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ABSTRACT

1. A life history strategy, the collection of actions, timings and characteristics individuals

employ to optimize fitness, represents the evolutionary answer to a species’ ecological
problems. From the fatally reproductive salmon to the seemingly immortal jellyfish
Turritopsis dohrnii, different species have found vastly different answers to their
ecological problems, generating the vast suite of life histories observed across the animal
kingdom. To explain this variation, life history theorists have generated and tested specific
hypotheses to describe this variance and define what drives it.

Since Stearns (1992) and Roff (2002), animal life history evolution has pushed new
frontiers. Specifically, insights from theoretical modelling, experiments, fieldwork and
comparative studies have elucidated: how to describe life histories, what drives variance in
life histories and what are the mechanisms that underlie life history traits. However, despite
this progress, gaps in knowledge still remain.

In turn, here we review current perspectives, developed over the past 20 years, that support
much of life history research today. These perspectives include: (1) the two-axes
framework to describe life histories across taxa, (2) three different types of variance that
impact life history evolution (i.e., variance within time-steps, across time-steps and
variance in life history outcomes) and (3) the utility of integrating ultimate and proximate
modes of research to understand life history evolution. Subsequently, we outline future
directions that represent new frontiers in animal life history evolution. These future
directions are targeted at specific gaps in knowledge that offer timely insights for the

broader ecology and evolutionary biology community: (1) where does selection act in a
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life history, (2) a new representation of life histories in variable environments and (3)
dealing with time in life history evolution.

4. In summary, this review provides a holistic perspective (from molecules to selection
gradients) on how life histories are studied and why life history research requires
interdisciplinarity. The further discussion of current perspectives and future directions
provides a cross-section of animal life history research today: where we are, how we got

here and where we are likely heading.

INTRODUCTION

Life history theory is a field of research focused on describing the rich diversity of strategies
species use to pass their genes across generations. Specifically, a life history is the sequence of
events and timings in an individual’s lifespan, governed by underlying vital rates (e.g., survival,
growth, reproduction), that contribute to both individual fitness and broader population dynamics
(Roff, 2002; Stearns, 1992). Such events and timings that constitute a life history are referred to
as life history traits — here defined as phenotypes constructed from vital rates that describe fitness
components (e.g., generation time, expected lifespan and lifetime reproductive output).
Collectively, these life history traits are often referred to as a life history strategy — the combination

of life history traits that has evolved for the population to persist.

Across the animal kingdom, there is enormous variation in life history strategies (Jones et
al., 2014). The Greenland shark takes a protracted period of 150 years to eventually reach sexual
maturity (Nielsen et al., 2016). The aphid Rhopalosiphum prunifolia condenses the time it takes

for necessary resource acquisition, development and reproductive output to have a generation time
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of just 4.7 days (at 25°C; Noda, 1960). The Chinook salmon populations that support coastal
ecosystems and economies on the west coast of North America take the perilous journey upstream
to reproduce and immediately perish in the waters they struggled so hard to reach (Groot &
Margolis, 1991). This broad heterogeneity in animal life histories has pushed researchers to
explain: (1) how we can describe these differences, and (2) what drives their evolution in a

changing world.

Animal life history research is highly interdisciplinary. For example, imagine four
researchers from different fields that are interested in studying the life history of “man’s best
friend” (i.e., the dog, Fig. 1). The comparative demographer may be interested in characterizing
the major axes of variance in life history strategies across all dog breeds (Healy et al., 2019;
Salguero-Gomez et al., 2017). The evolutionary biologist may be interested in characterizing life
history trade-offs (i.e., negative covariances between life history traits) individual dog breeds
exhibit in response to different diets (Stearns, 1989; Zera & Harshman, 2001; Zera & Zhao, 2006).
The organismal biologist may be interested in the genetic, cellular and physiological pathways that
initiate the timings associated with life history traits (e.g., age at sexual maturity) (Jimenez, 2016).
The population ecologist may be interested in characterizing the sources of variation (e.g., genetic,
environmental, luck) in life history traits within a population (Careau et al., 2010). All these
research programmes, whilst completely within the interdisciplinary field of life history theory,
test very different hypotheses using very different methods Hence, over the past twenty years,
researchers have pushed new frontiers and posed new questions from a variety of different

approaches.
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Figure 1. The many ways to study life histories. Here, we outline four distinct strategies to study
the life histories of dogs. (a) Comparative demography may involve using dimension reduction
methods (e.g., phylogenetically controlled principal component analyses (Revell, 2009)) to
identify the primary axes of dog life history variation. (b) Evolutionary biology may involve
identifying the causes and constraints that lead to life history trait covariances (e.g., how diet can
alter the presence of trade-offs). (c) Organismal biology may involve studying the physiological
pathways (e.g., insulin/insulin-like growth factor signalling (Jimenez, 2016)) that mediate the
generation of life history traits. (d) Population ecology may involve partitioning the variance in
life history traits by their contributions from genes, the environment and their interaction.

