References
1.
Abdelfattah, A., Tack, A.J.M., Lobato, C., Wassermann, B. & Berg, G. (2023). From seed to seed: the role of microbial inheritance in the assembly of the plant microbiome. Trends Microbiol. , 31, 346-355.
2.
Bai, B., Liu, W., Qiu, X., Zhang, J., Zhang, J. & Bai, Y. (2022). The root microbiome: Community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology , 64, 230-243.
3.
Bardgett, R.D., Bullock, J.M., Lavorel, S., Manning, P., Schaffner, U., Ostle, N. et al. (2021). Combatting global grassland degradation.Nature Reviews Earth & Environment , 2, 720-735.
4.
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software , 67, 1-48.
5.
Bever, J., Dickie, I., Facelli, E., Facelli, J., Klironomos, J., Moora, M. et al. (2010). Rooting Theories of Plant Community Ecology in Microbial Interactions. Trends Ecol. Evol. , 25, 468-478.
6.
Blair, G., Chinoim, N., Lefroy, R., Anderson, G. & Crocker, G. (1991). A soil sulfur test for pastures and crops. Soil Research , 29, 619-626.
7.
Bokulich, N.A., Dillon, M.R., Zhang, Y., Rideout, J.R., Bolyen, E., Li, H. et al. (2018). q2-longitudinal: Longitudinal and paired-sample analyses of microbiome data. mSystems , 3, e00219-00218.
8.
Buchenau, N., van Kleunen, M. & Wilschut, R.A. (2022). Direct and legacy-mediated drought effects on plant performance are species-specific and depend on soil community composition. Oikos , 2022, e08959.
9.
Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F. et al. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.Nature , 488, 91-95.
10.
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Themaat, E.V.L.v. & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology , 64, 807-838.
11.
Byrnes, J.E.K., Gamfeldt, L., Isbell, F., Lefcheck, J.S., Griffin, J.N., Hector, A. et al. (2014). Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions.Methods Ecol. Evol. , 5, 111-124.
12.
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A. & Holmes, S.P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods , 13, 581-583.
13.
Cameron, E.S., Schmidt, P.J., Tremblay, B.J.M., Emelko, M.B. & Müller, K.M. (2021). Enhancing diversity analysis by repeatedly rarefying next generation sequencing data describing microbial communities. Sci Rep , 11, 22302.
14.
Colwell, J.D. (1965). An automatic procedure for the determination of Phosphorus in sodium hydrogen carbonate extracts of soils.Chemistry Industry , 22, 893-895.
15.
Comas, L., Becker, S., Cruz, V.M.V., Byrne, P.F. & Dierig, D.A. (2013). Root traits contributing to plant productivity under drought.Front. Plant Sci. , 4.
16.
De Long, J.R., Fry, E.L., Veen, G.F. & Kardol, P. (2019). Why are plant–soil feedbacks so unpredictable, and what to do about it?Funct. Ecol. , 33, 118-128.
17.
Dunning, L.T., Liabot, A.-L., Olofsson, J.K., Smith, E.K., Vorontsova, M.S., Besnard, G. et al. (2017). The recent and rapid spread of Themeda triandra. Botany Letters , 164, 327-337.
18.
Earl, H.J. (2003). A PRECISE GRAVIMETRIC METHOD FOR SIMULATING DROUGHT STRESS IN POT EXPERIMENTS. Crop Science , 43, 1868-1873.
19.
Fadiji, A.E., Yadav, A.N., Santoyo, G. & Babalola, O.O. (2023). Understanding the plant-microbe interactions in environments exposed to abiotic stresses: An overview. Microbiological Research , 271, 127368.
20.
Gebhardt, M., Fehmi, J.S., Rasmussen, C. & Gallery, R.E. (2017). Soil amendments alter plant biomass and soil microbial activity in a semi-desert grassland. Plant Soil , 419, 53-70.
21.
Han, X., Li, Y., Li, Y., Du, X., Li, B., Li, Q. et al. (2022). Soil inoculum identity and rate jointly steer microbiomes and plant communities in the field. ISME Communications , 2, 59.
