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‭Abstract‬

‭The scaling exponent relating the mean and variance of the density of individual organisms in‬

‭space (i.e. Taylor’s slope: z‬‭space‬‭) is well studied‬‭in Ecology, but the analogous scaling exponent‬

‭for temporal datasets (z‬‭time‬‭) is underdeveloped. Previous‬‭theory suggests the narrow distribution‬

‭of z‬‭time‬ ‭(e.g. typically 1 - 2) could be due to interspecific‬‭competition. Here, using 1,694‬

‭communities time series, we show that z‬‭time‬ ‭can exceed‬‭2, and reaffirm how this can affect our‬

‭inference about the stabilizing effect of biodiversity. We also develop new theory, based on‬

‭temporal change in the ranks of species abundances, to help account for the observed z‬‭time‬

‭distribution. Specifically, we find that communities with minimal turnover in species’ rank‬

‭abundances are more likely to have higher z‬‭time‬‭. Our‬‭analysis provides a deeper mechanistic‬

‭understanding of how species-level variability affects our inference about the stability of‬

‭ecological communities.‬
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‭Introduction‬

‭Our understanding of the temporal variability of populations or communities, which is of‬

‭long-standing interest in ecology‬‭(R. M. Anderson‬‭et al. 1982; Bahram, Peay, and Tedersoo‬

‭2015)‬‭, often centers around a scaling relationship‬‭between the mean and variance of species’‬

‭abundances (aka Taylor’s Law, 1961). In a pioneering meta-analysis in 1961, L.R. Taylor‬

‭proposed a general scaling relationship, referred to as Taylor’s (power) law (hereafter TL),‬

‭relating the variance (‬ ‭) of population density with its mean (‬ ‭):‬ ‭, for values of‬ ‭>0, z‬‭𝑣‬ ‭𝑚‬ ‭𝑣‬‭ ‬= ‭𝑎𝑚‬‭𝑧‬ ‭𝑎‬

‭being called TL slope or exponent. This scaling relationship is ubiquitously observed for many‬

‭taxa in nature (e.g., bacteria, fish, plants, insects, voles, etc.), and has also been applied outside‬

‭of ecological systems‬‭(Eisler, Bartos, and Kertész‬‭2008; R. A. J. Taylor 2019; Kalyuzhny et al.‬

‭2014)‬‭. Although Taylor’s law was originally developed‬‭for the analysis of spatial variation of‬

‭population density‬‭(L. R. Taylor 1961)‬‭, it is also‬‭highly relevant, but less often studied, in the‬

‭context of temporal analyses of communities (reviewed by Cobain et al. 2019). In spatial‬

‭analyses of density variation (TL‬‭space‬‭), z‬‭space‬ ‭is‬‭an index of the degree of patchiness of the‬

‭population density of a single species among sites (i.e. metapopulations). Whereas, in temporal‬

‭analyses of density variation (TL‬‭time‬‭), z‬‭time‬ ‭is an‬‭index of temporal aggregation of the abundance‬

‭fluctuations of multiple species in a community (i.e., from the same site). The z‬‭time‬ ‭exponent has‬

‭been useful for assessing population persistence‬‭(Pertoldi,‬‭Bach, and Loeschcke 2008;‬

‭Kalyuzhny et al. 2014)‬‭, the stability of crop yields‬‭(Döring, Knapp, and Cohen 2015)‬‭, and‬

‭fluctuations in fish stocks‬‭(Kuo et al. 2016; Xu,‬‭Kolding, and Cohen 2019; Segura et al. 2021)‬‭.‬

‭Currently, understanding the importance of mean-variance fluctuation scaling (i.e. z‬‭time‬‭)‬

‭for making inferences from community dynamics is limited by uncertainty in i) the distribution‬

‭of z‬‭time‬ ‭in natural communities, ii) how z‬‭time‬ ‭variability‬‭affects interpretations of community‬
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‭stability, and iii) the mechanisms underlying z‬‭time‬ ‭variability. We address each of three gaps‬

‭(referred to below as G1-G3). First, existing studies of natural communities have documented a‬

‭limited range of variation in z‬‭time‬ ‭(Xu and Cohen‬‭2019; Cobain, Brede, and Trueman 2019)‬‭, but‬

‭with the increasing availability of long-term community time series we can improve our‬

‭inference about the distribution of z‬‭time‬ ‭in nature.‬

‭Second, there is longstanding theory about how variation in z‬‭time‬ ‭is relevant for‬

‭interpreting community stability‬‭(Cottingham, Brown,‬‭and Lennon 2001; Kilpatrick and Ives‬

‭2003; Kalyuzhny et al. 2014; Zhao et al. 2019; Cobain, Brede, and Trueman 2019)‬‭, but these‬

‭interpretations are somewhat sensitive to mean variance scaling. Importantly, when‬ ‭is greater‬‭𝑧‬

‭than 1, the expected temporal variance of the total community abundance is less than that of a‬

‭single population for that same mean abundance (Figure 1), meaning that species-level variance‬

‭increases nonlinearly in relation to mean abundances. This reduced variance arises because of the‬

‭statistical averaging of independently varying population time series, which is known as the‬

‭portfolio effect concept (hereafter PE)‬‭(Doak et al.‬‭1998; Schindler, Armstrong, and Reed 2015)‬‭.‬

‭PE has been widely used to quantify the importance of species diversity for overall community‬

‭stability (i.e., inverse of community variability, CV), but its interpretation depends on z‬‭time‬ ‭for‬

‭that community‬‭(Cottingham, Brown, and Lennon 2001)‬‭.‬‭For example, the magnitude of the PE‬

