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HB-EGF-loaded nanovesicles enhance trophectodermal spheroid attachment and invasion
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Abstract

The ability of trophectodermal cells (outer layer of the embryo) to attach to the endometrial cells and
subsequently invade the underlying matrix are critical stages of embryo implantation during successful
pregnancy establishment. Extracellular vesicles (EVs) have been implicated in embryo-maternal
crosstalk, capable of reprogramming endometrial cells towards a pro-implantation signature and
phenotype. However, challenges associated with EV yield and direct loading of biomolecules limit their
therapeutic potential. We have previously established generation of cell-derived nanovesicles (NV5s)
from human trophectodermal cells (hTSCs) and their capacity to reprogram endometrial cells to
enhance adhesion and blastocyst outgrowth. Here, we employed a rapid NV loading strategy to
encapsulate potent implantation molecules such as HB-EGF (NV"BECF), We show these loaded NVs
elicit EGFR-mediated effects in recipient endometrial cells, activating kinase phosphorylation sites that
modulate their activity (AKT S124/129, MAPK1 T185/Y187), and downstream signalling pathways
and processes (AKT signal transduction, GTPase activity). Importantly, they enhanced target cell
attachment and invasion. The phosphoproteomics and proteomics approach highlight N\VHBEGF.
mediated short-term signalling patterns and long-term reprogramming capabilities on endometrial cells
which functionally enhance trophectodermal-endometrial interactions. This proof-of-concept study
demonstrates feasibility in enhancing the functional potency of NVs in the context of embryo

implantation.

Significance statement

Nanosized extracellular vesicles and a plethora of growth factors (i.e., HB-EGF) are critical signalling
mediators during embryo implantation to the maternal endometrium — a cardinal event of pregnancy
establishment. This study highlights a rapid and scalable cell extrusion method to load HB-EGF into
trophectodermal cell-derived nanovesicles (NVHBECF). We report, through phosphoproteomics and
proteomics analyses, NVBECF short-term signalling and long-term reprogramming capabilities on
recipient endometrial cells, including but not limited to EGFR-mediated phosphorylation patterns,
downstream signalling events, and cellular processes intimately associated with embryo implantation
and endometrial receptivity. Importantly, the application of NV"BECF stimulated heightened
endometrial-trophectodermal attachment, and trophectodermal invasion — pivotal events in the early
stages of pregnancy. We have thus harnessed trophectodermal NVs loaded with HB-EGF to orchestrate
multifaceted signalling and cellular events in endometrial cells crucial for pregnancy establishment.

Loaded NVs possess immense potential for therapeutic development and warrants further investigation.
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Introduction

Embryo implantation is a multi-step process comprising blastocyst apposition and attachment to the
maternal endometrial epithelium by its outer trophectodermal layer and its subsequent invasion into the
underlying tissue for intrauterine development™=l, Its failure accounts for ~75% of unsuccessful
pregnancy outcomes in Assisted Reproductive Technologies (ART)™, presenting a significant hurdle
for human reproduction. Paramount for successful implantation, reciprocal embryo-maternal
communication ° mediated by secreted signalling players®® such as hormones (hCGP)), cytokines
(LIF0 1L-1801), and growth factors (GM-CSFI?, G-CSFI®l) remains an ongoing topic of
investigation in reproductive biology, with efforts to develop them as diagnostic markers of uterine

receptivity or therapeutic supplements to enhance implantation success, extending into clinical trials.

Of increasing interest as a signalling modality are extracellular vesicles (EVs)* 151; membrane-bound
nanosized (30-1000 nm) vesicles that transport and deliver bioactive lipids, proteins, and genetic
material to recipient cells, reprogramming and altering their molecular signature and phenotype6-2°1,
Indeed, EVs from human embryos and trophectodermal cells (hTSCs) harbour critical regulators of
implantation that reprogram recipient endometrial proteome to enhance embryo-endometrial
attachment!!’). However, their isolation procedures are tedious and time-consuming, prompting
investigation into an EV-like alternative; nanovesicles (NVs), generated by serial extrusion of parental
cells?-2%. From hTSCs, NVs displayed similar biophysical and functional properties to EVs,
significantly promoting trophectoderm-endometrial attachment and embryo outgrowth (Proteomics, in
review). As extrusion is recognised as an effective approach for drug loading into nanocarriers such as
EVs and liposomes (4-fold higher than passive methods)?4, this methodology enables opportunities for
NV cargo modification. Indeed, loaded EVs and NVs are increasingly explored as fertility
therapeutics® 261, For example, human chorionic gonadotropin (hCG), a potent embryonic signal, was
loaded into uterine fluid EVs (UF-EV"“®) and treated onto endometrial cells, enhancing their expression
of receptivity markers®. Similarly, enrichment of NVs with known regulators of implantation may
enhance or confer specific functions while retaining certain influential characteristics of parental cells,
such as surface-expressed molecules that facilitate interaction with target recipient cells®?® 271, or natural

composition of bioactive molecules that contribute to desired functional outcomes(?? 23 281,

Amongst the molecules investigated for facilitating embryo-maternal crosstalk that governs successful
implantation, heparin-binding EGF-like growth factor (HB-EGF)?%I remains one of the longest-
standing and well-established. With potent embryotropic and endometrial reprogramming capabilities,
HB-EGF is secreted by both the developing blastocyst and the receptive endometrium; importantly,
both entities express its cognate receptors®4, and are thus responsive to its role in mediating surface

interactions, and downstream signalling cascades. Indeed, EGFR, MAPK, and PI3K-AKT signalling
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pathways and their associated processes are indispensable for successful embryo and endometrial
reprogramming®®*-"! during implantation and throughout pregnancy. In this study, we employed the
extrusion methodology to enrich hTSC NVs with HB-EGF (NV"BECF) and investigated the response of
low-receptive  HEC1A endometrial recipient cells at a molecular level, including protein
phosphorylation changes and global proteome reprogramming. Further, we assessed NVHBECF
functional capacity to enhance trophectodermal spheroid attachment on stimulated endometrial cells

and trophectodermal spheroid invasion into Matrigel™.