Life history theory can greatly benefit from an integration of the different approaches
researchers use to study animal life history evolution. To aid this integration, here we review
current-perspectives and future directions in life history theory from across ecology and evolution.
The current perspectives outlined in this paper represent step changes in thinking in life history

research since Stearns (1992) and Roff (2002). Subsequently, we discuss future directions that
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represent new frontiers for life history researchers to explore, and potentially generate new

perspectives in the years to come.

CURRENT PERSPECTIVES

Here, we outline current perspectives in animal life history research that have progressed
significantly in the past 20 years. Whilst not exhaustive, these three sections act as a primer
summarizing research programmes that have pushed the field forward and bolster much of life
history research today. These sections progressively zoom in, in terms of scale, on recent findings
in life history research: from comparative approaches across species, to variance decomposition

approaches within species to the drivers of individual life history traits.

Describing life histories across the animal kingdom

Ecologists have long been interested in answering the question, how do life histories differ? The

first attempt to characterize life histories was Robert MacArthur and E. O. Wilson’s r vs. K-
. . . .- . dN K—-N
continuum (MacArthur & Wilson, 1967). Built on the logistic growth equation (E =rN (T))

the r vs. K-continuum differentiates life histories based on the term under strongest selection;
notably, this was also swiftly connected to the observation of survivorship curves which were also
first formulated at this time (Van Valen, 1973). Whilst generalizable across taxa, the r vs. K-
continuum does not account for major life history traits and their tendency to covary. For example,
generation time, mean life expectancy and age at sexual maturity vary greatly across the animal

kingdom (from the aphid to the Greenland shark) and, furthermore, covary to a significant degree
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— to the degree of becoming a syndrome. As a consequence, the second attempt to characterize life
histories came when Stephen Stearns framed life history variation in terms of a pace-of-life
syndrome (Stearns, 1983). Some life histories are slow (long generation time, higher mean life
expectancy and later age at sexual maturity) whilst others are fast (short generation time, lower
mean life expectancy and earlier age at sexual maturity). Until recently, this fast-slow continuum

was the primary method to explain the variation in life histories across the animal kingdom.

Currently, animal life histories are characterized across two axes of life history variation. To
empirically quantify the primary axes of life history variation in animals, Healy et al. (2018) used
a body mass and phylogenetically corrected principal component analysis (PCA) of life history
traits from 121 species. This PCA identified two axes that collectively explain 71% of the variance
in life history traits. These axes include pace-of-life syndrome and the distribution of age-specific
reproduction and mortality — this follows Salguero-Gémez et al. (2017) finding a similar pattern
in plants. Identifying these two axes of animal life history variation was immediately impactful for
two reasons. First, this result shows that the distribution of demographic processes, such as survival
and reproduction, is orthogonal to pace-of-life syndrome. Therefore, selection for the evenness
(e.g., constant survival, iteroparity) or skew (e.g., varied survival, semelparity) of demographic
rates across a life history can arise in both slow and fast life histories. Second, this result connects
directly to the Euler-Lotka equation (1 = Y %_,A7*l,m,), another fundamental equation in
demography, which defines survivorship (I,.) and reproduction (m,) as vectors that constrain the

mathematical space of possible life histories.

After Healy et al. (2018), the two-axes framework for animal life histories has fostered new

findings. Some examples include:
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1. The sensitivity and resilience of a population to temporal autocorrelation and demographic
disturbance is strongly correlated with pace-of-life syndrome (temporal autocorrelation:
Paniw et al., 2018; demographic disturbance: Capdevila et al., 2022).

2. Both terrestrial and aquatic life histories inhabit the same two-axes of life history variation,
but with key differences in their diversity (Capdevila et al., 2020).

3. Populations can harbour high degrees of interindividual life history variation that differ
across species whilst allowing for high intraspecific variation not described by the axes (Van
De Walle et al., 2023).

4. The two-axes framework aids in predicting the conservation status of various species in
response to anthropogenic disturbance and climate change (Indo-Pacific fishes: Wang et al.,
2020; chelonians and crocodilians: Rodriguez-Caro et al., 2023; the gray mouse lemur:
Ozgul et al., 2023).

Whilst these findings have made new connections between life history theory and multiple areas
of ecology, the two-axes framework is not without its flaws. The two-axes framework of animal
life histories is data and, more specifically, model hungry. To perform the analysis, life history
traits from across the animal kingdom must be derived. The life history traits are often derived
from structured population models — many of which are stored in open-access databases
(Jasilioniene et al., 2015; Levin et al., 2022; Marques et al., 2018; Salguero-Goémez et al., 2016;
Wilmoth et al., 2007). Whilst these models sometimes contain errors (Che-Castaldo et al., 2020;
Gascoigne, Rolph, et al., 2023; Kendall et al., 2019), there has been a push for standardizing
research practices around the dissemination of models (Gascoigne, Rolph, et al., 2023; Simmonds
& Jones, 2023). Thankfully, there has also been a recent push for standardizing the traits used
within the two-axes framework (Stott et al., 2023). This standardization, across model

construction, communication and the comparative inference drawn from them, represents a
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necessary next step for reproducibility in research using the two-axes framework (Salguero-Gémez

etal., 2021).

