References:
Andersen JC & Elkinton JS (2022) Predation and climate limit establishment success of the kyushu strain of the biological control agent Aphalara itadori (Hemiptera: Aphalaridae) in the Northeastern United States. Environmental Entomology 51: 545-556. doi:10.1093/ee/nvac031.
APHIS (2020) Field release of the knotweed psyllid Aphalara itadori (Hemiptera: Psyllidae) for classical biological control of Japanese, Giant, and Bohemian knotweeds, Fallopia japonica, F. sachalinensis , and F . x bohemica (Polygonaceae), in the contiguous United States, environmental assessment.
Baker BP, Green TA & Loker AJ (2020) Biological control and integrated pest management in organic and conventional systems. Biological Control 140. doi:10.1016/j.biocontrol.2019.104095.
Banerjee AK, Mukherjee A, Guo WX, Ng WL & Huang YL (2019) Combining ecological niche modeling with genetic lineage information to predict potential distribution of Mikania micrantha Kunth in South and Southeast Asia under predicted climate change. Global Ecology and Conservation 20. doi:10.1016/j.gecco.2019.e00800.
Barratt BIP (2011) Assessing safety of biological control introductions. CAB Reviews 6: 1-12.
Barratt BIP, Howarth FG, Withers TM, Kean JM & Ridley GS (2010) Progress in risk assessment for classical biological control. Biological Control 52: 245-254. doi:10.1016/j.biocontrol.2009.02.012.
Barton J (2004) How good are we at predicting the field host-range of fungal pathogens used for classical biological control of weeds? Biological Control 31: 99-122. doi:10.1016/j.biocontrol.2004.04.008.
Bean DW, Dalin P & Dudley TL (2012). Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata , a biological control agent against tamarisk (Tamarixspp.). Evolutionary Applications 5: 511-523. doi:10.1111/j.1752-4571.2012.00262.x.
Booth TH (2021) A problem with variable selection in a comparison of correlative and process-based species distribution models: Comments on Higgins et al., 2020. Ecology and Evolution 11: 13609-13612. doi:10.1002/ece3.7496.
Camargo AM, Kurose D, Post MJC & Lommen STE (2022) A new population of the biocontrol agent Aphalara itadori performs best on the hybrid host Reynoutria x bohemica . Biological Control 174. doi:10.1016/j.biocontrol.2022.105007.
Conolly, AP (1977) The distribution and history in the British Isles of some alien species of Polygonum and Reynoutria . Watsonia. 11: 291–311.
Dara SK, Dara SS & Dara SSR (2020) Managing Fusarium oxysporumf. sp. vasinfectum Race 4 with beneficial microorganisms including entomopathogenic fungi. Acta Horticulurae 1270: 11. doi: 10.17660/ActaHortic.2020.1270.11
Delbart E, Mahy G, Weickmans B, Henriet F, Crémer S, Pieret N, Vanderhoeven S & Monty A (2012) Can land managers control Japanese knotweed? Lessons from control tests in Belgium. Environmental Management 50: 1089-1097. doi:10.1007/s00267-012-9945-z
Diamond SE (2018) Contemporary climate-driven range shifts: Putting evolution back on the table. Functional Ecology 32: 1652-1665. doi:10.1111/1365-2435.13095
Grevstad F, Bourchier R, Shaw R, Sanguankeo P, Cortat G & Reardon RC (2012) A petition for field release of Aphalara itadori  into North America for biological control of invasive knotweeds. A petition submitted to the Technical Advisory Group for Biological Control Agensts of Weeds, p. 54.
Grevstad F, Shaw R, Bourchier R, Sanguankeo P, Cortat G & Reardon RC (2013) Efficacy and host specificity compared between two populations of the psyllid Aphalara itadori , candidates for biological control of invasive knotweeds in North America. Biological Control 65: 53-62. doi:10.1016/j.biocontrol.2013.01.001.
Grevstad FS, Wepprich T, Barker B, Coop LB, Shaw R & Bourchier RS (2022) Combining photoperiod and thermal responses to predict phenological mismatch for introduced insects. Ecological Applications 32. doi:10.1002/eap.2557.
Heinz KM, Van Driesche RG & Simberloff D (2016) Integrating biological control into a conservation context: Integrating Biological Control into Conservation Practice (ed. by RG Van Driesche, D Simberloff, B Blossey, C Causton, MS Hoddle, DL Wagner, CO Marks, KM Heinz & KD Warner) John Wiley & Sons, Ltd, , Chichester, UK., pp. 1-3.
Hijmans RJ & Elith J (2021) Species distribution modeling, Vol. 2021, https://rspatial.org/raster/sdm/index.html.
Hijmans RJ, Phillips S, Leathwick J & Elith J (2015) Dismo: species distribution modeling. R Package Version 1.0-12. http://CRAN.R-project.org/package=dismo
Hijmans RJ & van Etten J (2012) raster: Geographic analysis and modeling with raster data. R package version 2.0-12.  http://CRAN.R-project.org/package=raster
Holt RD & Hochberg ME (1997) When is biological control evolutionarily stable (or is it)? Ecology 78: 1673-1683.
Howarth FG, ed. (2000) Non-target Effects of Biological Control Agents. Kluwer Academic Publishers, Dordrecht, The Netherlands.