Materials and methods

Cell culture

Human trophectodermal cells (T3-TSC) (kind gift from Prof. Susan Fisher, UCSF) were derived from
individual blastomeres of donated human embryos.® Cells were grown as a monolayer and routinely
maintained as described® in DMEM/F12 (Gibco, Invitrogen) supplemented with 1% v/v Penicillin-
Streptomycin (P/S) and 10% v/v foetal calf serum (FCS, Gibco, Invitrogen), with addition of 10 ng/ml
bovine fibroblast growth factor (bFGF, R&D Systems) and 10 uM SB431542 (#1614, Tocris
Bioscience) to maintain a trophectoderm-like state. Cells were grown on flasks coated with 0.5% gelatin
prior to experimental seeding and passaged using Trypsin-EDTA (Gibco). Spheroids were generated as
described 91 with slight modifications. T3-TSC cells were seeded at 1500 cells per well in an ultra-
low adhesion round-bottom 96-well plate in 100 pl of trophectoderm medium and incubated for 72 h.

HEC1A endometrial epithelial cells

Human endometrial carcinoma HECL1A cells (HTB-112) were a kind gift from Professor Lois
Salamonsen purchased from American Type Culture Collection (ATCC; Rockville, MD). Endometrial
cells were routinely maintained in DMEM/F12 supplemented with 1% P/S, and 5% v/v FCS and
incubated at 37°C with 5% CO,. Cells were routinely passaged using 0.5% v/v trypsin-EDTA (Gibco).
Prior to treatments used in this study, cells were cultured in basal media overnight comprising
DMEM/F12 supplemented with 0.6% insulin transferrin selenium (ITS, Gibco) and 1% v/v P/S.

Generation of h TSC NVs and loaded NVHBEGF

NVHBECF generation and purification were performed as described” 2% 28 with modifications (N=3).
Briefly, T3-TSC human trophectodermal cells (approximately 6.25 x 10° cells per T-75 flask) were
rinsed twice with PBS and detached with 10 mM EDTA (Sigma-Aldrich). The cell suspension was
pelleted at 500 g for 5 min and re-suspended in ice-cold PBS containing 50 ng/ml human recombination
human epidermal-like growth factor (HB-EGF) (#4266-50, Abcam). The cell suspension was

sequentially extruded through 10, 5, and 1 um pore-sized polycarbonate membranes (Nuclepore,
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Whatman Inc., Clifton, NJ, USA) thirteen times across each filter using a mini extruder system (Avanti
Polar Lipids, Birmingham, AL, USA). For unloaded NVs, the cell pellet was re-suspended in ice-cold
PBS prior to sequential extrusion. Extruded NVHBECF and NVs were subsequently isolated using 10%
OptiPrep™ (Stemcell Technologies) density cushion (step gradient formed by overlaying extruded
sample on 10% and 50% iodixanol) and centrifuged at 100 000 g for 2 h at 4°C. Seven equal fractions
were collected, diluted in PBS (to 1.5 ml), and ultracentrifuged at 100 000 g for 1 h at 4°C (TLA-55
rotor; Optima MAX-TL ultracentrifuge). NVHBESF and NVs pellets were resuspended in PBS and stored
in 1 pg/ul aliguots at —80°C until use.

Co-culture attachment assay

HEC1A endometrial epithelial cells were used to model a low-receptive endometrium-44, HEC1A
cells were seeded at confluency onto round-bottom 96-well plates before overnight culture in basal
media (DMEM/F12 supplemented with 1% v/v P/S), followed by a 24-h treatment with N\VHBECF or
NVs (50 pg/ml), HB-EGF (50 ng/ml), PBS (volume matched), Erlotinib (20 nM), or sequential
Erlotinib (20 nM) for 2 h followed by NVHBEGF T3-TSC spheroids (1500 cells per spheroid, 1 spheroid
per well) were transferred to stimulated endometrial cells and allowed to attach for 1 h, after which the
media was aspirated and washed gently once with PBS. Spheroid adhesion (%) for each treatment was
calculated by: [(number of attached spheroids/number of seeded spheroids) x 100] (n=12, N=5).

hTSC spheroid Matrigel invasion assay

hTSC spheroid invasion assays were performed with growth factor reduced Matrigel™ matrix
(Corning) as previously described™. Briefly, hTSC spheroids were suspended in 100 pl DMEM/F-12
media containing 1% (v/v) Pen/Strep, 0.1% ITS, and either NVHBESF or NVs (50 pg/ml), HB-EGF (50
ng/ml), PBS (volume matched), Erlotinib (20 nM), or sequential Erlotinib (20 nM) for 2 h followed by
NVHBECF (ErloNVHBECF), The spheroid suspension (2-3/well) was overlaid onto Matrigel™ in 8-well
microscopy chambers (Corning) and incubated for 24 h at 37°C. Subsequently, 50 pl media was
removed from each well, mixed 1:1 with Matrigel™, then gently overlaid back onto the spheroids.
Matrigel™ was then allowed to solidify for 30 min at 37°C prior to adding 200 pl of DMEM/F-12 [10%
(v/v) FBS, 1% (v/v) Pen/Strep] containing the treatments as above. After 72 h, spheroids were imaged
using Olympus FSX100. The extent of invasion (% increase) was quantified using ImageJ and
calculated by: [(outer—inner circumference)/(inner circumference) x 100]. Data presented as a box plot
was generated from individual points (n>8) per treatment, providing the interquartile range and

minimum, median, and maximum values of each treatment.

