REFERENCES
Stailey, Matthew; Conway, SusanE. (2017). Review of the Next Generation of Long-Acting Basal Insulins: Insulin Degludec and Insulin Glargine. The Consultant Pharmacist, 32(1), 42–46. doi:10.4140/TCP.n.2017.42
Ahima, R. S. (2009). Connecting obesity, aging and diabetes. Nature medicine, 15(9), 996-997.
Ayan, E., & DeMirci, H. (2023). A brief atlas of insulin. Current Diabetes Reviews, 19(6), 18-79.
Taylor, S. I., Yazdi, Z. S., & Beitelshees, A. L. (2021). Pharmacological treatment of hyperglycemia in type 2 diabetes. The Journal of Clinical Investigation, 131(2).
Korkiakangas, E. E., Alahuhta, M. A., & Laitinen, J. H. (2009). Barriers to regular exercise among adults at high risk or diagnosed with type 2 diabetes: a systematic review. Health promotion international, 24(4), 416-427.
Vaidya, V., Gangan, N., & Sheehan, J. (2015). Impact of cardiovascular complications among patients with Type 2 diabetes mellitus: a systematic review. Expert review of pharmacoeconomics & outcomes research, 15(3), 487-497.
Dardano, A., Penno, G., Del Prato, S., & Miccoli, R. (2014). Optimal therapy of type 2 diabetes: a controversial challenge. Aging (Albany NY), 6(3), 187.
Snyder, R. W., & Berns, J. S. (2004, September). Reviews: use of insulin and oral hypoglycemic medications in patients with diabetes mellitus and advanced kidney disease. In Seminars in dialysis (Vol. 17, No. 5, pp. 365-370). Oxford, UK: Blackwell Science Inc.
Herman, W. H., Ilag, L. L., Johnson, S. L., Martin, C. L., Sinding, J., Al Harthi, A., … & Raskin, P. (2005). A clinical trial of continuous subcutaneous insulin infusion versus multiple daily injections in older adults with type 2 diabetes. Diabetes care, 28(7), 1568-1573.
Garg, Satish; Ampudia-Blasco, Francisco; Pfohl, Martin (2010). Rapid-Acting Insulin Analogues in Basal-Bolus Regimens in Type 1 Diabetes Mellitus. Endocrine Practice, 16(3), 486–505. doi:10.4158/EP09294.RA
Owens, D. R., Zinman, B., & Bolli, G. B. (2001). Insulins today and beyond. The Lancet, 358(9283), 739-746.
Ashwell, S. G., Amiel, S. A., Bilous, R. W., Dashora, U., Heller, S. R., Hepburn, D. A., … & Home, P. D. (2006). Improved glycaemic control with insulin glargine plus insulin lispro: a multicentre, randomized, cross‐over trial in people with Type 1 diabetes. Diabetic Medicine, 23(3), 285-292.
Hermansen, K., Fontaine, P., Kukolja, K. K., Peterkova, V., Leth, G., & Gall, M. A. (2004). Insulin analogues (insulin detemir and insulin aspart) versus traditional human insulins (NPH insulin and regular human insulin) in basal-bolus therapy for patients with type 1 diabetes. Diabetologia, 47, 622-629.
Becker, R. H., & Frick, A. D. (2008). Clinical pharmacokinetics and pharmacodynamics of insulin glulisine. Clinical pharmacokinetics, 47, 7-20.
Khalilvand, A. B., Aminzadeh, S., Sanati, M. H., & Mahboudi, F. (2022). Media optimization for SHuffle T7 Escherichia coli expressing SUMO-Lispro proinsulin by response surface methodology. BMC biotechnology, 22(1), 1-13.
Akbarian, M., & Yousefi, R. (2018). Human αB-crystallin as fusion protein and molecular chaperone increases the expression and folding efficiency of recombinant insulin. PLoS One, 13(10), e0206169.
Tegel, H., Tourle, S., Ottosson, J., & Persson, A. (2010). Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta (DE3). Protein expression and purification, 69(2), 159-167.
Pan, S. H., & Malcolm, B. A. (2000). Reduced background expression and improved plasmid stability with pET vectors in BL21 (DE3). Biotechniques, 29(6), 1234-1238.