‭is negligible when z‬‭time‬‭~1, and increases with z‬‭time‬ ‭(Figure 1e, red line). This means that estimates‬

‭of community stability (i.e. 1/CV), for a given species richness, decrease with the increase in z‬‭time‬

‭for a community (Figure 1e, black line). Importantly, the consistently negative relationship‬

‭between stability and‬ ‭over a wide range of species diversity (Figure 2a) means that the‬‭𝑧‬

‭expected slope of the relationship between species richness and stability decreases substantially‬

‭as z‬‭time‬ ‭increases (Figure 2a, inset). Often, PEs‬‭are estimated by comparing the overall‬
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‭community variability with the average variability of constituent populations, or, in a spatial‬

‭context, by comparing the CV of overall the meta-population abundance with the average CVs of‬

‭the subpopulations‬‭(Schindler et al. 2010)‬‭. However,‬‭Anderson et al. (2003) showed that the‬

‭above-mentioned approach is appropriate only for z‬‭time‬‭=2,‬‭and they provided an alternate‬

‭approach accounting for the potential heterogeneity of z among communities.‬

‭Third, existing theory can explain why z‬‭time‬‭often‬‭varies between 1 and 2‬‭(L. R. Taylor‬

‭and Woiwod 1982; Tokeshi 1995; Xiao, Locey, and White 2015)‬‭, but provides no general‬

‭mechanistic explanation for the entire empirically observed range of z‬‭time‬‭. For spatial TL context,‬

‭several proposed mechanisms that explain variation in z‬‭space‬ ‭have considered density dependence‬

‭(Perry 1994)‬‭, density-independent and stochastic population‬‭growth‬‭(Cohen, Xu, and Schuster‬

‭2013)‬‭, population synchrony‬‭(Cohen and Saitoh 2016)‬‭,‬‭and random sampling from skewed‬

‭distribution‬‭(Cohen and Xu 2015)‬‭. Whereas for z‬‭time‬ ‭proposed mechanisms have considered‬

‭interspecific competition‬‭(Kilpatrick and Ives 2003)‬‭,‬‭environmental variability‬‭(Cohen and‬

‭Saitoh 2016)‬‭, correlated reproduction‬‭(Ballantyne‬‭and J. Kerkhoff 2007)‬‭, sampling error‬

‭(Kalyuzhny et al. 2014)‬‭, and limited sampling effort‬‭(Giometto et al. 2015)‬‭. However, all of‬

‭these previous studies have focused on explaining why z‬‭time‬ ‭is typically less than 2, and only a‬

‭few previous studies have provided a mechanistic explanation for why it can be greater than 2. In‬

‭spatial models, z‬‭space‬ ‭can be greater than 2 due to‬‭synchrony among metapopulations‬‭(Reuman et‬

‭al. 2017)‬‭especially when they are rare‬‭(Ghosh, Sheppard,‬‭Holder, et al. 2020)‬‭, and due to‬

‭growing stochasticity‬‭(Cohen, Xu, and Schuster 2013)‬‭or unexpected changes in a smoothly‬

‭autocorrelated environment‬‭(Cohen 2014)‬‭. In the case‬‭of z‬‭time‬‭, only one previous study of a fish‬

‭community found that environmental variability can lead to a size-based Taylor’s slope greater‬

‭than 2‬‭(Cobain, Brede, and Trueman 2019)‬‭.‬
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‭In this paper, we will address each of those three aforementioned gaps. First (for‬‭G1‬‭), we‬

‭estimate the distribution of z‬‭time‬ ‭(hereafter z) in‬‭nature by compiling thousands of long-term (>20‬

‭years) community time series (>15 species). Second (for‬‭G2‬‭), we use this dataset to explore the‬

‭consequence of variation in z for interpreting stability in general, and the portfolio effect in‬

‭particular. Third (for‬‭G3‬‭), we propose a novel and‬‭general mechanism that can help explain the‬

‭wide range of z observed in natural communities. Our mechanism is based on how species’‬

‭rank-abundance distribution in a community change over time‬‭(MacArthur 1957; McGill et al.‬

‭2007)‬‭. Although the rank-abundance curves are widely‬‭studied in ecology‬‭(Whittaker 1965)‬‭,‬

‭their temporal turnover has not been previously explored in the context of explaining variation in‬

‭mean-variance scaling among communities (i.e. variability in z).‬

‭Materials & Methods‬

‭We compiled long-term abundance (or biomass when abundance was not available for‬

‭379 plant communities) annual time series (20 to 57 years) data from a public database‬‭(Ghosh et‬

‭al. 2023)‬‭for 1,694 communities in total, and for‬‭multiple taxa (e.g., birds, fish, terrestrial and‬

‭freshwater invertebrates, phytoplankton, plants with a minimum of 15 species sampled annually).‬

‭We included species that were present for at least for 70% of the total sampling period, thus,‬

‭following other studies‬‭(Valencia et al. 2020; Sasaki‬‭and Lauenroth 2011)‬‭, we focused on the‬

‭dynamics of dominant species in communities. For each of the 1,694 communities, we computed‬

‭the average correlation between years (‬ ‭), and five additional metrics using the‬‭ecofolio‬‭𝑟‬

‭R-package‬‭(S. C. Anderson, Cooper, and Dulvy 2013)‬‭.‬‭They are temporal Taylor’s slope (z),‬

‭community-level temporal synchrony among species as variance ratio, VR,‬‭(Loreau and de‬