Protein quantification and western blotting
All samples were lysed in 1% v/v sodium dodecyl sulphate (SDS), 50 mM triethylammonium
bicarbonate (TEAB), pH 8.0, incubated at 95 °C for 5 mins and quantified by microBCA assay (Thermo
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Fisher Scientific) as described™®l. Western blot sample buffer (4% w/v SDS, 20% v/v glycerol, and
0.01% v/v bromophenol blue, 0.125 M Tris-hydrochloride (Tris-HCI), pH 6.8) was added in a 1:1 v/v
ratio to lysed samples with 100 mM dithiothreitol (DTT, Thermo Fisher Scientific). Samples (10-20
ug) were resolved on Norvex 4-12% Bis—Tris NUPAGE gels with MES running buffer at 150 V for 1
h. Proteins on the gel were electrotransferred onto nitrocellulose membranes using iBlot™ Dry 2.0
blotting system (Life Technologies) at 12 V for 8 min. The membranes were blocked with 5% w/v skim
milk powder in PBS-Tween (PBST) (0.137 M NacCl, 0.0027 M KCI, 0.01 M NazHPQ,4, 0.0018 M
KH2PO, 0.05% w/v Tween 20) for 30 min at room temperature. The membranes were washed and
probed with primary antibodies (1:1000 dilution) for 24 h at 4 °C in PBST. Primary antibodies used
include mouse monoclonal against CD44 (#119863, Abcam), and HB-EGF (#27450, Cell Signaling
Technology). Secondary antibodies used were: IRDye 800 goat anti-mouse 1gG (#926-32210) or IRDye
680 goat anti-rabbit 1gG (#926-68071) (1:15000, LI-COR Biosciences).

Biophysical particle analysis

Cryo-electron microscopy imaging (Tecnai G2 F30) of NVMBESF and NVs was performed as
described™. Briefly, NVs (~1 pg protein) were transferred onto glow-discharged C-flat holey carbon
grids (ProSciTech Pty Ltd., Kirwan, Australia). Excess liquid was blotted, and grids were frozen in
liquid ethane. Grids were mounted in a Gatan cryoholder (Gatan, Inc.,Warrendale, PA, USA) in liquid
nitrogen. Images were acquired at 300 kV using a Tecnai G2 F30 (FEI, Eidhoven, The Netherlands) in

low dose mode.

Lipophilic dye labelling and uptake assay

For NV staining (NV"BESF and NV), NVs were incubated with VVybrant™ Dil Cell-Labeling Solution
at 1:200 dilution (Invitrogen, V22885) at 1 uM concentration for 15 min at 37°C as described™®!,
Unbound dye was removed by subjecting labelled NVs (volume-matched Dil-PBS as label control) to
centrifugation at 100 000 g (1 h) on a 10% OptiPrep™ cushion. Pelleted Dil-NVs were resuspended in
50 ul of PBS. HEC1A cells grown to 70% confluency in 8-well glass chamber slide (Sarstedt) were
incubated with Dil-labelled NVs at 37°C for 2 h, then washed twice with PBS. Nuclei were stained with
Hoechst stain (10 pg/ml) for 10 min and fixed using 4% formaldehyde for 5 min and imaged with Nikon
A1R confocal microscope equipped with resonant scanner, using a 20x WI (1.2 NA); (Nikon, Tokyo,
Japan). Images were sequentially acquired. The XY image resolution was 1024 x 1024 at 0.033 FPS,
4x averaging, 2.4 dwell time. 3D images were taken by Z-stack of approximately 15 um, 25 steps, at a

resolution of 1024 x 1024, 8x averaging 2.4 dwell time. NS studio was used to render images.

Proteomics: solid-phase-enhanced sample preparation
All samples, including NVHBESF and NVs (n=3), stimulated HEC1A cells for phosphoproteomics (n=3)
and global proteomics (n=4) were lysed in 1% v/v sodium dodecyl sulphate (SDS), 50 mM

6
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triethylammonium bicarbonate (TEAB), pH 8.0, incubated at 95 °C for 5 mins and quantified by
microBCA (Thermo Fisher Scientific) as described™®l. Proteomic sample preparation using single-pot
solid-phase-enhanced sample preparation (SP3)“°! was performed on protein extracts (10 pg, 300 pg
for phosphoproteomics) as previously described™”. Briefly, samples were reduced with 10 mM DTT at
RT for 1 h (350 rpm), alkylated with 20 mM iodoacetamide (IAA) (Sigma-Aldrich) for 20 min at RT
(light protected), and quenched with 10 mM DTT. A Sera-Mag SpeedBead carboxylate-modified
magnetic particle mixture (1:1 hydrophilic and hydrophobic mix, 65152105050250, 45152105050250,
Cytiva) was added to protein extracts and incubated in 50% v/v ethanol for 10 min (1000 rpm) at RT.
Beads were sedimented on a magnetic rack to remove the supernatant. Beads were washed three times
with 200 pL 80% v/v ethanol, then resuspended in 100 pL 50 mM TEAB pH 8.0 and digested overnight
with trypsin (1:50 trypsin: protein ratio; Promega, V5111) at 37 °C, 1000 rpm. The peptide and bead
mixture were centrifuged at 20,000 g for 1 min at RT. Samples were then placed on a magnetic rack
and the supernatant was collected, acidified to a final concentration of 1.5% formic acid, frozen at -
80 °C for 20 min, and dried by vacuum centrifugation. Peptides were resuspended in 0.07%
trifluoroacetic acid (TFA), quantified by Fluorometric Peptide Assay (Thermo Fisher Scientific, 23290)

as per manufacturer’s instructions, and normalised to 0.5 pg/pl with 0.07% TFA.

Phosphopeptide enrichment

Peptide digests from each HEC1A cell treatment group (n=3) were lyophilised by vacuum
centrifugation and reconstituted in Binding/Equilibration Buffer for phosphopeptide enrichment(*s!
using High-Select™ TiO, Phosphopeptide Enrichment kit (Thermo Fisher Scientific, A32993), as per
manufacturer’s instructions. Briefly, peptide digests were transferred to a pre-equilibrated TiO; spin tip
and centrifuged twice at 1000 g, 5 min. The column was washed twice with binding/equilibration buffer
and subsequent wash buffer at 3000 g, 2 min, then with MS-grade water at 3000 g, 2 min.
Phosphopeptides were eluted in 100 pl phosphopeptide elution buffer by centrifugation at 1000 g, 5
min, dried by vacuum centrifugation, and reconstituted in 0.07% TFA before quantification by

Colorimetric Peptide Assay (ThermoFisher Scientific, #23275) as per manufacturer’s instructions.

