REFERENCES
Stailey, Matthew; Conway, SusanE. (2017). Review of the Next Generation
of Long-Acting Basal Insulins: Insulin Degludec and Insulin Glargine.
The Consultant Pharmacist, 32(1), 42–46. doi:10.4140/TCP.n.2017.42
Ahima, R. S. (2009). Connecting obesity, aging and diabetes. Nature
medicine, 15(9), 996-997.
Ayan, E., & DeMirci, H. (2023). A brief atlas of insulin. Current
Diabetes Reviews, 19(6), 18-79.
Taylor, S. I., Yazdi, Z. S., & Beitelshees, A. L. (2021).
Pharmacological treatment of hyperglycemia in type 2 diabetes. The
Journal of Clinical Investigation, 131(2).
Korkiakangas, E. E., Alahuhta, M. A., & Laitinen, J. H. (2009).
Barriers to regular exercise among adults at high risk or diagnosed with
type 2 diabetes: a systematic review. Health promotion international,
24(4), 416-427.
Vaidya, V., Gangan, N., & Sheehan, J. (2015). Impact of cardiovascular
complications among patients with Type 2 diabetes mellitus: a systematic
review. Expert review of pharmacoeconomics & outcomes research, 15(3),
487-497.
Dardano, A., Penno, G., Del Prato, S., & Miccoli, R. (2014). Optimal
therapy of type 2 diabetes: a controversial challenge. Aging (Albany
NY), 6(3), 187.
Snyder, R. W., & Berns, J. S. (2004, September). Reviews: use of
insulin and oral hypoglycemic medications in patients with diabetes
mellitus and advanced kidney disease. In Seminars in dialysis (Vol. 17,
No. 5, pp. 365-370). Oxford, UK: Blackwell Science Inc.
Herman, W. H., Ilag, L. L., Johnson, S. L., Martin, C. L., Sinding, J.,
Al Harthi, A., … & Raskin, P. (2005). A clinical trial of continuous
subcutaneous insulin infusion versus multiple daily injections in older
adults with type 2 diabetes. Diabetes care, 28(7), 1568-1573.
Garg, Satish; Ampudia-Blasco, Francisco; Pfohl, Martin (2010).
Rapid-Acting Insulin Analogues in Basal-Bolus Regimens in Type 1
Diabetes Mellitus. Endocrine Practice, 16(3), 486–505.
doi:10.4158/EP09294.RA
Owens, D. R., Zinman, B., & Bolli, G. B. (2001). Insulins today and
beyond. The Lancet, 358(9283), 739-746.
Ashwell, S. G., Amiel, S. A., Bilous, R. W., Dashora, U., Heller, S. R.,
Hepburn, D. A., … & Home, P. D. (2006). Improved glycaemic control
with insulin glargine plus insulin lispro: a multicentre, randomized,
cross‐over trial in people with Type 1 diabetes. Diabetic Medicine,
23(3), 285-292.
Hermansen, K., Fontaine, P., Kukolja, K. K., Peterkova, V., Leth, G., &
Gall, M. A. (2004). Insulin analogues (insulin detemir and insulin
aspart) versus traditional human insulins (NPH insulin and regular human
insulin) in basal-bolus therapy for patients with type 1 diabetes.
Diabetologia, 47, 622-629.
Becker, R. H., & Frick, A. D. (2008). Clinical pharmacokinetics and
pharmacodynamics of insulin glulisine. Clinical pharmacokinetics, 47,
7-20.
Khalilvand, A. B., Aminzadeh, S., Sanati, M. H., & Mahboudi, F. (2022).
Media optimization for SHuffle T7 Escherichia coli expressing
SUMO-Lispro proinsulin by response surface methodology. BMC
biotechnology, 22(1), 1-13.
Akbarian, M., & Yousefi, R. (2018). Human αB-crystallin as fusion
protein and molecular chaperone increases the expression and folding
efficiency of recombinant insulin. PLoS One, 13(10), e0206169.
Tegel, H., Tourle, S., Ottosson, J., & Persson, A. (2010). Increased
levels of recombinant human proteins with the Escherichia coli strain
Rosetta (DE3). Protein expression and purification, 69(2), 159-167.
Pan, S. H., & Malcolm, B. A. (2000). Reduced background expression and
improved plasmid stability with pET vectors in BL21 (DE3).
Biotechniques, 29(6), 1234-1238.
Shokri, A., Sandén, A., & Larsson, G. (2003). Cell and process design
for targeting of recombinant protein into the culture medium of
Escherichia coli. Applied microbiology and biotechnology, 60, 654-664.