‭Mazancourt 2008)‬‭, temporal community stability (as‬‭CV‬‭-1‬‭), and two types of portfolio effects‬‭(S.‬
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‭C. Anderson, Cooper, and Dulvy 2013)‬‭, PE, considering without (i.e. based on an average-CV‬

‭based approach) and with mean-variance scaling. We also computed net tail-dependence among‬

‭species’ ranks (i.e. dependence between lower ranks minus dependence between higher ranks,‬

‭rarest species got lowest rank) between any two years of the whole study period, using‬‭partial‬

‭Spearman correlation‬‭approach‬‭(Ghosh, Sheppard, Holder,‬‭et al. 2020; Ghosh, Sheppard, Reid,‬

‭et al. 2020)‬‭.‬

‭We addressed the first gap (‬‭G1)‬‭by evaluating the‬‭wide variation in z for the largest‬

‭collection of such long-term natural communities. We also simulated communities with different‬

‭combinations of richness (varying from 30 to 70) and z (varying from 1 to 3) to test whether the‬

‭two types of PE differ from each other when z is not equal to 2. We later used both of these‬

‭empirical and simulated communities to address‬‭G2‬‭and verified how the average-CV based‬

‭approach overestimated PE when z<2, and underestimated when z>2 (results in Figures 2b-3, see‬

‭Box 1‬‭in the‬‭Supporting Information‬‭for theoretical‬‭expectations). We also developed a rank‬

‭abundance curve (RAC) turnover model to provide a general mechanism behind the wide‬

‭variation in z found for natural communities (addressing‬‭G3‬‭). We then used the model to help us‬

‭understand potential explanations for the observed variation of zin nature (results are shown in‬

‭Figures 4d, 5).‬

‭To develop the model, we simulated three types of communities with the same number of‬

‭species (‬ ‭) and the same between-year correlation (‬ ‭). They are - type I, Figure 4a: having more‬‭𝑅‬ ‭𝑟‬

‭dependence among the dominant group of species (i.e., consistent upper ranks in RAC and more‬

‭turnover in lower ranks), type II, Figure 4b: having more dependence among the not-so-common‬

‭or rare group of species (i.e., consistent lower ranks in RAC and more turnover in upper ranks),‬

‭and type III, Figure 4c: having no dependence in any specific group (i.e., complete and random‬

‭7‬

‭139‬

‭140‬

‭141‬

‭142‬

‭143‬

‭144‬

‭145‬

‭146‬

‭147‬

‭148‬

‭149‬

‭150‬

‭151‬

‭152‬

‭153‬

‭154‬

‭155‬

‭156‬

‭157‬

‭158‬

‭159‬

‭160‬

‭161‬

https://paperpile.com/c/M2RjbG/Qa4U
https://paperpile.com/c/M2RjbG/oM9R+uqrJ
https://paperpile.com/c/M2RjbG/oM9R+uqrJ


‭annual turnover among species ranks). “Copula”, a mathematical tool and a rank-based‬

‭approach, has been used to compute tail-dependence (i.e., dependence in the extremely high or‬

‭low values) among two correlated ecological variables in past studies‬‭(Ghosh, Sheppard, Holder,‬

‭et al. 2020; Ghosh, Cottingham, and Reuman 2021; Ghosh, Sheppard, Reid, et al. 2020; Ghosh,‬

‭Sheppard, and Reuman 2020; Walter et al. 2022)‬‭. Copulas‬‭make the marginal distribution‬

‭uniform so that the dependence information remains unique on its own. For example, with the‬

‭same sample set‬ ‭one can generate type I, type II, and type III‬(‭𝑥‬
‭𝑖‬
‭ ‬, ‭ ‬‭𝑦‬

‭𝑖‬
); ‭ ‬‭𝑖‬‭ ‬ = ‭1‬, ‭2‬, ‭ ‬..., ‭ ‬‭𝑅‬

‭dependence using three particular single-parameter “copula” families: Survival Clayton, Normal,‬

‭Clayton, respectively (see‬‭iRho‬‭function from‬‭copula‬‭R-package for details‬‭(Yan 2007)‬‭). We‬

‭used this approach in the community matrix,‬ ‭, (with‬‭abundance or biomass for‬ ‭number of‬‭𝑀‬ ‭𝑅‬

‭species that are sampled for‬ ‭years; species along‬‭columns and years along rows) so that the‬‭𝑁‬

‭Spearman correlation between any two years are the same. Specifically, we first constructed such‬

‭a community from Clayton family that has dependence in lower ranks (type II), and then we‬

‭permuted‬ ‭in such a way to eliminate the tail-dependence‬‭structure but preserve the same‬‭𝑀‬

‭between-year correlation,‬ ‭(up to sampling error).‬‭In doing so, this permutation generated a‬‭𝑟‬

‭Normal copula (type III). Then, we again permuted the community matrix‬ ‭to get upper‬‭𝑀‬

‭tail-dependence (i.e., dependence in upper ranks) preserving between-year correlations and‬

‭leading to the Survival Clayton copula (i.e. a 180-degree rotation of Clayton family). We‬

‭generated 1,000 surrogates for each type of community (see Simulation_zmorethan2.R script‬

‭from the Zenodo repo:‬‭https://doi.org/10.5281/zenodo.8373892‬‭).‬‭A similar algorithm was‬

‭previously used in Spatial Taylor’s law context to generate surrogate communities with the same‬

‭correlation but different dependence structures among sites‬‭(Ghosh, Sheppard, Holder, et al.‬

‭2020)‬‭.‬
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‭Given this set of community types, we hypothesized that the third type (i.e. Figure 4:‬

‭Case III) would lead to z values within the commonly observed range of 1 and 2, irrespective of‬