22.
Hannula, S.E., Heinen, R., Huberty, M., Steinauer, K., De Long, J.R., Jongen, R. et al. (2021). Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nat. Commun. , 12, 5686.
23.
He, X., Wang, D., Jiang, Y., Li, M., Delgado-Baquerizo, M., McLaughlin, C. et al. (2024). Heritable microbiome variation is correlated with source environment in locally adapted maize varieties. Nat. Plants .
24.
Hodgson, R.J., Cando-Dumancela, C., Davies, T., Dinsdale, E.A., Doane, M.P., Edwards, R.A. et al. (2024a). Contrasting microbial taxonomic and functional colonisation patterns in wild populations of the pan-palaeotropical C4 grass, Themeda triandra. Authorea .
25.
Hodgson, R.J., Cando-Dumancela, C., Liddicoat, C., Ramesh, S., Edwards, R.A. & Breed, M. (2024b). Strong host and environment modulation of rhizosphere-to-endosphere colonisation in the pan-palaeotropical keystone grass species, Themeda triandra. Authorea .
26.
Jost, L. (2006). Entropy and diversity. Oikos , 113, 363-375.
27.
Kaisermann, A., de Vries, F.T., Griffiths, R.I. & Bardgett, R.D. (2017). Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytol. , 215, 1413-1424.
28.
Kiers, E.T., Duhamel, M., Beesetty, Y., Mensah, J.A., Franken, O., Verbruggen, E. et al. (2011). Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science , 333, 880-882.
29.
Kiers, E.T., West, S.A. & Denison, R.F. (2002). Mediating mutualisms: farm management practices and evolutionary changes in symbiont co-operation. J. Appl. Ecol. , 39, 745-754.
30.
Kim, H., Jeon, J., Lee, K.K. & Lee, Y.-H. (2022). Longitudinal transmission of bacterial and fungal communities from seed to seed in rice. Communications Biology , 5, 772.
31.
Koziol, L. & Bever, J.D. (2017). The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. J. Appl. Ecol. , 54, 1301-1309.
32.
Kuťáková, E., Mészárošová, L., Baldrian, P., Münzbergová, Z. & Herben, T. (2023). Plant–soil feedbacks in a diverse grassland: Soil remembers, but not too much. J. Ecol. , 00, 1-15.
33.
Lin, H. & Peddada, S.D. (2020). Analysis of compositions of microbiomes with bias correction. Nat. Commun. , 11, 3514.
34.
Ling, N., Wang, T. & Kuzyakov, Y. (2022). Rhizosphere bacteriome structure and functions. Nat. Commun. , 13, 836.
35.
Liu, N., Hu, H., Ma, W., Deng, Y., Dimitrov, D., Wang, Q. et al. (2022). Relationships Between Soil Microbial Diversities Across an Aridity Gradient in Temperate Grasslands. Microbial Ecology .
36.
Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S. et al. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature , 488, 86-90.
37.
Mallon, C.A., Poly, F., Le Roux, X., Marring, I., van Elsas, J.D. & Salles, J.F. (2015). Resource pulses can alleviate the biodiversity–invasion relationship in soil microbial communities.Ecology , 96, 915-926.
38.
Mariotte, P., Mehrabi, Z., Bezemer, T.m., Deyn, G.B., Kulmatiski, A., Drigo, B. et al. (2018). Plant–Soil Feedback: Bridging Natural and Agricultural Sciences. Trends Ecol. Evol. , 33, 129-142.
39.
Mawarda, P.C., Mallon, C.A., Le Roux, X., van Elsas, J.D. & Salles, J.F. (2022). Interactions between Bacterial Inoculants and Native Soil Bacterial Community: the Case of Spore-forming Bacillus spp. FEMS Microbiol. Ecol. , 98.
40.
McPherson, M.R., Wang, P., Marsh, E.L., Mitchell, R.B. & Schachtman, D.P. (2018). Isolation and Analysis of Microbial Communities in Soil, Rhizosphere, and Roots in Perennial Grass Experiments. JoVE , e57932.