Characterizing variance in life histories within populations

Life histories are not static. Yet, much of the canonical life history literature, from Pearl (1925) to
Charlesworth (1994), and the comparative approaches detailed above have focused on the
expression of average life histories in populations. Currently, the exploration of variance in life
histories within a population is just as, if not more, exciting and relevant to understand life histories

in a changing world.

Variance in life histories can take many different forms. Variance may arise by relatively
complicated mechanisms such as strength of frequency dependence on demographic processes
(Potter et al., 2023) or heterogeneity in parental care in a population (Pape Mgller & Thornhill,
1998). However, the emergent variance in life histories can be simply categorized into three types:
variance within time-steps, variance across time-steps and variance in life history outcomes (e.g.,

lifespan, reproductive output).

Variance within time-steps alludes to the heterogeneity within a population at time t. This
heterogeneity, also called individual variability, may arise due to life history explicit factors. For
example, individuals in a population may vary by genotype, sex, ontogenetically (e.g., juvenile or
adult), by a separate state (e.g., dormancy or dispersal) or by strategy (e.g., sneakers vs. guarders
in Onthophagus beetles: Emlen, 1997). This heterogeneity is necessary to understand the relative
fitness of individuals in a population. To quantify this relative fitness, researchers often use

reproductive value: the discounted contribution of an individual to future offspring (for a thorough
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explanation, see: Barton & Etheridge, 2011 and Grafen, 2006). Using reproductive value,
researchers are able to build hypotheses as to the evolution of life history strategies in structured
populations (e.g., senescence in age-structured populations (Newton & Rothery, 1997; Roper et
al., 2021), the evolution of sociality (Roper et al., 2023), bet-hedging (Grafen, 1999) and parasitism

(Andersson, 2017)).

Variance across time-steps, often called environmental stochasticity, refers to the
difference in life history outcomes over time (e.g., from time t to t+1). To illustrate this concept,
imagine a researcher interested in modelling the life histories of a charismatic opossum population
in the Brazilian rainforest (Kajin et al., 2008). In year t, the opossum population is exposed to a
favourable environment full of resources and habitat. As a consequence, at time t, individuals with
a large body size and reproductive capacity had a relatively higher fitness than smaller individuals
with delayed age at sexual maturity. However, in year t+1, a fire passes through the rainforest
reducing habitat area and resource availability. In turn, at time t+1, smaller individuals that were
able to delay their age at sexual maturity, and not reproduce during the fire, were able to
disproportionately contribute to the new offspring — and thereby have a higher fitness that their
larger conspecifics. This switch between the relative fitness of life history strategies across
timesteps poses a problem to the researcher who asks: “Which life history is characteristic of the
population?” The truth is, both are. To study life histories in response to environmental
stochasticity, researchers often use the tools of stochastic demography (Tuljapurkar, 1990). This
set of tools allows researchers to quantify the impact of variance across timesteps on life histories.
Using these tools, researchers have identified the demographic mechanisms that drive the
emergence of life history strategies — some of whom were previously thought non-adaptive (e.g.,

Jongejans et al., 2010; Koons et al., 2008, 2009; Tuljapurkar, Gaillard, et al., 2009).
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Variance in life history outcomes is a relatively new area of study within life history
evolution. Researchers in this field are interested in quantifying (1) the variance in life history
outcomes and (2) what drives this variance. To quantify the variance in life history outcomes,
researchers use structured population models to calculate the expected variance in a life history
outcome given a set of demographic processes. This variance is often referred to as dynamic
heterogeneity (Tuljapurkar, Steiner, et al., 2009) or individual stochasticity (Caswell, 2009), but
confusion about definitions exists (Forsythe et al., 2021). Research into dynamic heterogeneity has
been able to uncouple: genetic, environmental, gene by environment (i.e., phenotypic plasticity)
and demographic stochastic components and further provide quantitative estimates of dynamic
(neutral) heterogeneity in life courses that can serve as null models (Snyder & Ellner, 2018, 2022;
Steiner et al., 2021; van Daalen & Caswell, 2017, 2020a). Ideas about dynamic heterogeneity have
been perceived with criticism (Cam et al., 2016) as deterministic perspectives are deeply rooted in
our biological thinking — life history theory in particular. However, both empirical and theoretical
research have illustrated how purely deterministic explanations fall short (Fay, Authier, et al.,
2022; Snyder & Ellner, 2022; Varas Enriquez et al., 2022). Individual stochasticity, even though
neutral in itself, slows adaptation (Steiner & Tuljapurkar, 2012) and selective forces might act in
favour of, against, or be close to neutral of the generating processes that drive the level of
individual stochasticity (Steiner & Tuljapurkar, 2023). Such diversity is not surprising as increased
variance in mortality and reproduction can increase individual stochasticity while reducing fixed
heterogeneity but can also increase both components in some systems (van Daalen & Caswell,
2020Db). Variance in reproduction associated to individual stochasticity is high within and between

populations across species and such variance explains the variation in life history strategies

11
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amongst animals and plants to a similar if not larger degree than mean differences (Varas Enriquez

etal., 2022).