‭the value of the r.  However, we also suspected that any tail-dependencies in the ranks (e.g. lower‬

‭or upper tail dependencies in Case 1 and II) could expand the range of z both below 1 and above‬

‭2 (i.e., for the Case I, II). To explore this, we simulated for a given year-to-year correlation,‬ ‭,‬‭𝑟‬

‭three types of communities each with 1,000 surrogates (or replicates), and species richness‬ ‭=40‬‭𝑅‬‭ ‬

‭where we tracked species abundance for‬ ‭=22 years.‬‭Therefore, each replicate community type‬‭𝑁‬‭ ‬

‭has the same year-to-year correlation,‬ ‭, and we‬‭varied‬ ‭over a range from 0.2 to 0.9 (results‬‭𝑟‬ ‭𝑟‬

‭shown in Figure 4d).‬ ‭and‬ ‭for this simulation‬‭are chosen to have same median values for‬‭𝑅‬‭ ‬ ‭𝑁‬‭ ‬

‭richness and timeseries length found in our dataset, so that we can compare the results.‬

‭Results‬

‭Our data compilation confirms that most of communities had values of z within the‬

‭commonly reported range from previous studies (i.e., between 1 to 2), but also reveals that nearly‬

‭5% of communities had values of z outside that range (Figure 3a), addressing‬‭G1‬‭. Consistent‬

‭with previous theory, and confirmed with simulated community timeseries (Figure 2a), stability‬

‭was higher for communities having z<2 than the communities with z>2 (Figure 3b, addressing‬

‭G2‬‭). The positive effect of diversity (i.e. richness)‬‭on stability was weaker (slope is less steep)‬

‭for communities with z>2. This result highlights the potential need to account for heterogeneity‬

‭in z values when comparing the stability among communities. We additionally find that such‬

‭heterogeneity is important for interpreting stabilizing mechanisms of community stability, such‬

‭as the portfolio effect (for‬‭G2‬‭). Simulated communities‬‭show the limitations of previous‬

‭approaches (i.e. based on average-CVs following Box 1,‬‭Supporting Information‬‭)‬‭that‬
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‭overestimate PE for z<2 (Figure 2b, solid lines), and the underestimate PE for z>2 (Figure 2b,‬

‭dashed lines). As expected, these approaches converge to the same answer when z=2, and so the‬

‭relevance of this improved method depends on how often the mean-variance scaling exponent in‬

‭natural communities deviates from 2. Consistent with this previous theory, our empirical‬

‭estimates of PE were higher without accounting for the mean-variance scaling (Figure 3c),‬

‭because the majority of communities had z<2. Comparing these two approaches (i.e. with and‬

‭without accounting for mean-variance scaling) clearly shows larger values for PE without‬

‭mean-variance scaling (i.e. green points, n=1,610, above the diagonal line, Figure 3d) for z<2,‬

‭whereas communities with z>2 had larger PE when accounting for mean-variance scaling (i.e.‬

‭pink points, n=80, below the diagonal line, Figure 3d).‬

‭Our model of RAC turnover provides new insight into explaining the wide variation‬

‭observed in in our empirical dataset (Figures 4d, 5), addressing‬‭G3‬‭. The simulation from RAC‬

‭turnover model, as depicted in Figure 4d, shows communities exhibiting high annual turnover‬

‭among all species had z values within the expected range (black solid points ~1.5 showed the‬

‭mean of 1,000 estimates, Case III). Moreover, we find that communities with high turnover for‬

‭any particular group (rare: Case I, dominant: Case II) show a much wider range of z. For‬

‭above-average year-to-year correlation (‬ ‭>0.5),‬‭communities where rare species change their‬‭𝑟‬

‭ranks more frequently are more likely to have z less than 1 (Case I, follow blue dotted lines in‬

‭Figure 4d after the crossing at‬ ‭=0.5). Whereas,‬‭communities in which dominant species changed‬‭𝑟‬

‭their ranks more frequently are more likely to have z greater than 2 (Case II, follow red dotted‬

‭lines in Figure 4d beyond‬ ‭=0.5). The patterns are‬‭opposite below‬ ‭=0.5, where Case I and Case‬‭𝑟‬ ‭𝑟‬

‭II have a higher probability to have z>2, and z<1, respectively. Our repeated simulation for‬
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‭different combinations of richness (‬ ‭), and time series length (‬ ‭) gives similar general finding,‬‭𝑅‬ ‭𝑁‬

‭and is robust to the choice of both‬ ‭and‬ ‭.‬‭𝑅‬ ‭𝑁‬

‭When analysing empirical community time series, we found that the year-to-year‬

‭correlation,‬ ‭, was often greater than 0.5. This‬‭range of‬ ‭led to our expectation, from the‬‭𝑟‬ ‭𝑟‬

‭above-mentioned simulation result, that communities showing more dependence in species’‬

‭upper ranks (Case I from Figure 4d) would likely to have z<1, whereas, communities with more‬

‭dependence in species’ lower ranks (Case II from Figure 4d) would likely to have z>2. Indeed,‬

‭our empirically observed distribution of the net tail-dependence of communities is broadly in line‬

‭with our modeling outcomes (Figure 5d). Specifically, we find higher z values to be associated‬

‭with communities that also show more dependence in lower ranks. In our analysis of the natural‬

‭communities, we interpret more negative values to indicate stronger dependence in upper ranks‬

‭(i.e. dominant species), and less negative to positive values mean increasing contribution of‬

‭dependence in lower ranks (i.e. rare species). Overall, the qualitative match between our‬

‭simulation results in Figure 4 and our analysis of empirical analysis in Figure 5 support our‬