Kusuma, S. A. F., Parwati, I., Rostinawati, T., Yusuf, M., Fadhlillah,
M., Ahyudanari, R. R., … & Subroto, T. (2019). Optimization of
culture conditions for Mpt64 synthetic gene expression in Escherichia
coli BL21 (DE3) using surface response methodology. Heliyon, 5(11).
Nikerel, İ. E., Öner, E., Kirdar, B., & Yildirim, R. (2006).
Optimization of medium composition for biomass production of recombinant
Escherichia coli cells using response surface methodology. Biochemical
Engineering Journal, 32(1), 1-6.
Abu, M. L., Nooh, H. M., Oslan, S. N., & Salleh, A. B. (2017).
Optimization of physical conditions for the production of thermostable
T1 lipase in Pichia guilliermondii strain SO using response surface
methodology. BMC biotechnology, 17(1), 1-10.
Papaneophytou, C. P., & Kontopidis, G. (2014). Statistical approaches
to maximize recombinant protein expression in Escherichia coli: a
general review. Protein expression and purification, 94, 22-32.
Sopyan, I. Y. A. N., Gozali, D. O. L. I. H., & Guntina, R. K. (2022).
Design-expert software (DOE): An application tool for optimization in
pharmaceutical preparations formulation. Int. J. Appl. Pharm., 55-63.
Dentener, A. (2002). Design-Expert DOEs it better. Food Technology in
New Zealand Magazine, 12-14.
Drummen, N. Aerobic cultivation of high-oxygen-demanding microorganisms
in the BioLector XT microbioreactor.
Osthege, M., Tenhaef, N., Zyla, R., Müller, C., Hemmerich, J., Wiechert,
W., … & Oldiges, M. (2022). bletl‐A Python package for integrating
BioLector microcultivation devices in the Design‐Build‐Test‐Learn cycle.
Engineering in life sciences, 22(3-4), 242-259.
Zahn, D. A. (1975). An empirical study of the half-normal plot.
Technometrics, 17(2), 201-211.
Kenett, R. S. (1991). Two methods for comparing Pareto charts. Journal
of quality technology, 23(1), 27-31.
Bonnans, J. F., & Shapiro, A. (2013). Perturbation analysis of
optimization problems. Springer Science & Business Media.
Wang, Y., & Li, Y. Z. (2014). Cultivation to improve in vivo solubility
of overexpressed arginine deiminases in Escherichia coli and the enzyme
characteristics. BMC biotechnology, 14, 1-10.
Baeshen, M. N., Al-Hejin, A. M., Bora, R. S., Ahmed, M. M., Ramadan, H.
A., Saini, K. S., … & Redwan, E. M. (2015). Production of
biopharmaceuticals in E. coli: current scenario and future perspectives.
Baeshen, M. N., Bouback, T. A., Alzubaidi, M. A., Bora, R. S., Alotaibi,
M. A., Alabbas, O. T., … & Baeshen, N. A. (2016). Expression and
purification of C-peptide containing insulin using Pichia pastoris
expression system. BioMed research international, 2016.
Kemmler, W., Peterson, J. D., & Steiner, D. F. (1971). Studies on the
conversion of proinsulin to insulin: I. Conversion in vitro with trypsin
and carboxypeptidase B. Journal of Biological Chemistry, 246(22),
6786-6791.
Packiam, K. A. R., Ramanan, R. N., Ooi, C. W., Krishnaswamy, L., & Tey,
B. T. (2020). Stepwise optimization of recombinant protein production in
Escherichia coli utilizing computational and experimental approaches.
Applied microbiology and biotechnology, 104, 3253-3266.
Elibol, M. (2004). Optimization of medium composition for actinorhodin
production by Streptomyces coelicolor A3 (2) with response surface
methodology. Process Biochemistry, 39(9), 1057-1062.
Sunitha, K., Lee, J. K., & Oh, T. K. (1999). Optimization of medium
components for phytase production by E. coli using response surface
methodology. Bioprocess Engineering, 21, 477-481.
Shahbazmohammadi, H., & Omidinia, E. (2017). Medium optimization for
improved production of dihydrolipohyl dehydrogenase from Bacillus
sphaericus PAD-91 in Escherichia coli. Molecular biotechnology, 59,
260-270.
Zare, H., Sadeghi, H. M. M., & Akbari, V. (2019). Optimization of
fermentation conditions for reteplase expression by Escherichia coli
using response surface methodology. Avicenna Journal of Medical
Biotechnology, 11(2), 162.
Duan, M., Wang, Y., Yang, G., Li, J., Wan, Y., Deng, Y., & Mao, Y.
(2020). High-level production of γ-cyclodextrin glycosyltransferase in
recombinant Escherichia coli BL21 (DE3): culture medium optimization,
enzymatic properties characterization, and product specificity analysis.