Liquid Chromatography—-Tandem Mass Spectrometry

Peptides were analysed on a Dionex UltiMate NCS-3500RS nanoUHPLC coupled to a Q-Exactive HF-
X hybrid quadrupole-Orbitrap mass spectrometer equipped with a nanospray ion source in positive,
data-dependent acquisition mode as described®™”. Peptides were loaded (Acclaim PepMap100 C18 5
um beads with 100 A pore-size, Thermo Fisher Scientific) and separated (1.9-um particle size C18,
0.075 x 250 mm, Nikkyo Technos Co. Ltd) with a gradient of 2-80% acetonitrile containing 0.1%
formic acid over 110 min at 300 nL min-1 at 55°C (in-house enclosed column heater). An MS1 scan
was acquired from 350-1,650 m/z (60,000 resolution, 3 x 108 automatic gain control (AGC), 128 msec
injection time) followed by MS/MS data-dependent acquisition (top 25) with collision-induced

7
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dissociation and detection in the ion trap (30,000 resolution, 1 x10° AGC, 60 msec injection time, 28%
normalized collision energy, 1.3 m/z quadrupole isolation width). Unassigned precursor ions charge
states and slightly charged species were rejected and peptide match disabled. Selected sequenced ions
were dynamically excluded for 30 sec. The mass spectrometry-based proteomics data is deposited to
the ProteomeXchange Consortium via the MASSive partner repository and available via MASSive with
the identifier MSV000092562.

Data Processing and Bioinformatics

Peptide identification and quantification were performed as described previously™® 5 using MaxQuant
(v1.6.14) with its built-in search engine Andromeda®. Tandem mass spectra were searched against
Homo sapiens (human) reference proteome (74,811 entries, downloaded 12-2019) supplemented with
common contaminants. Search parameters included carbamidomethylated cysteine as fixed
modification and oxidation of methionine and N-terminal protein acetylation as variable modifications.
Data was processed using trypsin/P as the proteolytic enzyme with up to 2 missed cleavage sites
allowed. The search tolerance and fragment ion mass tolerance were set to 7 ppm and 0.5 Da,
respectively, at less than 1% false discovery rate on peptide spectrum match (PSM) level employing a
target-decoy approach at peptide and protein levels. Protein group or phosphorylation site tables were
imported into Perseus (v1.6.7) for analysis, with contaminants and reverse peptides removed. Label free
guantification (LFQ) algorithm in MaxQuant was used to obtain quantification intensity values and
processed using Perseus as described®?. Cytoscapel¥ (v3.9.1) with STRING and EnrichmentMap
plugins were used for functional enrichment analyses (KEGG, Reactome, Gene Ontology (GO)
biological process) of proteins and to generate protein-protein interaction networks. The kinase-
substrate database from PhosphoSite Plus was used to identify upstream kinases for phosphorylated

proteins.

Statistical Analysis

Data clean up and analysis were performed using Perseus (MaxQuant computational platform) and
Excel. Protein intensities were log: transformed and subjected to one-way ANOVA followed by Post
hoc Tukey’s HSD test to identify significant differences between treatment groups. For stimulated
HEC1A endometrial cells, proteins identified in >2 replicates (out of 3) or >3 replicates (out of 4) in
each group were included in analysis. Phosphorylated sites (phosphosites) with a localisation
probability of >75% and quantified in >2 out of 3 replicates per treatment group were included in the
analysis. GraphPad Prism v9.4.1 and R (2022.02.3+492) were used for statistical analysis of functional
data. One-way ANOVA for multiple comparisons or unpaired t-test was performed. All data is
presented as mean plus/minus standard deviation (mean£SD). P-value<0.05 is considered statistically

significant.
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Results

3.1. Generation of HB-EGF-loaded NVs (NV"BECF) from human trophectodermal cells (hnTSCs)

Cell-derived NVs were generated by serial extrusion of hTSCs (6.25 x 10°) suspended in PBS through
microfilters of decreasing pore size (10-5-1 um) as described®. To generate NVs loaded with HB-EGF
(NVHBESF) "we serially extruded hTSCs in PBS containing 50 ng/ml of HB-EGF (Figure 1A). NVs
were then isolated using density gradient separation®?® (Figure 1A). NVs and NVHEECF displayed
similar buoyant densities of 1.10-1.20 g/cm?, and cryo electron microscopy revealed that NVs were
spherical in shape and morphologically intact (Figure 1B), ranging 20-250 nm in diameter (mean 104.2
nm) (Figure 1C), consistent with NVs[?®l generated previously. We next questioned whether HB-EGF
is successfully incorporated into NVs. We subjected NVs (NVs and NVHBECF n=3) to mass
spectrometry-based proteomic profiling (Figure 1D). Based on stringent peptide and protein
identification criteria we quantified HB-EGF in all NVHBECF biological replicates, compared to unloaded
NVs. We orthogonally validated loading of HB-EGF into NVs using a monoclonal antibody specific to
human HB-EGF protein by Western blotting (Figure 1E).

3.2. NVHBEGF yptake by recipient endometrial HEC1A cells

Previously, we have shown that hTSC NVs can be taken up by endometrial HEC1A cells to enhance
their attachment to hTSC cell spheroids (in review, Proteomics). Here, we questioned whether loading
of HB-EGF into NVs impacts their uptake. For this, NV"BECF were labelled with fluorescent lipophilic
Dil dye (red) and incubated with HEC1A cells over a 2-hr period. Confocal fluorescence microscopy
revealed that NVHEESF similar to unloaded NVs, were readily taken up by HEC1A cells (Figure 2A).
Imaging along the z-axis showed that NV"BECF were internalised and appeared as punctuate structures,

typical of vesicle uptake by recipient cells*”**! (Figure 2B).