‭predictions. Specifically, communities with high annual turnover over their entire‬

‭rank-abundance distribution tend to have z-values within the range of 1 and 2, whereas‬

‭communities with high annual turnover in just their most dominant or more rare species can have‬

‭z-values less than 1 or greater than 2.‬

‭In our compilation of community timeseries, the species richness varies from 15 to 89‬

‭(median=40 species, Figure 5a), the length of timeseries sampled varies from 20 to 57 years‬

‭(median=22 years), the correlations between years are typically >0.5 (Figure 5b), and the‬

‭synchrony among species (as measured by the variance ratio) is typically <0.75 (Figure 5c). The‬

‭Variance Ratio (VR) has a range of (0, 1). VR values close to 0 implies less synchrony and‬
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‭values of 1 indicate perfect synchrony. Though most data lies in the bottom-left box of Figure 5c‬

‭with low synchrony (VR<0.5, 1<z<2), there are also some communities with z>2 but low‬

‭synchrony (in the top-left box).‬

‭Discussion‬

‭Overall, our data compilation, analysis, and simulation model allows us to explore how‬

‭heterogeneity in z can affect inferences about stability-diversity relationships and the portfolio‬

‭effect (PE) (Figure 3), and provides a novel explanation for the wide distribution of temporal‬

‭Taylor’s slope (z) observed in ecological communities (Figure 4). Previous work has established‬

‭that strong positive relationships between richness and stability are only expected when z<2‬

‭(Figure 3b), and that variability in z among communities can mask how we estimate the‬

‭contribution of PE to community stability (Figure 3c-d). Although the majority of empirical‬

‭observations of communities find z between 1 and 2 (Figure 3a), large values of z are common‬

‭enough to affect inferences about the causes of stability variation. For example, measuring the‬

‭PE without considering the mean-variance scaling relationship can lead to substantial‬

‭overestimates of stability when z<2, and increasingly large underestimates when z>2 (Figure 2b).‬

‭As the statistical averaging effect is likely a fundamental mechanism of stability‬‭(Zhao et al.‬

‭2022)‬‭, it is essential to make accurate assessments‬‭in order to support conservation and‬

‭management efforts.‬

‭Several previous mechanisms have been proposed to explain variability in z, and have‬

‭speculated about causal drivers of community stability. Interspecific competition and‬

‭environmental variability, for example, can explain some variation in z that can impact stability‬

‭(Kilpatrick and Ives 2003; Cobain, Brede, and Trueman 2019)‬‭. For example, negative‬
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‭interactions among species (e.g. competition) is a commonly proposed mechanism for explaining‬

‭why abundant species are less variable than expected given their mean abundance, leading to‬

‭communities with z<2 (Kilpatrick and Ives 2003). Here, our proposed mechanism can explain z‬

‭values both less than and greater than 2 (Figure 4). This implies there can be multiple reasons for‬

‭the observed range of z values in natural communities, and also multiple explanations, beyond‬

‭simply competition, for why communities can both have low synchrony and have z-values less‬

‭than and greater than two (Figure 5c).‬

‭Our simulations demonstrate how high turnover among all species’ ranks (reordering all‬

‭species) can yield communities with z-values in the range of [1, 2], whereas group-specific‬

‭turnover, namely rank-inconsistency only for the dominant species or rare species throughout the‬

‭years, can yield communities with z values outside the range of [1, 2]. Few previous studies have‬

‭connected species abundance distribution with Taylor’s law‬‭(Ma 2015; Cohen 2020)‬‭, but doing‬

‭so can reveal how changes in rank abundance distribution (Figure 5) can impact our assessment‬

‭of community stability (Figure 3). Our results show that monitoring the RACs for rare vs.‬

‭dominant groups of species can help explain the broad range of z observed in nature. There is a‬

‭long history of tracking RACs to understand community dynamics in response to global change‬

‭drivers‬‭(Collins et al. 2008; Avolio et al. 2015;‬‭Jones, Ripplinger, and Collins 2017; Avolio et al.‬

‭2019)‬‭. Our work suggests we need a better understanding‬‭of the reasons for temporal variation in‬

‭RACs and z. For a specific richness, RAC can change due to both species reordering and‬

‭changes in eveness without reordering (‬‭(Collins et‬‭al. 2008; Avolio et al. 2015; Jones, Ripplinger,‬

‭and Collins 2017; Avolio et al. 2019)‬‭). A previous‬‭study‬‭(Wohlgemuth, Solan, and Godbold‬

‭2016)‬‭highlighted the role of species reordering rather‬‭than evenness in maintaining ecosystem‬

‭functioning. Our study also highlights that changes in species reordering, rather than eveness, is‬
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‭most likely to affect z and hence how we make inferences from observed community dynamics‬

‭(Figures 1, 2, and 5).‬

‭Earlier studies also showed that environmental variability (e.g., temperature, soil quality,‬

‭drought) can affect the dynamics of species turnover, and hence the temporal variation in the‬

‭identity of dominant and rare species in a community‬‭(Ulrich et al. 2016; Castillioni et al. 2020)‬‭.‬

‭Changes in the dominance structure of communities is expected due to differences in species‬

‭environmental tolerance and competitive ability in a given environment‬‭(Shurin 2007)‬‭.‬

‭Reordering of the identity of species in rank-abundance curves is also likely when a community‬

‭responds to environmental change (e.g., forb vs grass‬‭(Hoover, Knapp, and Smith 2014)‬‭). For‬

‭example, in a long-term study on desert grassland, the reordering of which species were‬

‭dominant varied through time in response to both pulse (wildfire) and press (changes in Pacific‬