Ultimate vs. proximate explanations of life history evolution

In the past, research into animal life history evolution has focused on ultimate (evolutionary)
modes of research. Why has selection not resulted in the evolution of solely semelparous species
(Cole’s paradox: Cole, 1954)? What are the necessary conditions for dormancy/diapause/torpor
to be the dominant strategy in a population (Tuljapurkar & Istock, 1993)? This focus on ultimate
rather than proximate (mechanistic) research questions arose due to a widely held sentiment that
evolutionary biology was the ideal home for life history theory.

The connection between genotype and phenotype has traditionally been provided

by developmental biology and physiology, fields which have become increasingly

molecular. . . We cannot afford to wait until the molecular analysis of

development and physiology has delivered a few mature summary statements

relevant to individual variation in fitness, for that will take centuries — if it ever

happens at all. We must make our own hypotheses and hope that the molecular

connection will come at a later date.
- Stearns (1992, p. 10)

Thankfully, this “molecular connection” is now being well explored.

The molecular underpinnings of life history traits are central to life history research. Over
the past 20 years, researchers have uncovered the molecular mechanisms of senescence — the
deterioration of homeostatic mechanisms with age (L6pez-Otin et al., 2013). From telomere

shortening (Haussmann & Vleck, 2002; Henriques & Ferreira, 2012) to dysregulated physiological

12



269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

2901
292

pathways (e.g., hyperfunction theory: Blagosklonny, 2006, 2021), and from too much protein
(Fanson et al., 2012) to differential resource allocation (Adler & Bonduriansky, 2014), researchers
have identified many proximate explanations for senescence across the animal kingdom (Lopez-
Otin et al., 2013). Furthermore, mechanisms have also been fleshed out for the other side of life
histories - fertility. All periods of reproduction, from pre-copulation to copulation to post-
copulation, contain candidate proximate mechanisms that influence the variation in life histories:
including endogenous insulin/insulin-life growth factor signalling (11S) (Lind et al., 2019; Regan
et al., 2020; Sepil et al., 2020), target of rapamycin signalling (Alves et al., 2022), sperm traits (Ni
et al., 2016; Sanghvi et al., 2023) and seminal fluid proteins (Hopkins et al., 2019; Sepil et al.,

2020; Wigby et al., 2020) — just to name a few.

One takeaway from this plethora of proximate mechanisms is the lack of generality. For
every life history trait, there is one or many physiological mechanisms that impact the generation
of the life history trait phenotype. Whilst these mechanisms have offered a great deal of relevance
to developmental biology (Davidson et al., 2023; Emlen & Nijhout, 2001; Kapali et al., 2022;
McDonald et al., 2018; Shingleton et al., 2007; Simmons & Emlen, 2006) and evolutionary
medicine (Stearns & Medzhitov, 2015), proximate mechanisms alone do not implicate the
evolutionary drivers that shape life histories. To gain this generality, current research programs
have linked the proximate with the ultimate to offer direct links between the two modes of research.
Examples of this integrative approach to life history theory include:

1. Wolves in North America — In Cubaynes et al. (2022), the authors test the hypothesis
that canine distemper virus (CDV) drives the latitudinal distribution of coat colour in
the wolves of North America (i.e., the increased frequency of black coats in higher

latitudes). The authors use a combination of genetics and demographic models to show

that CDV creates a selective pressure for disassortative mating, due to heterozygous

13



293 advantage. In turn, Cubaynes et al. (2022) demonstrate how strength of selection on

294 reproductive strategies can be moderated by genetically determined pathogen

295 resistance.

296 2. Drosophila melanogaster and insulin across latitudes — In the lab, researchers have

297 demonstrated the broad impacts of insulin/insulin-like growth factor signalling (I1S)

298 on development (Parker & Shingleton, 2011; Shingleton et al., 2005, 2007), nutrient

299 sensing (McDonald et al., 2021), environmental cues (Kapali et al., 2022; Regan et al.,

300 2020; Snell-Rood & Moczek, 2012) and life histories (Giannakou & Partridge, 2007;

301 Sepil et al., 2020) in Drosophila melanogaster. However, there was no evidence that

302 these lab-based findings were related to the already known impacts of latitudinal clines

303 on Drosophila life histories (James et al., 1997). To fill this gap in knowledge, Fabian

304 et al., (2012) explored genome-wide patterns in latitudinal differentiation in

305 Drosophila melanogaster across the east coast of North America. Interestingly, they

306 found IIS associated genes (e.g., FOXO and InR) that differentiated across the

307 latitudinal cline. In turn, genome-wide tools of natural populations are able to connect

308 lab-based findings to real world life history phenomena.

