is not violated in accordance with a chance constraint approach. The effectiveness of the presented method in properly supporting the definition of diversified non-pharmaceutical strategies for tackling the COVID-19 spread is tested on the network of Italian regions using real data. The proposed approach can be easily extended to cope with other countries’ characteristics and different levels of the spatial scale. Postprint accepted for pubblication in IEEE Transactions on Automation Science and Engineering (T-ASE) How to cite: P. Scarabaggio, R. Carli, G. Cavone, N. Epicoco and M. Dotoli, (2021) “Non-Pharmaceutical Stochastic Optimal Control Strategies to Mitigate the COVID-19 Spread,” in IEEE Transactions on Automation Science and Engineering. DOI: http://doi.org/10.1109/TASE.2021.3111338 © 2021 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Paolo Scarabaggio

and 3 more

In this paper, we propose a distributed demand side management (DSM) approach for smart grids taking into account uncertainty in wind power forecasting. The smart grid model comprehends traditional users as well as active users (prosumers). Through a rolling-horizon approach, prosumers participate in a DSM program, aiming at minimizing their cost in the presence of uncertain wind power generation by a game theory approach. We assume that each user selfishly formulates its grid optimization problem as a noncooperative game. The core challenge in this paper is defining an approach to cope with the uncertainty in wind power availability. We tackle this issue from two different sides: by employing the expected value to define a deterministic counterpart for the problem and by adopting a stochastic approximated framework. In the latter case, we employ the sample average approximation technique, whose results are based on a probability density function (PDF) for the wind speed forecasts. We improve the PDF by using historical wind speed data, and by employing a control index that takes into account the weather condition stability. Numerical simulations on a real dataset show that the proposed stochastic strategy generates lower individual costs compared to the standard expected value approach. Postprint accepted for publication in IEEE Transactions on Control Systems Technology How to cite: P. Scarabaggio, S. Grammatico, R. Carli and M. Dotoli, (2021) “Distributed Demand Side Management With Stochastic Wind Power Forecasting, ”IEEE Transactions on Control Systems Technology, 2022. DOI: http://doi.org/10.1109/TCST.2021.3056751 © 2022 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.