‭decadal oscillation) climatic perturbations‬‭(Collins‬‭et al. 2020)‬‭. There is overwhelming evidence‬

‭that environmental change can  drive community dynamics that substantially alter RACs‬

‭(McCarthy et al. 2018)‬‭. However, more work is clearly‬‭needed to  test the hypotheses about how‬

‭climatic change, for example, can alter the tail-dependence in species’ ranks, and whether‬

‭mean-variance relationships are stable in relation to their temporal Taylor’s slope (i.e. z). A‬

‭recent study‬‭(Tippett and Cohen 2020)‬‭showed seasonal‬‭variation in variance-to-mean‬

‭relationship for all-India daily rainfall pattern (low during peak monsoon, high during‬

‭otherwise). Such mean-variance relationships in climatic factors might affect communities’‬

‭mean-variance scaling relationship in a similar way.‬

‭In conclusion, we have shown that considering Taylor’s law can improve our‬

‭understanding of community variability, stability, portfolio effects, and species abundance‬

‭distribution over time. There are several important insights from our study. First, identifying the‬
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‭causes of mean-variance scaling of population abundances is important for the longstanding‬

‭challenge of understanding relationships between diversity and stability of communities‬

‭(McCann 2000)‬‭. Importantly, greater species richness‬‭does not necessarily ensure more temporal‬

‭stability if abundant species are more variable than expected, such that communities have z>2‬

‭(Figure 3b). Second, identifying the importance of portfolio effects as a stabilizing mechanism of‬

‭communities can be both over- or underestimated if the mean-variance scaling relationship is not‬

‭carefully considered‬‭(Zhao et al. 2022)‬‭. Third, we‬‭establish a novel and general biological‬

‭mechanism that can help explain observed wide variation in z (i.e., <1 or >2) seen in natural‬

‭communities. We confirm our hypothesis with simulated (i.e., from the‬‭RAC-turnover model‬‭;‬

‭Figure 4) and empirical data (i.e., from 1,694 long-term natural communities; Figure 5) that‬

‭temporal turnover in RACs via species-reordering is an important factor determining the value of‬

‭z. This finding is consistent with earlier studies that showed global change drivers can reshape‬

‭RACs via species reordering‬‭(Avolio et al. 2015, 2022)‬‭,‬‭and could be crucial for better‬

‭understanding the mechanism behind the community response to global change drivers.‬
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‭Figure Captions‬

‭Figure 1‬

‭The concept of temporal Taylor’s law: in ecological communities population abundance has a‬

‭variance to mean scaling relationship. Temporal variance can fluctuate with an exponent (z) to‬

‭the temporal mean - in log scale, the relationship would be a fitted straight line of slope z.‬

‭Taylor’s slope (z) can be below <2 (panel a), or >2 (panel c), with z=2 often considered as a‬

‭limiting case (panel b). a-c show three representative species among a total of 70 species in the‬

‭community (thinner lines) and total community abundance timeseries on the top (thicker lines).‬

‭Species are very weakly related in each of these simulated communities (synchrony or variance‬

‭ratio < 0.025). Due to the fluctuation scaling relationship, the variance of total community‬

‭abundance is often lower (symbol X) than the predicted value on the dotted line for a given‬

‭community mean, d. Higher value of z results in a larger difference, and lowers community‬

‭stability (i.e., the inverse of variability in total community abundance timeseries), e.‬

‭Figure 2‬

‭Temporal Taylor’s law slope, z, affects stability (a) and portfolio effect (b) for three different‬

‭levels of richness: R=30, 50, and 70. The diversity-stability relationship has a steeper positive‬

‭slope for lower z, but a weaker positive slope at higher z (inset, a). Within the feasible set of [1,‬

‭2] portfolio effect (PE) computed based on average-CV (i.e., without mean-variance scaling,‬

‭solid lines, b) gives an overestimate of accurate measure of PE (i.e. considering mean-variance‬

‭scaling, dashed lines, b). For z>2, PE without mean-variance scaling underestimates the true‬

‭effort. At z=2, both measures are exactly the same.‬
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‭Figure 3‬

‭Empirical observations verify the concepts of Figure 2. The majority of the communities had‬

‭temporal Taylor’s law slope (z) <2 (n=1,610), and 5% of communities had z>2 (n=84) (panel a).‬

‭Stability, the inverse of variability in total community abundance (=1/CV), was lower for‬

‭communities with z>2 and the stability-diversity relationship had a weaker positive slope‬

‭compared to communities that had z<2 (panel b). Distributions of portfolio effects computed‬

‭with and without mean-variance relationship are depicted in panel c. Panel d shows for‬

‭communities having z>2, the portfolio effect due to mean-variance scaling was higher (pink‬

‭points below the dotted 1:1 line) than the portfolio effect if mean-variance scaling had not been‬

‭considered. On the other hand, for communities with z<2, the pattern was opposite (green points‬

‭above the dotted 1:1 line, panel d), i.e., a higher estimate for portfolio effect happened without‬

‭considering mean-variance scaling.‬

‭Figure 4‬

‭Mechanism explaining variation in temporal Taylor’s law slope (z) for ecological communities‬

‭when species show a positive year-to-year correlation (‬ ‭>0) in the‬‭RAC-turnover model‬‭(see‬‭𝑟‬

‭Materials & Methods‬‭). In a community where some dominant‬‭species are always dominant‬

‭throughout the years (so consistent in high rank-abundances) but rare species show a more‬

‭annual turnover, z could be <1 or >2 depending on the value of‬ ‭(Case I: a, the blue line in d).‬‭In‬‭𝑟‬