309 3. Guppies in Trinidad — In Potter et al. (2023), the authors explore the possible

310 mechanisms that maintain variance in male colouration in a population of guppies. The

311 authors use a combination of a pedigree (spanning 10 generations), spatial data and

312 demographic rates to show that variance in male colouration and the long discussed

313 genetic mechanisms that underpin them (Houde, 1994; Hughes et al., 2005; Paris et

314 al., 2022) are maintained via female preference for rarity. This female preference is

315 adaptive due to an indirect benefit on the fitness of their “sexy sons.” In turn Potter et

316 al. (2023) show that female preference is sufficient to promote variance in genetically

317 determined male secondary sexual signals — also see (Kvalnes et al., 2022) for a

318 similar, but density-dependent, case in barn owls.

319

320 These examples demonstrate how ultimate and proximate questions can be integrated to
321 advance our understanding of life history evolution. Admittedly, these studies are built on great
322 deals of hard-fought longitudinal data, making the scaling of this inference across taxa
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especially challenging. Thankfully, developments in the ways we model populations are
making this obstacle progressively smaller (Bocedi et al., 2021; Coulson, 2021; Wilson et al.,

2010).

FUTURE DIRECTIONS

Here, we outline future directions in animal life history evolution, each of which targets a specific
gap in knowledge. Since these are future directions — and the work has not been done yet — we first
describe the gap in knowledge and then outline research programs that may address these gaps

and, possibly, offer new insights.

Where does selection act in a life history?

Currently, research on life history evolution has a problem — a problem specifically linked to the
evolution part of life history evolution. To illustrate this problem, let us imagine a young budding
ecologist, called Willow, enjoying her undergraduate courses in ecology and evolution. In these

courses, Willow learns there are three requirements for evolution by natural selection:

e First, the trait must have an impact on fitness.
e Second, there must be variance in the trait across the population.

e Third, the variance in the trait must be heritable to some degree.

After completing her undergrad, Willow is excited to begin her graduate studies focused on life
history evolution. However, after perusing through the literature, Willow is shocked. The majority

of papers on the evolution of life histories focus solely on the first criterion for evolution by natural
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selection (Barraguand & Yoccoz, 2013; Benton & Grant, 1996; Hilde et al., 2020; Jaggi et al.,
2023; Koons et al., 2009; Le Coeur et al., 2022; J. L. McDonald et al., 2017; Morris et al., 2008;

Pfister, 1998; Tuljapurkar, Gaillard, et al., 2009). Why is this the case?

There are two reasons why studying the evolution of life histories remains difficult.

First, defining fitness is problematic (Smith, 1983). In theory, fitness is easy to determine:
the genetic contribution of an individual to successive generations relative to other individuals in
the population. However, in the real world, fitness is harder to quantify. This difficulty is partly
due to the multi-faceted nature of fitness. The fitness of an individual is determined by multiple
components — e.g., offspring number, offspring quality, parental care, social status. Each of these
components combines to generate the sum total fitness we, as life history theorists, are interested
in. Out of practicality, researchers often use life history traits as proxies of fitness (see Fig. 2). The
basis for this approximate approach is in both ease and phenotypic correlations often being
reasonable proxies for genetic correlations (see Cheverud’s conjecture: Cheverud, 1988).
Unfortunately, this approximation may lead to bias and misrepresent the fitness profile of

individuals in a population (Pick, 2023).

Second, modelling the evolution of life histories is difficult. Reverting back to the
definition, a life history is the sequence of events and timings in an individual’s lifespan, governed
by underlying vital rates, that contribute both to individual fitness and broader population
dynamics. Of this series of events and timings, researchers can only capture a subset in a
demographic model or a lab-based study. For example, demographic models rarely, if ever, include
mate choice mechanisms (despite their abundance: Westneat et al.,, 2000), the impact of
transgenerational effects (despite their abundance: Crean & Bonduriansky, 2014; Skinner, 2016))

and behaviours that have direct impacts on individual fitness (e.g., the Bogert effect: Bogert, 1949).
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All in all, this leaves the researcher with a dilemma: What events and timings are necessary to
include when modelling a life history? Is there such a thing as a model that is too complex, or not
complex enough? Currently, researchers have not defined the criteria for the inclusion of a variable
in a life history model; however, there are strong arguments against the inclusion of anything and

everything (Borges, 1999; Caswell, 2019, p.6).

— direct impacts
Fitness (

covariances /‘ \
lifetime

generation time reproductive output

|

survival dependent age- specmc
state transition fertility (m )
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growth (—) survival €2 aproduction