41.
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D. et al. (2019). vegan: Community Ecology Package.
42.
Pascoe, B. (2018). Dark Emu: Aboriginal Australia and the Birth of Agriculture . Magabala Books.
43.
Peddle, S.D., Hodgson, R.J., Borrett, R.J., Brachmann, S., Davies, T.C., Erickson, T.E. et al. (2024). Practical applications of soil microbiota to improve ecosystem restoration: current knowledge and future directions. Biol. Rev. , n/a.
44.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P. et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. , 61, 167-234.
45.
Petipas, R.H., Geber, M.A. & Lau, J.A. (2021). Microbe-mediated adaptation in plants. Ecol. Lett. , 00, 1–16.
46.
Petipas, R.H., González, J.B., Palmer, T.M. & Brody, A.K. (2017). Habitat-specific AMF symbioses enhance drought tolerance of a native Kenyan grass. Acta Oecologica , 78, 71-78.
47.
Pineda, A., Kaplan, I. & Bezemer, T.M. (2017). Steering Soil Microbiomes to Suppress Aboveground Insect Pests. Trends Plant Sci. , 22, 770-778.
48.
Porter, S.S. & Sachs, J.L. (2020). Agriculture and the Disruption of Plant–Microbial Symbiosis. Trends Ecol. Evol.
49.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.et al. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. , 41, D590-D596.
50.
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria.
51.
Robinson, J.M., Hodgson, R., Krauss, S.L., Liddicoat, C., Malik, A.A., Martin, B.C. et al. (2023). Opportunities and challenges for microbiomics in ecosystem restoration. Trends Ecol. Evol.
52.
Santoyo, G. (2022). How plants recruit their microbiome? New insights into beneficial interactions. Journal of Advanced Research , 40, 45-58.
53.
Schnitzer, S.A., Klironomos, J.N., HilleRisLambers, J., Kinkel, L.L., Reich, P.B., Xiao, K. et al. (2011). Soil microbes drive the classic plant diversity-productivity pattern. Ecology , 92, 296-303.
54.
Searle, R., Malone, B., Wilford, J., Austin, J., Ware, C., Webb, M.et al. (2022). TERN Digital Soil Mapping Raster Covariate Stacks. CSIRO.
55.
Snyman, H.A., Ingram, L.J. & Kirkman, K.P. (2013). Themeda triandra: a keystone grass species. African Journal of Range & Forage Science , 30, 99-125.
56.
Trivedi, P., Batista, B.D., Bazany, K.E. & Singh, B.K. (2022). Plant–microbiome interactions under a changing world: responses, consequences and perspectives. New Phytol. , 234, 1951-1959.
57.
Urbina, H., Breed, M.F., Zhao, W., Lakshmi Gurrala, K., Andersson, S.G.E., Ågren, J. et al. (2018). Specificity in Arabidopsis thaliana recruitment of root fungal communities from soil and rhizosphere. Fungal Biology , 122, 231-240.
58.
Wagg, C., Bender, S.F., Widmer, F. & van der Heijden, M.G.A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences , 111, 5266-5270.
59.
Walkley, A. & Armstrong, B.I. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science , 37, 29-38.
60.
Wang, G.Z., Schultz, P., Tipton, A., Zhang, J.L., Zhang, F.S. & Bever, J.D. (2019). Soil microbiome mediates positive plant diversity-productivity relationships in late successional grassland species. Ecol. Lett. , 22, 1221-1232.
61.
Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. (2007). Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology , 73, 5261-5267.
62.
Wang, X., Chi, Y. & Song, S. (2024). Important soil microbiota’s effects on plants and soils: a comprehensive 30-year systematic literature review. Frontiers in Microbiology , 15.
63.
Wolfsdorf, G., Abrahão, A., D’Angioli, A.M., de Sá Dechoum, M., Meirelles, S.T., F. L. Pecoral, L. et al. (2021). Inoculum origin and soil legacy can shape plant–soil feedback outcomes for tropical grassland restoration. Restor. Ecol. , n/a, e13455.