3.3. NVHBEGF.mediated phosphorylation is linked to intracellular signal transduction and EGFR

signalling

HB-EGF activates various receptors (e.g., PRLR®*, CD445 %81) put their effect on receptor tyrosine
kinases (RTKs)5"1 ERBB2/4 and especially EGFR, are more prominently studied. HB-EGF activation
of EGFR®® induce receptor conformation changes, internalisation, and intracellular localisation; and
downstream activation of the RAS-RAF-MEK-ERK, PI3K-AKT, STAT, and NF-kappa-B signalling
pathways®® which have roles in modulating cell adhesion and motility. However, phosphorylation
patterns, signalling dynamics, and functional outcomes downstream of EGFR activation remain poorly

understood™. For insights into whether the HB-EGF loaded into NVs are functional in recipient

9
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HEC1A cells, we stimulated HEC1A cells with NVHBESF and NVs (5 min treatment) and performed
phosphoproteomics analysis (Figure 3A, Table S1). Further, to investigate the dynamic cellular
signalling events initiated by NVHBECF: Erlotinibl8], an EGFR inhibitor; was used as a pre-treatment to
suppress NVHBECF-mediated EGFR signalling in HEC1A cells (ErloNVHBECF) (Figure 3A).

NVHBECF treatment, compared to NVs, resulted in unique phosphorylation of 303 proteins and
identification of 396 phosphopeptide sites in HEC1A cells, including EGFR signalling regulators
ERRFI1 S2730%% PRKCD S3044, RALBP1 S99, RICTOR 5212, and SHC1 S139%% (Table S2).
Following treatment on target cells, NVHBECF also upregulated (logzfc>0.5) 705 phosphoproteins and
1218 phosphopeptide sites compared to NV, include those downstream of EGFR activation (Figure
3B, Figure S1, Table S2). However, Erlotinib pre-treatment attenuated phosphorylation of SH3KBP1
$210 and AKT1 S124%4 and S1291°1, potentially limiting its response to activation and kinase activity.
Additionally, phosphorylation of MAPK1 T185 and Y187 (mediated by EGFRI®!) were not detected,
along with MAP3K4 S1198, PEBP1 S52, and PTPN12 S449 (Figure 3B and S1, Table S2); indicative
of NVHBECF-mediated activation of EGFR signalling in HEC1A cells. Interestingly, Erlotinib also
reduced expression of phosphorylated proteins associated with endometrial receptivity(®” % (MAPK1,
ANK3, GPRC5C, KIF4A, NDRG1, BAG3, FMNL2, KANK2, LNPK, LIMCH1, MVB12A, NAB2,
TBC1D1, UIMC1) and embryo implantation®! (PEBP1, CARMIL1, PHLDB2, EPB41L1, REPS1,
NDRG1, SCML2, SEMA6A, SHROOM?2, STX, WWC1), which were upregulated by NVHBEGF
compared to NVs (Figure 3B, Table S2). Inhibition of EGFR-mediated signalling may thus result in
altered expression and activation of proteins/phosphoproteins critical for endometrial function.

For insights into the downstream cellular processes and signalling pathways affected by EGFR
inhibition following NV treatment, we performed functional enrichment analysis on 421 proteins which
phosphorylation were inhibited by Erlotinib (Table S3). From this subset of proteins, we identify
various networks enriched including intracellular signalling, gene expression, cytoskeleton
organisation, and AKT1, BRAF and GTPase activity — processes downstream of EGFR activation, were
amongst those downregulated (Figure 3C). Subsequent NV"BECF treatment induced phosphorylation of
261 out of 421 Erlotinib-inhibited proteins, which are associated with GTPase activity, AKT1 and
intracellular signal transduction, and the VEGF-VEGFR2 signalling pathway (Figure 3C, Table S4),

indicative of an alternative signalling mechanism to EGFR activation.

From this profiling analysis we demonstrate that NVs loaded with HB-EGF can mediate rapid (5 min)
and dynamic changes in the phosphorylation landscape of HEC1A endometrial cells, including
regulators of intracellular signal transduction and EGFR signalling networks, as well as known

regulators of endometrial receptivity.
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3.4.NVHBEGF treatment on recipient HEC1A endometrial cells significantly increased expression

of proteins upregulated at the embryo-maternal interface

Embryo implantation into the maternal endometrium takes approximately 1 to 2 days(®®. To define the
influence of earlier NV"BESF-mediated phosphorylation and signalling events on endometrial cell
proteome at the time of implantation, we investigated the proteome landscape of HEC1A endometrial
cells following 24 hr stimulation with NVHEESF NVs, HB-EGF, ErloNVHBESF or PBS (vehicle) (Figure
4A, Table S5). Compared to vehicle, 67 proteins were uniquely identified and significantly upregulated
following NVHEECF treatment (Figure 4B), including proteins present either at the embryo-maternal
interfacel®® 7% (S100A16/6/4"1, TAGLN2[274 PTGFRNI™®!, CKAP4, TPD52L2, UFL1, NDUFBI10,
GALNT2, RAPHL1), in the endometrium during pre-attachment (CSTBU®)), or associated with placental
development (FTLIT, LAMP1[8-81 | RP118Y), Of these, 6 proteins were similarly upregulated in NV
treatment (CKAP4, LAMP1, GALNT2, NDUFB10, RPL38, RPS19); while 26 proteins may be
attributed to HB-EGF function in NVHEECF (Figure 4B).

Erlotinib treatment disrupted phosphorylation of ERBB/EGFR signalling players — a potential
mechanism by which NV"BESF and NVs reprogram HEC1A cells. We analysed the proteome of HEC1A
cells following ErloNVHBECF treatment and compared with NVHEESF treatment. Indeed, of 127 proteins
downregulated (107 absent, 20 significantly downregulated) by ErloNV"BESF treatment compared to
NVHBECF (Figure 4C) included 3 proteins associated with ERBB/EGFR signalling: (i) MTOR, a protein
synthesis regulator that forms a positive feedback loop to AKT signalling; (ii) GRB2, upstream
regulator of MAPK and PI3K signalling pathways; and (iii) RPS6KAL, a gene expression regulator.
Processes associated with the downregulated proteins include vesicle-mediated transport, symbiotic
process, organelle organisation, and cellular localisation; with 86 proteins categorised as ‘KW-0597:
phosphoprotein’ (Figure 4C, Table 6). Indeed, the phosphorylation expression levels of their 13
associated kinases were decreased following ErloNV"BECF treatment compared to NVHEESF including
AKT1, CDK1/9/16, CHEK1, CSNK1Al, IKBKB, LIMK1, MAPK1, MET, PRKCD, RPS6KAL, SRC
(Figure 4D).