Figure 2. The complexities of life history evolution. Here, we show how the current toolbox of
demographic methods reveal the inherent complexity of life history evolution. Life history traits,
often used as proxies of fitness (W), have both direct (black arrows) and indirect (coloured arrows,
i.e., via covariances/trade-offs with other life history traits) impacts on fitness. Furthermore, life
history traits themselves are constructed by underlying demographic rates and, at a deeper level,
vital rates, which exhibit the same nested complexities of direct and indirect impacts on fitness.
We note that, whilst this shows the apparent complexity of life history evolution, there are levels
below vital rates (e.g., resource availability) that can further complicate the expression of life
history traits and their covariance structure (De Jong & Van Noordwijk, 1992; Metcalf, 2016;
Noordwijk & de Jong, 1986).
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To address these difficulties, we recommend two approaches. First, we recommend a trait-
based approach as presented in Coulson (2021). In this approach, life histories can be viewed
through one focal life history trait (i.e. body size) using an integral projection model (Easterling et
al., 2000; Ellner et al., 2016). Within this framework, a series of resource accrual traits are selected
upon to optimize body size given a set of eco-evolutionary feedback loops. By using body size as
the metric of interest, Coulson (2021) shows how perturbation analyses can be used to define the
eco-evolutionary determinants of body size. This modelling approach (also see Coulson et al.,
2021), whilst scalable, loses the complexities offered by previous demographic approaches. In
turn, we also recommend a second approach which involves variance decomposition. Both
population ecologists and population geneticists have developed variance decomposition
techniques to identify the drivers of system-wide behaviour through demographic rates or allele
frequencies, respectively. These methods are life table response experiments (Caswell, 1996, 2010;
Hernandez et al., 2023) and quantitative trait loci (QTL)/genome-wide association studies
(GWAS) (e.g., Ivanov et al., 2015). Whilst methods exist to knit together structured demographic
models and genetic structure (de Vries & Caswell, 2019; Steiner et al., 2021), researchers currently
do not have a tool to explore the genetic underpinnings of life history traits without a known link
between a gene and a life history trait a priori. To build and test these models, we recommend
using tractable model systems, such as Drosophila melanogaster and Caenorhabditis elegans, due
to the readily available tools for GWAS/QTL studies and the easily modelled life history due to
discrete ontogenetic stages. These models would thus represent ideal avenues for research
programmes focussed on integrating ultimate and proximate understandings of life history

evolution.
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A phase diagram of life histories in variable environments

The impact of variable environments on life histories is a key topic in life history evolution and
population dynamics (Sutherland et al., 2013). The reason for this is, in addition to being
interesting, global climate change is predicted to change environment variability (a key driver of
variance in life history processes (Jackson et al., 2022)) across the globe — posing an imminent
threat to biodiversity (Bathiany et al., 2018; Drake, 2005; Masson-Delmotte et al., 2021; Vasseur

etal., 2014).

Much of our current understanding around life histories in variable environments is centred

around Tuljapurkar’s approximation (Tuljapurkar, 1989, Eq. 1).

o+t 0

(Eq. 1) log(4;) = log(A) — S + 53

Here, the logarithmic long-run stochastic population growth rate (log(A1s)) can be approximated
via the population growth rate associated with the mean environment (1,) with contributions from
demographic rate variances (o), covariances (t) and temporal autocorrelation (8). In studies of
life histories in variable environments, log(As) is often used as a measure of fitness associated
with a specific life history strategy (Cubaynes et al., 2022). In turn, researchers have been
interested in the ways by which life histories can optimize log(A,) given the terms on the right-

hand side of the equation.

Over the course of the past 25 years, may studies have explored the impact of demographic
rate variances (o2: Doak et al., 2005; Engen et al., 1998; Foley, 1994; J. L. McDonald et al., 2017;

Morris et al., 2008; Morris & Doak, 2004; Pfister, 1998; Sather, 1997; Sather et al., 1998) with
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relatively less focus on demographic rate covariances (Compagnoni et al., 2016; Fay, Hamel, et
al., 2022) and environment autocorrelation (Evers et al., 2023; Gascoigne, Kajin, et al., 2023;
Tuljapurkar & Haridas, 2006). Similarly, despite a large body of literature, little focus is given to
the relationship between the most important term in Tuljapurkar’s approximation, log(4,), and the
variance components. This represents a key gap in knowledge as the simplest way for a life history
strategy to improve its associated fitness is through changes in its mean demographic rates, not
variance components. And unfortunately, shifts in mean life history strategies cannot be neatly
uncoupled from variances as they confound one another. Therefore, we argue life history theory

would benefit from a new perspective to probe life history evolution in variable environments.

To build this new perspective, we go back to using “man’s best friend” in a thought
experiment. Imagine an arachnophobic puppy named Hastings who has just come across a spider
whilst on his morning walk. Given the behavioural ecology of the puppy, Hastings can respond in
three ways. These responses include: fight, flight and hide. All of these responses are completely
possible to deal with the approaching eight-legged threat. We relay this analogy to argue that life
history strategies can also use these responses to deal with variable environments. Instead of a
puppy, now imagine a population, and instead of a spider, now imagine environmental variability.
In response to the threat of environmental variability, populations can evolve life history strategies

whereby they can (Fig. 3a):

e persist (fight) via plasticity or adaptation to the variable environment.
e escape the environment (flight) via dispersal, migration or vagrancy.

e avoid the timestep (hide) via dormancy, torpor or hibernation.