Shokri, A., Sandén, A., & Larsson, G. (2003). Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Applied microbiology and biotechnology, 60, 654-664.
Kusuma, S. A. F., Parwati, I., Rostinawati, T., Yusuf, M., Fadhlillah, M., Ahyudanari, R. R., … & Subroto, T. (2019). Optimization of culture conditions for Mpt64 synthetic gene expression in Escherichia coli BL21 (DE3) using surface response methodology. Heliyon, 5(11).
Nikerel, İ. E., Öner, E., Kirdar, B., & Yildirim, R. (2006). Optimization of medium composition for biomass production of recombinant Escherichia coli cells using response surface methodology. Biochemical Engineering Journal, 32(1), 1-6.
Abu, M. L., Nooh, H. M., Oslan, S. N., & Salleh, A. B. (2017). Optimization of physical conditions for the production of thermostable T1 lipase in Pichia guilliermondii strain SO using response surface methodology. BMC biotechnology, 17(1), 1-10.
Papaneophytou, C. P., & Kontopidis, G. (2014). Statistical approaches to maximize recombinant protein expression in Escherichia coli: a general review. Protein expression and purification, 94, 22-32.
Sopyan, I. Y. A. N., Gozali, D. O. L. I. H., & Guntina, R. K. (2022). Design-expert software (DOE): An application tool for optimization in pharmaceutical preparations formulation. Int. J. Appl. Pharm., 55-63.
Dentener, A. (2002). Design-Expert DOEs it better. Food Technology in New Zealand Magazine, 12-14.
Drummen, N. Aerobic cultivation of high-oxygen-demanding microorganisms in the BioLector XT microbioreactor.
Osthege, M., Tenhaef, N., Zyla, R., Müller, C., Hemmerich, J., Wiechert, W., … & Oldiges, M. (2022). bletl‐A Python package for integrating BioLector microcultivation devices in the Design‐Build‐Test‐Learn cycle. Engineering in life sciences, 22(3-4), 242-259.
Zahn, D. A. (1975). An empirical study of the half-normal plot. Technometrics, 17(2), 201-211.
Kenett, R. S. (1991). Two methods for comparing Pareto charts. Journal of quality technology, 23(1), 27-31.
Bonnans, J. F., & Shapiro, A. (2013). Perturbation analysis of optimization problems. Springer Science & Business Media.
Wang, Y., & Li, Y. Z. (2014). Cultivation to improve in vivo solubility of overexpressed arginine deiminases in Escherichia coli and the enzyme characteristics. BMC biotechnology, 14, 1-10.
Baeshen, M. N., Al-Hejin, A. M., Bora, R. S., Ahmed, M. M., Ramadan, H. A., Saini, K. S., … & Redwan, E. M. (2015). Production of biopharmaceuticals in E. coli: current scenario and future perspectives.
Baeshen, M. N., Bouback, T. A., Alzubaidi, M. A., Bora, R. S., Alotaibi, M. A., Alabbas, O. T., … & Baeshen, N. A. (2016). Expression and purification of C-peptide containing insulin using Pichia pastoris expression system. BioMed research international, 2016.
Kemmler, W., Peterson, J. D., & Steiner, D. F. (1971). Studies on the conversion of proinsulin to insulin: I. Conversion in vitro with trypsin and carboxypeptidase B. Journal of Biological Chemistry, 246(22), 6786-6791.
Packiam, K. A. R., Ramanan, R. N., Ooi, C. W., Krishnaswamy, L., & Tey, B. T. (2020). Stepwise optimization of recombinant protein production in Escherichia coli utilizing computational and experimental approaches. Applied microbiology and biotechnology, 104, 3253-3266.
Elibol, M. (2004). Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3 (2) with response surface methodology. Process Biochemistry, 39(9), 1057-1062.
Sunitha, K., Lee, J. K., & Oh, T. K. (1999). Optimization of medium components for phytase production by E. coli using response surface methodology. Bioprocess Engineering, 21, 477-481.
Shahbazmohammadi, H., & Omidinia, E. (2017). Medium optimization for improved production of dihydrolipohyl dehydrogenase from Bacillus sphaericus PAD-91 in Escherichia coli. Molecular biotechnology, 59, 260-270.