To correlate how cellular changes are altered in HEC1A cells by NV"8ECF and its influence on the
endometrium at the time of implantation, we identified upregulated and downregulated proteins in
NVHBEGF compared to ErloNVHBECF and vehicle (Figure 4E). We note that compared to NVHBECF,
ErloNVHBESF treatment downregulated players involved downstream of the EGFR signalling pathway
(MAPK1/3/14, BCARL, IQGAPL, CRKL, INPPL1, CAV1, AP2Al, CAMK2G, GSK3B, PLCG2,
NRAS), highlighting EGFR signalling as a central mechanism of NVHBECF-mediated endometrial
reprogramming. Interestingly, proteins upregulated by NVHBESF have been shown to be also upregulated
in expression at the embryo-maternal interfacef® 7 (GSTO1, FKBP1A, ISG15, MAP2K1, AHCYL2,
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SWAP70, PPP1CB, LAMA3, RPS20, RPL14). In this study, these identified differentially expressed
proteins are involved in symbiotic process, membrane trafficking, and intracellular localisation and
transport (Figure 4F, Table S7). Contrastingly, processes relating to metabolism (nitrogen, carbon,
small molecule) and RNA splicing and biogenesis were associated with ErloNVHBESF and PBS
treatment respectively (Figure 4F, Table S8/9).

Collectively, we highlight the capacity of NV-mediated reprogramming of endometrial cells to
modulate proteome dynamics associated with EGFR signalling and changes in the endometrium
associated with embryo attachment. We next questioned whether HB-EGF-loaded NVs from human
trophectodermal cells could regulate endometrial function. Our data suggests that HB-EGF-loaded NVs
potentially display the capacity to enhance cell attachment/adhesion and invasive capacity, as

previously reported in trophectodermal cell-derived NVs and secreted EVs. This hypothesis was tested.

3.5. NVHBEGF treatment significantly enhances endometrial-trophectoderm adhesion following

uptake by recipient endometrial cells

Using a co-culture attachment assay as an in vitro proxy measure of adhesive capacity® 8, we assessed
whether NVHBECF treatment onto HEC1A cells enhances their adhesion to trophectodermal spheroids
(Figure 5A). Low-receptive HEC1A endometrial cells (monolayer) were stimulated with treatments
for 24 hrs, then incubated with hTSC spheroids and allowed 2 hrs for attachment. Unattached spheroids
were removed, remaining attached spheroids were counted, and the attachment rate assessed
(Figure 5A). NVHBECF treatment demonstrated the highest significant increase in spheroid attachment
rate to HEC1A cells (%) at 65+10 — almost 40% higher than PBS control (27+6, p<0.005) (Figure 5B)
and 20% higher than NVs (46+7, p<0.005). However, in ErloNV"BECF (2146, p<0.005), NVHEECF did
not restore the attachment capabilities of spheroids pre-treated with Erlotinib (to PBS levels); lastly,
HB-EGF treatment alone performed similarly to unloaded NVs (42+25, p>0.05) (Figure 5B).

3.6. NVHBEGF treatment with trophectodermal spheroids significantly enhances their invasive

capacity into Matrigel™ matrix

Trophoblast invasion and outgrowth into the endometrium is a hallmark of successful implantation and
placentationl” 84881 and assessed in vitro using the Matrigel™ matrix invasion assay* 4 81 (Figure
5C). Here, trophectodermal spheroids were incubated with corresponding treatments for 2 hrs prior to
seeding into Matrigel™. A second dose of treatment in media was supplemented after 24 hrs and the
level of invasion monitored across 72 hrs using light microscopy (Figure 5E, F). Increase in invasion

was measured by subtracting the area of the original spheroid from the final measured area of invasion

12
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(Figure 5E, F). NVHBEGF treatment displayed the highest significant increase in spheroid invasion (%)
at 248.7x75.1 — approximately 1.5-times higher than PBS (185+32.6, p<0.0005), while NV
(237.9£76.9, p>0.05) and HB-EGF (210.5+79.5, p<0.05) treatment performed similarly (Figure 5D).
From our observations with ErloNVHBECF (80.9+36.4, p<0.0005), EGFR inhibition with erlotinib
diminished the invasive capacity of spheroids which could not be restored by subsequent N\V/HBECGF
treatment (Figure 5D).

Our findings demonstrate the enhanced functional impact of HB-EGF loading into NVs by
demonstrating increased (i) attachment of low receptive endometrial cells to trophectodermal spheroids
and (ii) invasion of trophectodermal spheroids into Matrigel™ matrix, compared to unmodified NVs.

In doing so, we highlight EGFR signalling as a critical mediator of NVHBEGF function.

Discussion

Nanosized extracellular vesicles and a plethora of growth factors (i.e., HB-EGF) are critical signalling
mediators during embryo implantation to the maternal endometrium — a cardinal event of pregnancy
establishment. This study highlights a rapid and scalable cell extrusion method to load the implantation
regulator HB-EGF into trophectodermal cell-derived nanovesicles (NVHBECF), Our study employs
phosphoproteomics and proteomics analysis to demonstrate NVHBECF short-term signalling and long-
term reprogramming capabilities on recipient low receptive HEC1A human endometrial cells. We
highlight that N\VHBECF elicit EGFR-mediated effects in recipient endometrial cells. Importantly, these
protein phosphorylation activities and signalling patterns, including the activation of kinases and
phosphorylation sites that regulate their function (i.e., AKT1 S124[4 and S1291!, MAPK1 T185 and
Y18718)); and signalling processes (i.e., AKT signal transduction, GTPase activity) downstream of
EGFR activation; induce functional changes in recipient cells to enhance endometrial attachment to the

trophectoderm, and trophectodermal invasion into Matrigel™ matrix.