These strategies are insightful as, in addition to being strategically distinct, their costs are broadly

distinct as well (Fig. 3a):
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e fighting involves the cost of environmental variability outlined in Tuljapurkar’s
approximation (i.e., variance in demographic rates)

e flight often involves a cost to demographic rates (i.e., reduced survival or reproductive
output)

e hiding involves a cost directly to fitness in the form of extending generation time

From these costs we can build a visual representation of when and where each strategy should be

selected for.

Here, we propose a phase diagram of life histories in variable environments (Fig. 3b). Taking
inspiration from the 150-year-old concept of phase diagrams in physics and chemistry, we show a
framework whereby different combinations of costs associated with dispersal/migration/vagrancy
and dormancy/torpor/hibernation can evolve and, as a strategy, invade the population. We
hypothesize this phase diagram will look very different for life histories with different ecologies

(e.g., Fig. 3c,d).

To test this phase diagram, we recommend a combination of theoretical modelling and
experimental approaches. Modelling using two/multiple patch systems (Steiner et al., 2014; Sultan
& Spencer, 2002) would allow a researcher to vary the cost of dispersal a priori — however we
note the cost of dispersal can come in a variety of forms which should also be explicitly explored
(Bonte et al., 2012). Furthermore, we recommend a modelling approach to explore a variety of life
history archetypes to see how life histories shape the phase diagram (Takada et al., 2018).
Analytical and individual-based eco-evolutionary models can be used to provide theoretical
predictions on the evolution of, for example, dispersal vs. dormancy vs. in situ adaptation, under
different combination of life histories, ecological conditions and relative costs of the different

strategies (Gerber & Kokko, 2018; Travis et al., 2021; Vitalis et al., 2013).
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Regarding experimental approaches, we recommend the use of insects with defined stages of
development which also exhibit differential dispersal morphology (e.g., the seed beetle
Callosobruchus maculatus (Gascoigne et al., 2022; Sanghvi et al., 2021, 2022) with experimental
evolution approaches (Lustenhouwer et al., 2023)). In seed beetles, multiple patch systems can be
constructed to moderate the cost of dispersal, and temperature during juvenile development can be

used to moderate cost of dormancy (here defined as prolonged development time).

We acknowledge that the costs associated with the fight, flight and hide strategies are not
mutually exclusive. For example, it is quite likely that a cost of dispersal on demographic rates
leads to a shift in generation time. However, we offer this phase diagram of life histories in variable
environments as both a hypothesis and a heuristic to start testing life history evolution beyond

variance components.
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Figure 3. A phase diagram of life histories in variable environments. Here, we illustrate how
life history evolution in variable environments can be represented by three different competing
strategies: fighting (persisting in the face of environmental variability), flight (escaping the
immediate threat of environmental variability) and hiding (avoid a time-step through
dormancy/hibernation/torpor to reduce the impact of environmental variability. (a) The costs of
each strategy are broadly independent and can, thus, be viewed as in competition with one another.
To visualize this competition, we construct a phase diagram (b, resembling phase diagrams from
physics and chemistry). Here, the fight, flight and hide strategies emerge at different combinations
of costs associated with the flight and hide strategies. We use dispersal and dormancy to represent
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the focal cost, but this could easily be migration/vagrancy or hibernation/torpor. We note that this
space may look very different across species — shown by the polar bear (c) and the blue tit (d). The
utility of this framework arises by the placing of a population on this phase diagram. To illustrate
this, the polar is in the hide region — meaning the polar bear population could be successfully
invaded by a life history strategy that has a relatively longer period of hibernation than the rest of
the population. Likewise, the blue tit population in the flight region — meaning the blue tit
population could be successfully invaded by a life history strategy that involves relatively more
dispersal events across habitable patches than the rest of the population. We hypothesize that
manipulating the costs along this space should predictably change the position of the population
on the phase diagram.

The issue of time in studying life histories

Currently, life history evolution has not addressed the problem of time. Specifically, time is
relative. Here, we are not talking about how animals perceive time (this is a topic we will leave to
other fields (Roberts, 2002; Zentall, 2005)). Instead, we are discussing how time within the life

history of an animal relates to the temporal pattern of events it senses in its environment.

Life histories and environments are temporally explicit processes. Whether we are
discussing an age (e.g., Holmes & York, 2003), stage (e.g., Crouse et al., 1987) or size (e.g., Bassar
et al., 2015) structured life history, individuals change state (i.e., growth, progression, shrinkage,
retrogression), stay in the same state (i.e., stasis), reproduce or die across timesteps t to t+1. We
note this would also work in the continuous case across dt. As a consequence of the temporal
nature of life histories, many of the life history traits we derive are also temporally explicit (e.g.,
generation time, age at sexual maturity, expected lifespan). In addition, environments are also
temporally explicit. Whether we are discussing yearly (Hansen et al., 2019), monthly (Paniw et
al., 2019), weekly (Wood et al., 2023) or even shorter timeframes (Jouvet et al., 2018),

environment components are also structured across timesteps t to t+1, or dt. We outline these
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obvious facts as it is the combination of the life history and environment timeframes where life

history research gets messy (Tuljapurkar, 2023).