Annals of Microbiology, 70, 1-13.
Kenari, S. L. D., Alemzadeh, I., & Maghsodi, V. (2011). Production of
l-asparaginase from Escherichia coli ATCC 11303: optimization by
response surface methodology. Food and Bioproducts Processing, 89(4),
315-321.
Ghoshoon, M. B., Berenjian, A., Hemmati, S., Dabbagh, F., Karimi, Z.,
Negahdaripour, M., & Ghasemi, Y. (2015). Extracellular production of
recombinant L-Asparaginase II in Escherichia coli: Medium optimization
using response surface methodology. International Journal of Peptide
Research and Therapeutics, 21, 487-495.
Sparviero, S., Barth, L., Keil, T., Dinter, C., Berg, C., Lattermann,
C., & Büchs, J. (2023). Black glucose-releasing silicon elastomer rings
for fed-batch operation allow measurement of the oxygen transfer rate
from the top and optical signals from the bottom for each well of a
microtiter plate. BMC biotechnology, 23(1), 5.
Flitsch, D., Krabbe, S., Ladner, T., Beckers, M., Schilling, J., Mahr,
S., … & Büchs, J. (2016). Respiration activity monitoring system for
any individual well of a 48-well microtiter plate. Journal of biological
engineering, 10(1), 1-14.
Lennen, R. M., Nilsson Wallin, A. I., Pedersen, M., Bonde, M., Luo, H.,
Herrgård, M. J., & Sommer, M. O. (2016). Transient overexpression of
DNA adenine methylase enables efficient and mobile genome engineering
with reduced off-target effects. Nucleic acids research, 44(4), e36-e36.
Back, A., Rossignol, T., Krier, F., Nicaud, J. M., & Dhulster, P.
(2016). High-throughput fermentation screening for the yeast Yarrowia
lipolytica with real-time monitoring of biomass and lipid production.
Microbial cell factories, 15(1), 1-12.
Toeroek, C., Cserjan-Puschmann, M., Bayer, K., & Striedner, G. (2015).
Fed-batch like cultivation in a micro-bioreactor: screening conditions
relevant for Escherichia coli based production processes. SpringerPlus,
4(1), 1-10.
Kensy, F., Engelbrecht, C., & Büchs, J. (2009). Scale-up from
microtiter plate to laboratory fermenter: evaluation by online
monitoring techniques of growth and protein expression in Escherichia
coli and Hansenula polymorpha fermentations. Microbial Cell Factories,
8(1), 1-15.
Dharmadi, Y., Murarka, A., & Gonzalez, R. (2006). Anaerobic
fermentation of glycerol by Escherichia coli: a new platform for
metabolic engineering. Biotechnology and bioengineering, 94(5), 821-829.
Malakar, P., & Venkatesh, K. V. (2012). Effect of substrate and IPTG
concentrations on the burden to growth of Escherichia coli on glycerol
due to the expression of Lac proteins. Applied microbiology and
biotechnology, 93, 2543-2549.
Izaki, K., & Arima, K. (1965). Effect of various conditions on
accumulation of oxytetracycline in Escherichia coli. Journal of
Bacteriology, 89(5), 1335-1339.
Bren, A., Park, J. O., Towbin, B. D., Dekel, E., Rabinowitz, J. D., &
Alon, U. (2016). Glucose becomes one of the worst carbon sources for E.
coli on poor nitrogen sources due to suboptimal levels of cAMP.
Scientific reports, 6(1), 24834.
Shiloach, J., Kaufman, J., Guillard, A. S., & Fass, R. (1996). Effect
of glucose supply strategy on acetate accumulation, growth, and
recombinant protein production by Escherichia coli BL21 (λDE3) and
Escherichia coli JM109. Biotechnology and bioengineering, 49(4),
421-428.
Michaels, E. K., Chmiel, J. S., Plotkin, B. J., & Schaeffer, A. J.
(1983). Effect of D-mannose and D-glucose on Escherichia coli
bacteriuria in rats. Urological research, 11, 97-102.
Kopp, J., Slouka, C., Ulonska, S., Kager, J., Fricke, J., Spadiut, O.,
& Herwig, C. (2017). Impact of glycerol as carbon source onto specific
sugar and inducer uptake rates and inclusion body productivity in E.
coli BL21 (DE3). Bioengineering, 5(1), 1.
Ukkonen, K., Vasala, A., Ojamo, H., & Neubauer, P. (2011). High-yield
production of biologically active recombinant protein in shake flask
culture by combination of enzyme-based glucose delivery and increased
oxygen transfer. Microbial Cell Factories, 10, 1-9.