At the implantation site, trophectodermal cells of the blastocyst release EVs enriched with bioactive
molecules that reprogram itself®-°11 and the endometrium*¢-18.%21 to support embryo-maternal crosstalk
and implantation. NVs derived from hTSCs[*™ therefore retain a high proportion of bioactive proteins
innate to trophectodermal cells, including those implicated in embryo-maternal interactions (ANXA2E%
%1 DPP4L%. 971 CTSBI®8-1001) and trophoblast invasion (TAGLN2[1, CTSB/DP®, LGALS3E). Indeed,
we show that hTSC NV"BECF and NVs, enriched in these molecules, are effective supplements for
promoting endometrial adhesion to trophectodermal cells and trophectodermal invasion into Matrigel™
(Figure 5). Similarly in various applications, NV composition can be tailored to suit various therapeutic
purposes, such as the selection of macrophages for spinal cord®” or tumour” targeting, stem cells for

their regenerative propertiest?> 2 21 and insulin-producing cells for diabetes management™°,
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However, the parental cells” natural composition can often limit their function, requiring dose titrations
and functional assays!*> 22 to determine an effective dose, although selection of the appropriate

functional assays and their standardisation remains an area of active discussion®,

Modifying NV composition is a method of fine-tuning their function; for example loading of
chemotherapeutic drugs® %1 for cancer therapy or drug-specific investigations, or antioxidative
enzymest?* 1% for oxidative stress-related diseases; it may thus be explored further to achieve a range
of outcomes in different contexts. The extrusion strategy described in this study, for example, can be
amended to load other factors to enhance implantation, such as those explored in clinical trials (i.e.,
hCG (NCT017862521%1 NCT01030393!1%¢1)), without genetically modifying parental hTSCs! o],
While HB-EGF was selected for enrichment into NVs for its indispensable roles in pregnancy
establishment!30-33. 36, 1081111 - jts \well-researched mechanism of action makes it a suitable target for
functional validation and for dissecting the embryo-maternal interface. HB-EGF interacts with receptor
tyrosine kinases (RTKs) EGFR and ERBB4 expressed on target cells to initiate multiple downstream
signalling cascades® 2 (i.e., MAPK, PI3K-AKT/PIP, small GTPase) (reviewed™'®l). Furthermore,
HB-EGF may perform synergistically with the high expression of heparan sulfate proteoglycans*'4
expressed in NVs from their trophectodermal source, as this enhances their binding to high-affinity
receptors (i.e., ERBB4[1%)), potentially augmenting its influence in recipient cells. However, given the
variety of signalling patterns initiated by EGFR, this can induce variable phenotypic responses and
outcomes in cellst!*>18: for example, GTPase activity regulates cytoskeletal remodelling and cell
polarity**® 1201 jn endometrial cells to enhance their adhesive capacity!®® 2% 1221: in embryos, however,
it influences transcription activity and signalling (CREB, WNT, JNK)!2 24 to modulate cell
differentiation™ and embryo sizel*?®l. We have thus assessed the temporal effects of NVHBECF
treatment; from the early phosphorylation-mediated signalling events occurring in recipient cells, to its

molecular landscape and function at the approximate time of embryo attachment (1 to 2 days®).

The proteome of recipient HEC1A endometrial cells indicates expression of 5 other RTKs (AXL,
DDR1, MET, MST1R, EPHA2), which may interact with corresponding ligands enriched in NVs (i.e.,
LGALS3, collagens, HGF) to activate signalling cascades that converge with the EGFR-mediated
pathway!*?®l, For example, proteins phosphorylated by NVHBECF and NVs (i.e., GAB1, NCK2, and
AKT1), while categorised as EGFR signalling players, are also contributors of MAPK, PI3K-AKT, and
MTOR signalling — all present downstream of RTK activation®?l. Indeed, upon EGFR inhibition,
subsequent NVHEECF treatment induced EPHA2 phosphorylation and downstream signalling modulators
(i.e., BRAF, MAP3K2, PAK4, PXN, SH3KBP1) (Figure 3B). NVHBEGF may also activate cell-surface
receptor CD445% expressed on HEC1A endometrial cells, which interaction with HB-EGFP® 1271 was
previously implicated in endometrial tissue remodelling®™!. CD44 is integral for endometrial

decidualisation™” and adhesion to the embryol!?®l; with its expression linked to implantation
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successt*?” and female fertility status™®. Upon binding to compatible ligands, CD44 phosphorylates
GAB1M™% 1o initiate AKT signalling, and activates downstream effectors including RhoGTPasest3!-133],
to induce cytoskeletal reorganisation and cell migration and adhesion. Interestingly, despite EGFR
inhibition, NV"BESF induced the phosphorylation of GAB1 (S163) (Figure 3B), and other proteins
implicated in the regulation of GTPase activity, supporting NV"BECF-CD44 interaction as another
pivotal driver of endometrial reprogramming. At the site of embryo implantation, GTPase activity
exerts influence on PI3K-AKT signalling and RhoA in mouse embryos to mediate their
implantationt34, endometrial cell contraction/migration(*?%: 331 and focal adhesion™® 1351371 it js thus
an indispensable mediator of embryo-endometrial interactions® 2% 122, Compared to endometrial cells,
hTSCs and their derived EVs were enriched in GTPases'”); the latter’s treatment onto recipient
endometrial cells upregulated cytoskeletal organisation and cell polarity processes, potentially through
GTPase activity as a trophectoderm-mediated signalling strategy. Indeed, supplementation of our
unloaded NVs significantly augmented the adhesive capacity of HEC1A endometrial cells to
trophectodermal spheroids, as well as the invasive capacity of trophectodermal cells (Figure 5).

Whether the latter observation is attributed to PISK-AKT signalling™4 still warrants investigation.