‭an opposite scenario, in a community where some rare species are always rare throughout the‬

‭years (so consistent in low rank-abundances) but dominant species show a more annual turnover,‬

‭z could also be <1 or >2 depending on the value of‬ ‭(Case II: b, the red line in d). When in a‬‭𝑟‬
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‭community all species would fluctuate in their annual rank abundance, 1<z<2 would happen,‬

‭irrespective of‬ ‭values (Case III: c, the black line in d). Simulation with surrogate communities‬‭𝑟‬

‭(40 species were simulated for 22 years to match the median values of sampled richness and‬

‭years from empirical communities) shows dependence in either rank (lower or upper) can make‬

‭z<1 or z>2, whereas turnover for all species always results in 1<z<2; for details see‬‭Materials &‬

‭Methods‬‭. The bars in panel d are due to two standard deviations for the estimates from 1,000‬

‭surrogate communities, and plotted around the mean (solid points).‬

‭Figure 5‬

‭Empirical observations show results consistent with the mechanism from Figure 4. A total of‬

‭1,694 communities have richness in between [15, 88] (panel a), an on-average correlation‬

‭between years‬ ‭>0.5  (panel b), and interspecific synchrony (variance ratio) <0.75 (panel c).‬‭𝑟‬

‭Range of‬ ‭indicates z can be greater than 2 if ranks of rare species were consistent throughout‬‭𝑟‬

‭years as shown for the red line in Figure 4d. Empirical communities also show z>2 is possible as‬

‭consistency or dependence increases in the lower ranks (Pearson correlation,‬‭R‬‭, from the linear‬

‭regression is significantly positive, shown in panel d).‬
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‭Box‬ ‭1:‬ ‭Quantifying‬ ‭portfolio‬ ‭effect,‬ ‭PE,‬ ‭for‬ ‭a‬ ‭community‬ ‭considering‬ ‭with‬ ‭or‬ ‭without‬

‭mean-variance fluctuation relationship‬

‭Let‬‭us‬‭consider‬‭we‬‭are‬‭monitoring‬‭a‬‭community‬‭with‬‭n‬‭number‬‭of‬‭species‬‭for‬‭N‬‭years,‬‭where‬

‭mean,‬ ‭,‬‭and‬‭variance,‬ ‭,‬‭of‬‭species‬‭abundance‬‭or‬‭biomass‬‭are‬‭related‬‭via‬‭temporal‬‭Taylor’s‬‭𝑚‬
‭𝑖‬

‭𝑣‬
‭𝑖‬

‭law slope‬ ‭:‬‭𝑧‬

‭………… (1)‬‭𝑣‬
‭𝑖‬
‭ ‬ = ‭𝑎‬‭𝑚‬

‭𝑖‬
‭𝑧‬‭ ‬; ‭ ‬‭𝑖‬ = ‭1‬, ‭2‬,..., ‭𝑛‬‭ ‬

‭Portfolio‬‭effect,‬‭PE‬‭is‬‭defined‬‭as‬‭the‬ ‭of‬‭a‬‭single‬‭species‬‭timeseries‬‭compared‬‭to‬‭the‬ ‭of‬‭𝐶𝑉‬ ‭𝐶𝑉‬

‭the total community abundance (or biomass) timeseries.‬

‭………… (2)‬‭𝑃𝐸‬ = ‭ ‬‭𝐶𝑉‬
‭𝑠𝑝‬

‭ ‬‭/‬‭𝐶𝑉‬
‭𝑐𝑜𝑚‬

‭Following‬ ‭the‬ ‭recipe‬ ‭given‬ ‭by‬ ‭Anderson‬ ‭et‬ ‭al.‬ ‭(Anderson,‬ ‭Cooper,‬ ‭and‬ ‭Dulvy‬ ‭2013)‬‭,‬ ‭we‬

‭computed‬ ‭in‬‭two‬‭ways:‬‭(i)‬‭type‬‭I:‬‭based‬‭on‬‭the‬‭average‬ ‭of‬‭species‬‭in‬‭the‬‭community‬‭as‬‭𝑃𝐸‬ ‭𝐶𝑉‬

‭and (ii) type II: considering the effect‬‭of the mean-variance relationship as‬ ‭.‬‭𝑃𝐸‬
‭𝑎𝑣𝑔𝐶𝑉‬

‭ ‬ ‭𝑃𝐸‬
‭𝑚𝑣‬

‭ ‬

‭Both types of‬ ‭have the same denominator, i.e.,‬ ‭for total community timeseries‬‭𝑃𝐸‬ ‭𝐶𝑉‬

‭………… (3)‬‭𝐶𝑉‬
‭𝑐𝑜𝑚‬

=
‭𝑚‬

‭1‬
‭𝑧‬ +‭𝑚‬

‭2‬
‭𝑧‬+.....‭ ‬+‭𝑚‬

‭𝑛‬
‭𝑧‬

‭𝑚‬
‭1‬
+‭𝑚‬

‭2‬
+....‭ ‬+‭𝑚‬

‭𝑛‬
= ‭𝑖‬=‭1‬

‭𝑛‬

∑ ‭𝑚‬
‭𝑖‬
‭𝑧‬

‭𝑖‬=‭1‬

‭𝑛‬

∑ ‭𝑚‬
‭𝑖‬

‭For‬‭type‬‭I‬‭average-‬ ‭based‬‭approach,‬ ‭is‬‭computed‬‭as‬‭the‬‭average‬‭of‬‭individual‬‭species’‬‭𝐶𝑉‬ ‭𝐶𝑉‬
‭𝑠𝑝‬

