REFERENCES
1. Gao, S., Wang, Y., Gao, X.: Visual and auditory brain–computer interfaces. IEEE Transactions on Biomedical Engineering, 61(5), 1436–1447 (2014).
2. Ramadan R A, Vasilakos A V. Brain computer interface: control signals review[J]. Neurocomputing, 2017, 223:26-44.
3. Gao Q., Dou L., Belkacem A. N.: Noninvasive electroencephalogram based control of a robotic arm for writing task using hybrid BCI system. BioMed Research International, 2017, 2017.
4. Lu, F. A.: Research on SSVEP Classification Algorithm Based on Correlation Analysis [D]. Guangdong University of Technology, 2021.
5. Yan W., Xu G., Du Y.: SSVEP-EEG Feature Enhancement Method Using an Image Sharpening Filter. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 115–123 (2022).
6. Zheng, X., Xu, G., Du, C..: Real-time, precise, rapid and objective visual acuity assessment by self-adaptive step SSVEPs. Journal of Neural Engineering, 18(4), 046-047 (2021).
7. Zhang, K., Xu, G., Du, C., et al.: Weak feature extraction and strong noise suppression for SSVEP-EEG based on chaotic detection technology. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 862-871 (2021).
8. Autthasan, P., Du, X., Arnin, J., et al.: A single-channel consumer-grade EEG device for brain–computer interface: Enhancing detection of SSVEP and its amplitude modulation. IEEE Sensors Journal, 20(6), 3366-3378 (2019).
9. Yan, W., Du, C., Wu, Y., et al.: SSVEP-EEG denoising via image filtering methods. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1634-1643 (2021).
10. Yan, W., Wu, Y., Du, C., et al.: Cross-subject spatial filter transfer method for SSVEP-EEG feature recognition. Journal of Neural Engineering, 19(3), 036008 (2022).
11. Yan, W., Xu, G., Du, Y., et al.: SSVEP-EEG feature enhancement method using an image sharpening filter. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 115-123 (2022).
12. Lin, Z., Zhang, C., Wu, W.: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Transactions on Biomedical Engineering, 53(12), 2610–2614 (2006).
13. Chen, X., Wang, Y., Gao, S.: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface. Journal of Neural Engineering, 12(4), 046008 (2015).
14. Zhang, Y., Xu, P., Cheng, K.: Multivariate synchronization index for frequency recognition of SSVEP-based brain–computer interface. Journal of Neuroscience Methods, 221, 32–40 (2014).
15. Nakanishi, M., Wang, Y., Wang, Y.: A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials. PLoS One, 10(10), e0140703 (2015).
16. Zhang, Y., Zhou, G., Zhao, Q.: Multiway canonical correlation analysis for frequency components recognition in SSVEP-based BCIs. Neural Information Processing: 18th International Conference, ICONIP 2011, Shanghai, China, November 13-17, 2011, Proceedings, Part I, 18, Springer Berlin Heidelberg, 287–295 (2011).
17. Nakanishi, M., Wang, Y., Chen, X.: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Transactions on Biomedical Engineering, 65(1), 104–112 (2017).
18. Yan, W., Du, C., Wu, Y.: SSVEP-EEG denoising via image filtering methods. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1634–1643 (2021).
19. Niu, W., Li, B., Liang, G.: Enhancement method of Riemann-Liouville fractional-order differentiation for digital images. Journal of Computer-Aided Design & Computer Graphics, 26(12), 2189–2195 (2014).
20. Chen, X., Wang, Y., Gao, S.: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface. Journal of Neural Engineering, 12(4), 046008 (2015).
21. Wang, Y., Chen, X., Gao, X., et al.: A Benchmark Dataset for SSVEP-Based Brain–Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(10), 1746-1752 (2017).