We have demonstrated marked functional influence of NVHBECF on HEC1A endometrial cells compared
to HB-EGF and NVs; which significantly augmented their adhesion to trophectoderm cells by ~40%
from baseline (PBS) — double the capacity of HB-EGF and NVs (Figure 5). Given that NV"BESF and
HB-EGF share a higher proportion of upregulated proteins in endometrial cells compared to NVs, and
the well-studied role of HB-EGF[0-33 %. 108-111] 3nd ERBB/EGFRI6 1381401 signalling at the embryo-
maternal interface, we posit that the latter has substantial influence on our functional observations.
Indeed, with the erlotinib targeted inhibition of EGFRI* NVHBEGF treatment could not restore
endometrial or trophectodermal cell function to baseline (PBS) levels. Moreover, amongst the
phosphorylation of kinases and expression of their corresponding proteins downregulated by EGFR
inhibition (Figure 4D), the most dysregulated proteins include those upregulated at implantation sitest™
1421 (Figure 4E). Even so, the functional capacity of HB-EGF was inconsistent, and at best comparable
to NVs; a similar phenomenon was observed in hCG-loaded EVs from human uterine fluid™**, which
demonstrated the enhanced capacity to induce expression of receptivity markers in recipient
endometrial cells compared to hCG alone, EVs alone, or co-supplementation of hCG with EVs. Prior
attempts to develop signalling mediators (i.e., h\CGE!, LIF*! and G-CSF*%) with strong links to fertility
and endometrial receptivity as fertility-enhancing supplements have also been unsuccessful in clinical
trials. Taken together, these observations allude to a multi-faceted signalling mechanism by engineered
EVs or NVs that encompass properties of their enriched molecule and their biological source, thereby
enhancing their functional benefit and potential therapeutic utility. NVs thus represent a feasible and
adaptable method of large-scale generation of therapeutic vesicles for tuning endometrial phenotype

and function. This proof-of-concept study demonstrate feasibility in enhancing the potency of NVs in
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542  the context of embryo attachment and pregnancy establishment. Whether these loaded NVs improve
543  implantation rate in vivo warrants future investigation.
544
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Figure Legends

Figure 1. Production and characterisation of NVHBECF A) NVHBECF were generated by serial
extrusion (10, 5, 1 um filters, 13 times per membrane) of human trophectodermal cells (T3-TSCs) with
either 50 ng/ml of HB-EGF or PBS and purified using density-cushion ultracentrifugation to obtain 7
fractions (F1-7) of increasing density. NV-containing fraction (F5) was obtained. B) Cryo-electron
microscopic image of NVHEECF displayed spherical and morphologically intact structures; scale 100 nm.
C) Size distribution of NV"BESF hased on cryo-electron microscopic images (n=4) reveal enrichment of
particles 50-150 nm in diameter. D) Abundance of HB-EGF using mass spectrometry analysis;
normalised LFQ intensities (logz) of HB-EGF between NVHBESF and NVs generated using the same
workflow from hTSCs and mouse embryonic fibroblasts. E) Western blot display of HB-EGF

enrichment in NVHBEGF compared to NVs (n=3).

Figure 2. Uptake of NV"BESF and NVs by HEC1A endometrial cells

A) Confocal fluorescent microscopy images demonstrating uptake of NVHEESF or NVs labelled with Dil
lipophilic fluorescent dye labelled (red) by HEC1A endometrial cells after a 2-h incubation (n=3). B)
Fluorescent Z-stack image displaying intracellular distribution of Dil-labelled NVHEESF (red). Nuclei of

HEC1A endometrial cells were stained with Hoechst (blue). Scale bar 10 pum.

Figure 3. NV"BECF remodel the phosphoproteome landscape in HEC1A endometrial cells. A)
Workflow for NVHEEGF and NV treatment onto recipient HEC1A endometrial cells, including a 2-step
treatment of erlotinib (EGFR inhibition) followed by NVHBEGF stimulation, and subsequent cell
phosphoproteome preparation and analysis. B) Heatmap expression (logz) of phosphorylated proteins
and phosphosites of players of the EGFR signalling pathway, which are downregulated when EGFR is
inhibited by erlotinib (white corresponds to missing values). C) (Top) Erlotinib inhibited the
phosphorylation of 421 proteins (compared to PBS), while subsequent NV"BESF treatment induced
phosphorylation of 261 of the inhibited proteins; (Bottom) bubble plot displaying key biological

processes and pathways corresponding to the 421 and 261 proteins respectively.

Figure 4. NVHBEGF remodel the proteome landscape and EGFR signaling network at the time of
implantation. A) Workflow employed for proteomic analysis of stimulated HEC1A endometrial cells.
B) Proteins uniquely identified and significantly upregulated in NVHEESF- or NV-treated HEC1A cells
compared to PBS. C) Pre-treatment of HEC1A cells with erlotinib followed by NVHBESF downregulated
the expression of 127 proteins compared to NV"BESF which are categorised into related biological
processes. D) NV"BECF. and ErloNVHBECF_mediated phosphorylation levels of 13 kinases that are
matched to downregulated proteins. E) Comparative analysis of HEC1A cellular proteome treated with

NVHEECF compared to ErloNVHBECF and PBS, and a two-way scatter plot highlighting top dysregulated
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proteins in the presence of EGFR inhibitor, erlotinib. F) Bubble plot display of biological processes and
pathways associated with proteins significantly upregulated (including unique) by NV"BECF treatment
and proteins significantly downregulated (including absent) in NV"BECF compared to ErloNV"BECF and
PBS.

Figure 5. NVHBEGF enhances attachment to endometrial cells and outgrowth and invasion in
Matrigel™ of trophectodermal spheroids. A) Experimental workflow for co-culture attachment
assay. B) Box plot indicating percentage of spheroid attachment to HEC1A endometrial cells following
treatment with PBS, NVHEECF NV, HB-EGF, or ErloNV"BECF (n=5), where rate of spheroid attachment
(%) is the number of attached spheroids divided by the number of seeded spheroids expressed as a
percentage. C) Experimental workflow for TSC spheroid outgrowth and invasion into Matrigel™. D)
Box plot indicating quantified area of TSC spheroid outgrowth and invasion into Matrigel™ 72 hr
following treatment with PBS, NV"BEGF NV, HB-EGF, or ErloNVHEESF (n=8). E) Bright-field
microscopic images of TSC spheroids outgrowth and invasion into Matrigel™ 72 hr following
treatment with PBS, NVHBECF NV, HB-EGF, or ErloNVHEECF, Scale bar 100 um. F) Area of outgrowth
extending from spheroid taken for measurements is shaded in grey and quantified using ImageJ.
*p<0.05, **p<0.005, ***p<0.0005, ****p<0.001
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Figure 1. Production and characterisation of NVHB-EGF
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