Previous research analysing the role of environment components has been agnostic as to
the mismatched timeframes of life histories and environment regimes. In other words, researchers
estimate the impacts of environment components on life histories across timesteps relevant to an
environment component (Vinton et al., 2022), not the life history in question (but see Park, 2019;
Park & Post, 2022; Park & Wootton, 2021). This line of research is valuable from the point of
view of conservation biologists as it is useful to estimate environment contributions toward broader
population dynamics, however this does not allow us to interpret how life histories evolve. To
illustrate this point, let us imagine two populations of interest, a mosquito population and an
elephant population. Whilst EI Nifio and La Nifia may have dramatic consequences on the size of
the mosquito population at a certain point in time, a timeframe of two to seven years is not small
enough to fit within a life history of a mosquito. For the elephant, however, a two-to-seven-year
timeframe is sufficient to disrupt life histories to the point of altering life history outcomes (Li et
al., 2015). To put the shoe on the other foot, daily predictable gusts of wind may have an impact
on mosquito life history evolution (Endo & Eltahir, 2018; Wong & Jim, 2017) but likely does not
impact the evolution of elephant life histories due to a timeframe disparity. In turn, whilst the
impacts of environment regimes (agnostic of life history timeframes) on population dynamics is
important, they do not necessarily inform the impacts of environment regimes on life history

evolution.

To fill this gap in knowledge, we recommend accounting for generation time when
analysing the impacts of environment components on life history evolution (Fig. 4a-d). We

hypothesize that this standardization will demonstrate the degree to which life histories are able to
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accommodate environment components. We further hypothesize this will have important
implications for the role of plastic/tracking vs. canalized/buffered strategies (Fig. 4e,f). Plastic
strategies for life histories in variable environments have been discussed at length over the past
twenty years (King & Hadfield, 2019; Koons et al., 2009; Snell-Rood, 2013; Sultan & Spencer,
2002; Vinton et al., 2022; West-Eberhard, 2003; Xue & Leibler, 2018), but, up until now, the

impact of generation time has not been linked.

To test these hypotheses, we recommend a combination of comparative studies and
theoretical modelling. Comparative analyses have brought great insights to animal life history
evolution (Capdevila et al., 2020, 2022; Healy et al., 2019). A reanalysis of some of these results,
accounting for generation time, may yield findings indicating how well populations deal with the
environments they experience across their life history (Fig. 4a-d). In addition, we recommend
modelling approaches of stochastic environments built on underlying spectra (e.g., 1/f noise:
Halley, 1996; Halley & Inchausti, 2004) to test the degree to which life histories evolve plastic or
canalized strategies based on how environments contribute to the evolution of phenotypic

plasticity (Dupont et al., 2023; Hoffmann & Bridle, 2022; Vinton et al., 2022, 2023).
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Figure 4. Accounting for time in both life histories and the environment in our understanding
of life history evolution. Here, we show the impact of pace of life syndrome on inferences of life
histories in variable environments. Previous research has shown broad relationships between the
impact of environment variance (a, (Morris et al., 2008; Paniw et al., 2018)) and disturbance
regimes (c, (Capdevila et al., 2022; Compagnoni et al., 2021)) across slow and fast life histories.
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Whilst informative for conservation purposes, this approach does not account for the timeframe
within which life histories take place — a necessary consideration to understand life history
evolution in variable environments. In turn, we propose a new line of research measuring the
impact of environment variability (b) and disturbance regimes (d) accounting for generation time
(T). This analysis would indicate the degree to which a life history is responsive or stable in
environmental regimes relative to the life history’s timeframe. Furthermore, this approach has
broad implications connecting life histories in variable environments to the evolution of
phenotypic plasticity. (e) Depending on the timeframe within which the life history takes place,
individuals may be exposed to relatively stable average environment values across generations
(species A) or relatively unstable average environment values across generations (species C) —
from the same environment. The differences only arise due to differences in generation time. The
implications of this mismatch in generation time is that species A may evolve plasticity
mechanisms that allow it to track its environment, more so than species B and C, due to generation
time (also see Dupont et al., 2023; Hoffmann & Bridle, 2022; Vinton et al., 2023).

CONCLUDING REMARKS

Here, we offer a cross-section of the integrative field that is animal life history evolution. The
current perspectives and future directions outlined in this manuscript are in no way exhaustive but
are constructed as a resource to both review the current state-of-affairs in animal life history
research and present frontiers for exploration. We fully expect the ideas relayed across this
manuscript to develop, grow and maybe change as these frontiers are pushed — we leave this to the

reader.

To close, we end with an important reminder. A life history is not a “thing”; one cannot
physically grasp a life history. Instead, a life history is an abstraction used to define the life course
of individuals, from birth to death, in an evolutionary context. It is important for researchers to
remember this when relaying their findings. Within life history theory, results are always context-
dependent and subject to deserved scrutiny. However, through a push for generality, we progress

to understanding the truths by which organisms make their way from t to t+1.
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