Zare, H., Sadeghi, H. M. M., & Akbari, V. (2019). Optimization of fermentation conditions for reteplase expression by Escherichia coli using response surface methodology. Avicenna Journal of Medical Biotechnology, 11(2), 162.
Duan, M., Wang, Y., Yang, G., Li, J., Wan, Y., Deng, Y., & Mao, Y. (2020). High-level production of γ-cyclodextrin glycosyltransferase in recombinant Escherichia coli BL21 (DE3): culture medium optimization, enzymatic properties characterization, and product specificity analysis. Annals of Microbiology, 70, 1-13.
Kenari, S. L. D., Alemzadeh, I., & Maghsodi, V. (2011). Production of l-asparaginase from Escherichia coli ATCC 11303: optimization by response surface methodology. Food and Bioproducts Processing, 89(4), 315-321.
Ghoshoon, M. B., Berenjian, A., Hemmati, S., Dabbagh, F., Karimi, Z., Negahdaripour, M., & Ghasemi, Y. (2015). Extracellular production of recombinant L-Asparaginase II in Escherichia coli: Medium optimization using response surface methodology. International Journal of Peptide Research and Therapeutics, 21, 487-495.
Sparviero, S., Barth, L., Keil, T., Dinter, C., Berg, C., Lattermann, C., & Büchs, J. (2023). Black glucose-releasing silicon elastomer rings for fed-batch operation allow measurement of the oxygen transfer rate from the top and optical signals from the bottom for each well of a microtiter plate. BMC biotechnology, 23(1), 5.
Flitsch, D., Krabbe, S., Ladner, T., Beckers, M., Schilling, J., Mahr, S., … & Büchs, J. (2016). Respiration activity monitoring system for any individual well of a 48-well microtiter plate. Journal of biological engineering, 10(1), 1-14.
Lennen, R. M., Nilsson Wallin, A. I., Pedersen, M., Bonde, M., Luo, H., Herrgård, M. J., & Sommer, M. O. (2016). Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects. Nucleic acids research, 44(4), e36-e36.
Back, A., Rossignol, T., Krier, F., Nicaud, J. M., & Dhulster, P. (2016). High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production. Microbial cell factories, 15(1), 1-12.
Toeroek, C., Cserjan-Puschmann, M., Bayer, K., & Striedner, G. (2015). Fed-batch like cultivation in a micro-bioreactor: screening conditions relevant for Escherichia coli based production processes. SpringerPlus, 4(1), 1-10.
Kensy, F., Engelbrecht, C., & Büchs, J. (2009). Scale-up from microtiter plate to laboratory fermenter: evaluation by online monitoring techniques of growth and protein expression in Escherichia coli and Hansenula polymorpha fermentations. Microbial Cell Factories, 8(1), 1-15.
Dharmadi, Y., Murarka, A., & Gonzalez, R. (2006). Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnology and bioengineering, 94(5), 821-829.
Malakar, P., & Venkatesh, K. V. (2012). Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Applied microbiology and biotechnology, 93, 2543-2549.
Izaki, K., & Arima, K. (1965). Effect of various conditions on accumulation of oxytetracycline in Escherichia coli. Journal of Bacteriology, 89(5), 1335-1339.
Bren, A., Park, J. O., Towbin, B. D., Dekel, E., Rabinowitz, J. D., & Alon, U. (2016). Glucose becomes one of the worst carbon sources for E. coli on poor nitrogen sources due to suboptimal levels of cAMP. Scientific reports, 6(1), 24834.
Shiloach, J., Kaufman, J., Guillard, A. S., & Fass, R. (1996). Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (λDE3) and Escherichia coli JM109. Biotechnology and bioengineering, 49(4), 421-428.
Michaels, E. K., Chmiel, J. S., Plotkin, B. J., & Schaeffer, A. J. (1983). Effect of D-mannose and D-glucose on Escherichia coli bacteriuria in rats. Urological research, 11, 97-102.
Kopp, J., Slouka, C., Ulonska, S., Kager, J., Fricke, J., Spadiut, O., & Herwig, C. (2017). Impact of glycerol as carbon source onto specific sugar and inducer uptake rates and inclusion body productivity in E. coli BL21 (DE3). Bioengineering, 5(1), 1.
Ukkonen, K., Vasala, A., Ojamo, H., & Neubauer, P. (2011). High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer. Microbial Cell Factories, 10, 1-9.