References
1.
Abdelfattah, A., Tack, A.J.M., Lobato, C., Wassermann, B. & Berg, G.
(2023). From seed to seed: the role of microbial inheritance in the
assembly of the plant microbiome. Trends Microbiol. , 31, 346-355.
2.
Bai, B., Liu, W., Qiu, X., Zhang, J., Zhang, J. & Bai, Y. (2022). The
root microbiome: Community assembly and its contributions to plant
fitness. Journal of Integrative Plant Biology , 64, 230-243.
3.
Bardgett, R.D., Bullock, J.M., Lavorel, S., Manning, P., Schaffner, U.,
Ostle, N. et al. (2021). Combatting global grassland degradation.Nature Reviews Earth & Environment , 2, 720-735.
4.
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015). Fitting Linear
Mixed-Effects Models Using lme4. Journal of Statistical Software ,
67, 1-48.
5.
Bever, J., Dickie, I., Facelli, E., Facelli, J., Klironomos, J., Moora,
M. et al. (2010). Rooting Theories of Plant Community Ecology in
Microbial Interactions. Trends Ecol. Evol. , 25, 468-478.
6.
Blair, G., Chinoim, N., Lefroy, R., Anderson, G. & Crocker, G. (1991).
A soil sulfur test for pastures and crops. Soil Research , 29,
619-626.
7.
Bokulich, N.A., Dillon, M.R., Zhang, Y., Rideout, J.R., Bolyen, E., Li,
H. et al. (2018). q2-longitudinal: Longitudinal and paired-sample
analyses of microbiome data. mSystems , 3, e00219-00218.
8.
Buchenau, N., van Kleunen, M. & Wilschut, R.A. (2022). Direct and
legacy-mediated drought effects on plant performance are
species-specific and depend on soil community composition. Oikos ,
2022, e08959.
9.
Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E.,
Ahmadinejad, N., Assenza, F. et al. (2012). Revealing structure
and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.Nature , 488, 91-95.
10.
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Themaat, E.V.L.v. &
Schulze-Lefert, P. (2013). Structure and functions of the bacterial
microbiota of plants. Annual Review of Plant Biology , 64,
807-838.
11.
Byrnes, J.E.K., Gamfeldt, L., Isbell, F., Lefcheck, J.S., Griffin, J.N.,
Hector, A. et al. (2014). Investigating the relationship between
biodiversity and ecosystem multifunctionality: challenges and solutions.Methods Ecol. Evol. , 5, 111-124.
12.
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A.
& Holmes, S.P. (2016). DADA2: High-resolution sample inference from
Illumina amplicon data. Nature Methods , 13, 581-583.
13.
Cameron, E.S., Schmidt, P.J., Tremblay, B.J.M., Emelko, M.B. & Müller,
K.M. (2021). Enhancing diversity analysis by repeatedly rarefying next
generation sequencing data describing microbial communities. Sci
Rep , 11, 22302.
14.
Colwell, J.D. (1965). An automatic procedure for the determination of
Phosphorus in sodium hydrogen carbonate extracts of soils.Chemistry Industry , 22, 893-895.
15.
Comas, L., Becker, S., Cruz, V.M.V., Byrne, P.F. & Dierig, D.A. (2013).
Root traits contributing to plant productivity under drought.Front. Plant Sci. , 4.
16.
De Long, J.R., Fry, E.L., Veen, G.F. & Kardol, P. (2019). Why are
plant–soil feedbacks so unpredictable, and what to do about it?Funct. Ecol. , 33, 118-128.
17.
Dunning, L.T., Liabot, A.-L., Olofsson, J.K., Smith, E.K., Vorontsova,
M.S., Besnard, G. et al. (2017). The recent and rapid spread of
Themeda triandra. Botany Letters , 164, 327-337.
18.
Earl, H.J. (2003). A PRECISE GRAVIMETRIC METHOD FOR SIMULATING DROUGHT
STRESS IN POT EXPERIMENTS. Crop Science , 43, 1868-1873.
19.
Fadiji, A.E., Yadav, A.N., Santoyo, G. & Babalola, O.O. (2023).
Understanding the plant-microbe interactions in environments exposed to
abiotic stresses: An overview. Microbiological Research , 271,
127368.
20.
Gebhardt, M., Fehmi, J.S., Rasmussen, C. & Gallery, R.E. (2017). Soil
amendments alter plant biomass and soil microbial activity in a
semi-desert grassland. Plant Soil , 419, 53-70.
21.
Han, X., Li, Y., Li, Y., Du, X., Li, B., Li, Q. et al. (2022).
Soil inoculum identity and rate jointly steer microbiomes and plant
communities in the field. ISME Communications , 2, 59.
22.