‭that leads to following relationship for‬ ‭:‬‭𝐶𝑉‬ ‭𝑃𝐸‬
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‭………… (4)‬‭𝑃𝐸‬
‭𝑎𝑣𝑔𝐶𝑉‬

= ‭𝐶𝑉‬
‭𝑠𝑝‬

‭ ‬‭/‬‭ ‬‭𝐶𝑉‬
‭𝑐𝑜𝑚‬

= ‭1‬
‭𝑛‬

‭𝑖‬=‭1‬

‭𝑛‬

∑
‭𝑚‬

‭𝑖‬
‭𝑧‬

‭𝑚‬
‭𝑖‬

⎛

⎝

⎞

⎠
× ‭1‬

‭𝐶𝑉‬
‭𝑐𝑜𝑚‬

= ‭1‬
‭𝑛‬‭𝐶𝑉‬

‭𝑐𝑜𝑚‬ ‭𝑖‬=‭1‬

‭𝑛‬

∑ ‭𝑚‬
‭𝑖‬
(‭𝑧‬‭/2‬)−‭1‬

‭For‬‭type‬‭II‬‭mean-variance‬‭scaling‬‭approach,‬ ‭is‬‭computed‬‭as‬‭the‬‭single‬‭species’‬ ‭,‬‭as‬‭if‬‭𝐶𝑉‬
‭𝑠𝑝‬

‭𝐶𝑉‬

‭only‬‭one‬‭species‬‭equivalent‬‭to‬‭total‬‭community‬‭(abundance‬‭or‬‭biomass)‬‭is‬‭present.‬‭This‬‭leads‬

‭to following relationship for‬ ‭:‬‭𝑃𝐸‬

‭………… (5)‬‭𝑃𝐸‬
‭𝑚𝑣‬

= ‭𝐶𝑉‬
‭𝑠𝑝‬

‭ ‬‭/‬‭ ‬‭𝐶𝑉‬
‭𝑐𝑜𝑚‬

= ‭𝑖‬=‭1‬

‭𝑛‬

∑ ‭𝑚‬
‭𝑖‬( )‭𝑧‬

‭𝑖‬=‭1‬

‭𝑛‬

∑ ‭𝑚‬
‭𝑖‬

⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠

× ‭1‬
‭𝐶𝑉‬

‭𝑐𝑜𝑚‬
= ‭1‬

‭𝐶𝑉‬
‭𝑐𝑜𝑚‬ ‭𝑖‬=‭1‬

‭𝑛‬

∑ ‭𝑚‬
‭𝑖‬( )(‭𝑧‬‭/2‬)−‭1‬

‭Now we will compare between two types of‬ ‭from‬‭Eqs. (4-5), for different values of‬ ‭.‬‭𝑃𝐸‬ ‭𝑧‬

‭Case I: when‬ ‭,‬‭𝑧‬ = ‭2‬ ‭𝑃𝐸‬
‭𝑎𝑣𝑔𝐶𝑉‬

‭ ‬‭/‬‭𝑃𝐸‬
‭𝑚𝑣‬

= ‭1‬.

‭Case II: when z<2, to illustrate say, z=1:‬

‭then‬ ‭,‬ ‭i.e.,‬ ‭(see‬ ‭(Ramanujan‬ ‭1915)‬‭).‬ ‭This‬‭𝑃𝐸‬
‭𝑎𝑣𝑔𝐶𝑉‬

‭ ‬‭/‬‭𝑃𝐸‬
‭𝑚𝑣‬

= ‭𝑖‬=‭1‬

‭𝑛‬

∑ ‭𝑚‬
‭𝑖‬
−‭1/2‬

‭𝑛‬
‭𝑖‬=‭1‬

‭𝑛‬

∑ ‭𝑚‬
‭𝑖‬( )−‭1/2‬ ‭𝑃𝐸‬

‭𝑎𝑣𝑔𝐶𝑉‬
> ‭𝑃𝐸‬

‭𝑚𝑣‬

‭inequality‬ ‭indicates‬ ‭if‬ ‭we‬ ‭do‬ ‭not‬ ‭consider‬ ‭the‬ ‭fluctuation‬ ‭scaling‬ ‭relationship,‬ ‭average‬ ‭𝐶𝑉‬

‭based method will overestimate stability.‬

‭Case III: when z>2, to illustrate say, z=4: then‬

‭,‬‭i.e.,‬ ‭This‬‭inequality‬‭indicates‬‭if‬‭we‬‭do‬‭not‬‭consider‬‭𝑃𝐸‬
‭𝑎𝑣𝑔𝐶𝑉‬

‭ ‬‭/‬‭𝑃𝐸‬
‭𝑚𝑣‬

= ‭1/‬‭𝑛‬ ‭𝑃𝐸‬
‭𝑎𝑣𝑔𝐶𝑉‬

< ‭𝑃𝐸‬
‭𝑚𝑣‬

.
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‭the fluctuation scaling relationship, average‬ ‭based method will underestimate stability.‬‭𝐶𝑉‬

‭Both‬ ‭Case‬ ‭II‬ ‭and‬ ‭case‬ ‭III‬ ‭can‬ ‭be‬ ‭verified‬ ‭trivially‬ ‭with‬ ‭mathematical‬ ‭induction‬ ‭and‬ ‭also‬

‭consistent‬ ‭with‬ ‭the‬ ‭metapopulation‬ ‭context‬ ‭(spatial‬ ‭Taylor’s‬ ‭law;‬ ‭(Anderson,‬ ‭Cooper,‬ ‭and‬

‭Dulvy 2013)‬‭).‬
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