Hannula, S.E., Heinen, R., Huberty, M., Steinauer, K., De Long, J.R.,
Jongen, R. et al. (2021). Persistence of plant-mediated microbial
soil legacy effects in soil and inside roots. Nat. Commun. , 12,
5686.
23.
He, X., Wang, D., Jiang, Y., Li, M., Delgado-Baquerizo, M., McLaughlin,
C. et al. (2024). Heritable microbiome variation is correlated
with source environment in locally adapted maize varieties. Nat.
Plants .
24.
Hodgson, R.J., Cando-Dumancela, C., Davies, T., Dinsdale, E.A., Doane,
M.P., Edwards, R.A. et al. (2024a). Contrasting microbial
taxonomic and functional colonisation patterns in wild populations of
the pan-palaeotropical C4 grass, Themeda triandra. Authorea .
25.
Hodgson, R.J., Cando-Dumancela, C., Liddicoat, C., Ramesh, S., Edwards,
R.A. & Breed, M. (2024b). Strong host and environment modulation of
rhizosphere-to-endosphere colonisation in the pan-palaeotropical
keystone grass species, Themeda triandra. Authorea .
26.
Jost, L. (2006). Entropy and diversity. Oikos , 113, 363-375.
27.
Kaisermann, A., de Vries, F.T., Griffiths, R.I. & Bardgett, R.D.
(2017). Legacy effects of drought on plant–soil feedbacks and
plant–plant interactions. New Phytol. , 215, 1413-1424.
28.
Kiers, E.T., Duhamel, M., Beesetty, Y., Mensah, J.A., Franken, O.,
Verbruggen, E. et al. (2011). Reciprocal Rewards Stabilize
Cooperation in the Mycorrhizal Symbiosis. Science , 333, 880-882.
29.
Kiers, E.T., West, S.A. & Denison, R.F. (2002). Mediating mutualisms:
farm management practices and evolutionary changes in symbiont
co-operation. J. Appl. Ecol. , 39, 745-754.
30.
Kim, H., Jeon, J., Lee, K.K. & Lee, Y.-H. (2022). Longitudinal
transmission of bacterial and fungal communities from seed to seed in
rice. Communications Biology , 5, 772.
31.
Koziol, L. & Bever, J.D. (2017). The missing link in grassland
restoration: arbuscular mycorrhizal fungi inoculation increases plant
diversity and accelerates succession. J. Appl. Ecol. , 54,
1301-1309.
32.
Kuťáková, E., Mészárošová, L., Baldrian, P., Münzbergová, Z. & Herben,
T. (2023). Plant–soil feedbacks in a diverse grassland: Soil remembers,
but not too much. J. Ecol. , 00, 1-15.
33.
Lin, H. & Peddada, S.D. (2020). Analysis of compositions of microbiomes
with bias correction. Nat. Commun. , 11, 3514.
34.
Ling, N., Wang, T. & Kuzyakov, Y. (2022). Rhizosphere bacteriome
structure and functions. Nat. Commun. , 13, 836.
35.
Liu, N., Hu, H., Ma, W., Deng, Y., Dimitrov, D., Wang, Q. et al. (2022). Relationships Between Soil Microbial Diversities Across an
Aridity Gradient in Temperate Grasslands. Microbial Ecology .
36.
Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J.,
Malfatti, S. et al. (2012). Defining the core Arabidopsis
thaliana root microbiome. Nature , 488, 86-90.
37.
Mallon, C.A., Poly, F., Le Roux, X., Marring, I., van Elsas, J.D. &
Salles, J.F. (2015). Resource pulses can alleviate the
biodiversity–invasion relationship in soil microbial communities.Ecology , 96, 915-926.
38.
Mariotte, P., Mehrabi, Z., Bezemer, T.m., Deyn, G.B., Kulmatiski, A.,
Drigo, B. et al. (2018). Plant–Soil Feedback: Bridging Natural
and Agricultural Sciences. Trends Ecol. Evol. , 33, 129-142.
39.
Mawarda, P.C., Mallon, C.A., Le Roux, X., van Elsas, J.D. & Salles,
J.F. (2022). Interactions between Bacterial Inoculants and Native Soil
Bacterial Community: the Case of Spore-forming Bacillus spp. FEMS
Microbiol. Ecol. , 98.
40.
McPherson, M.R., Wang, P., Marsh, E.L., Mitchell, R.B. & Schachtman,
D.P. (2018). Isolation and Analysis of Microbial Communities in Soil,
Rhizosphere, and Roots in Perennial Grass Experiments. JoVE ,
e57932.
41.
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn
D. et al. (2019). vegan: Community Ecology Package.
42.
Pascoe, B. (2018). Dark Emu: Aboriginal Australia and the Birth of
Agriculture . Magabala Books.
43.
Peddle, S.D., Hodgson, R.J., Borrett, R.J., Brachmann, S., Davies, T.C.,
Erickson, T.E. et al. (2024). Practical applications of soil
microbiota to improve ecosystem restoration: current knowledge and
future directions. Biol. Rev. , n/a.
44.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H.,
Jaureguiberry, P. et al. (2013). New handbook for standardised
measurement of plant functional traits worldwide. Aust. J. Bot. ,
61, 167-234.
45.
Petipas, R.H., Geber, M.A. & Lau, J.A. (2021). Microbe-mediated
adaptation in plants. Ecol. Lett. , 00, 1–16.
46.
Petipas, R.H., González, J.B., Palmer, T.M. & Brody, A.K. (2017).
Habitat-specific AMF symbioses enhance drought tolerance of a native
Kenyan grass. Acta Oecologica , 78, 71-78.
47.
Pineda, A., Kaplan, I. & Bezemer, T.M. (2017). Steering Soil
Microbiomes to Suppress Aboveground Insect Pests. Trends Plant
Sci. , 22, 770-778.
48.
Porter, S.S. & Sachs, J.L. (2020). Agriculture and the Disruption of
Plant–Microbial Symbiosis. Trends Ecol. Evol.
49.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.et al. (2013). The SILVA ribosomal RNA gene database project:
improved data processing and web-based tools. Nucleic Acids Res. ,
41, D590-D596.
50.
R Core Team (2022). R: A language and environment for statistical
computing. R Foundation for Statistical Computing Vienna, Austria.
51.
Robinson, J.M., Hodgson, R., Krauss, S.L., Liddicoat, C., Malik, A.A.,
Martin, B.C. et al. (2023). Opportunities and challenges for
microbiomics in ecosystem restoration. Trends Ecol. Evol.
52.
Santoyo, G. (2022). How plants recruit their microbiome? New insights
into beneficial interactions. Journal of Advanced Research , 40,
45-58.
53.
Schnitzer, S.A., Klironomos, J.N., HilleRisLambers, J., Kinkel, L.L.,
Reich, P.B., Xiao, K. et al. (2011). Soil microbes drive the
classic plant diversity-productivity pattern. Ecology , 92,
296-303.
54.
Searle, R., Malone, B., Wilford, J., Austin, J., Ware, C., Webb, M.et al. (2022). TERN Digital Soil Mapping Raster Covariate Stacks.
CSIRO.
55.
Snyman, H.A., Ingram, L.J. & Kirkman, K.P. (2013). Themeda triandra: a
keystone grass species. African Journal of Range & Forage
Science , 30, 99-125.
56.
Trivedi, P., Batista, B.D., Bazany, K.E. & Singh, B.K. (2022).
Plant–microbiome interactions under a changing world: responses,
consequences and perspectives. New Phytol. , 234, 1951-1959.
57.
Urbina, H., Breed, M.F., Zhao, W., Lakshmi Gurrala, K., Andersson,
S.G.E., Ågren, J. et al. (2018). Specificity in Arabidopsis
thaliana recruitment of root fungal communities from soil and
rhizosphere. Fungal Biology , 122, 231-240.
58.
Wagg, C., Bender, S.F., Widmer, F. & van der Heijden, M.G.A. (2014).
Soil biodiversity and soil community composition determine ecosystem
multifunctionality. Proceedings of the National Academy of
Sciences , 111, 5266-5270.
59.
Walkley, A. & Armstrong, B.I. (1934). An examination of the Degtjareff
method for determining soil organic matter, and a proposed modification
of the chromic acid titration method. Soil Science , 37, 29-38.
60.
Wang, G.Z., Schultz, P., Tipton, A., Zhang, J.L., Zhang, F.S. & Bever,
J.D. (2019). Soil microbiome mediates positive plant
diversity-productivity relationships in late successional grassland
species. Ecol. Lett. , 22, 1221-1232.
61.
Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. (2007). Naive
bayesian classifier for rapid assignment of rRNA sequences into the new
bacterial taxonomy. Applied and Environmental Microbiology , 73,
5261-5267.
62.
Wang, X., Chi, Y. & Song, S. (2024). Important soil microbiota’s
effects on plants and soils: a comprehensive 30-year systematic
literature review. Frontiers in Microbiology , 15.
63.
Wolfsdorf, G., Abrahão, A., D’Angioli, A.M., de Sá Dechoum, M.,
Meirelles, S.T., F. L. Pecoral, L. et al. (2021). Inoculum origin
and soil legacy can shape plant–soil feedback outcomes for tropical
grassland restoration. Restor. Ecol. , n/a, e13455.