IUCN (2021) Global Invasive Species Database. Species profile:Polygonum cuspidatum . http://www.iucngisd.org/gisd/species.php?sc=91.
Johnson EE, Escobar LE & Zambrana-Torrelio C (2019) An ecological framework for modeling the geography of disease transmission. Trends in Ecology & Evolution 34: 655-668. doi:10.1016/j.tree.2019.03.004.
Jones IM, Bourchier RS & Smith SM (2021) Long-term captive-rearing affects oviposition behavior and nymphal survival of a weed biological control agent. Biological Control 162. doi:10.1016/j.biocontrol.2021.104727.
Jones IM, Smith SM & Bourchier RS (2020) Establishment of the biological control agent Aphalara itadori is limited by native predators and foliage age. Journal of Applied Entomology 144: 710-718. doi:10.1111/jen.12792.
Kadlecová M, Vojík M, Kutlvašr J & Berchová-Bímová K (2022) Time to kill the beast – importance of taxa, concentration and timing during application of glyphosate to knotweeds. Weed Research 62: 215-223. doi:10.1111/wre.12528.
Kaser JM & Heimpel GE (2015) Linking risk and efficacy in biological control host-parasitoid models. Biological Control 90: 49-60. doi:10.1016/j.biocontrol.2015.05.005.
Kimberling DN (2004) Lessons from history: predicting successes and risks of intentional introductions for arthropod biological control. Biological Invasions 6: 301-318. doi:10.1023/b:binv.0000034599.09281.58.
Low BW, Zeng Y, Tan HH & Yeo D C.J. (2020) Predictor complexity and feature selection affect Maxent model transferability: evidence from global freshwater invasive species. Diversity and Distributions 27: 497-511. doi:10.1111/ddi.13211
Martin F-M, Dommanget F, Lavallée F & Evette A (2020) Clonal growth strategies of Reynoutria japonica in response to light, shade, and mowing, and perspectives for management. NeoBiota 56: 89-110. doi:10.3897/neobiota.56.47511.
Manrique V, Diaz R, Erazo L, Reddi N, Wheeler GS, Williams D & Overholt WA (2014) Comparison of two populations of Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae) as candidates for biological control of the invasive weed Schinus terebinthifolia (Sapindales: Anacardiaceae). Biocontrol Science and Technology 24: 518-535. doi:10.1080/09583157.2013.878310.
McClay AS & Balciunas JK (2005) The role of pre-release efficacy assessment in selecting classical biological control agents for weeds - applying the Anna Karenina principle. Biological Control 35: 197-207. doi:10.1016/j.biocontrol.2005.05.018.
Merow C, Smith MJ & Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36: 1058-1069. doi:10.1111/j.1600-0587.2013.07872.x.
Messing RH (2001) Centrifugal phylogeny as a basis for non-target host testing in biological control: Is it relevant for parasitoids? Phytoparasitica 29: 187-190. doi:10.1007/bf02983449.
Metličar V & Albreht A (2022) Esterification of lutein from Japanese knotweed waste gives a range of lutein diester products with unique chemical stability. ACS Sustainable Chemical Engineering 10: 6072-6081. doi:10.1021/acssuschemeng.2c01241.
Metličar V, Kranjc K & Albreht A (2021) Utilization of plant-based wastes for a sustainable preparation of xanthophyll esters viaacid anhydrides using β-pinene as a bio-derived solvent. ACS Sustainable Chemical Engineering 9: 10651-10661. doi:10.1021/acssuschemeng.1c04032
Mukherjee A, Christman MC, Overholt WA & Cuda JP (2011) Prioritizing areas in the native range of hygrophila for surveys to collect biological control agents. Biological Control 56: 254-262. doi:10.1016/j.biocontrol.2010.11.006.
Phillips SJ, Anderson RP & Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259. doi:10.1016/j.ecolmodel.2005.03.026.
Phillips SJ & Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161-175. doi:10.1111/j.0906-7590.2008.5203.x.
R Core Team (2022) R: A language and environment for statistical computing: R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
Raghu S, Dhileepan K & Scanlan JC (2007) Predicting risk and benefit a priori in biological control of invasive plant species: a systems modelling approach. Ecological Modelling 208: 247-262. doi:10.1016/j.ecolmodel.2007.05.022.
Schneider SA, Broadley HJ, Andersen JC, Elkinton JS, Hwang SY, Liu CX, Noriyuki S, Park JS, Dao HT, Lewis ML, Gould JR, Hoelmer KA & Diaz R (2022) An invasive population of Roseau Cane Scale in the Mississippi River Delta, USA originated from northeastern China. Biological Invasions. doi:10.1007/s10530-022-02809-3.
Shabani F, Kuar L, Ahmadi M (2016) A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecology and Evolution 6: 5973-5986. doi:10.1002/ece3.2332.
Shaw RH, Bryner S & Tanner R (2009) The life history and host range of the Japanese knotweed psyllid, Aphalara itadori Shinji: Potentially the first classical biological weed control agent for the European Union. Biological Control 49: 105-113. doi:10.1016/j.biocontrol.2009.01.016.
Shaw RH, Tanner R, Djeddour D & Cortat G (2011) Classical biological control of Fallopia japonica in the United Kingdom - lessons for Europe. Weed Research 51: 552-558. doi:10.1111/j.1365-3180.2011.00880.x.
Simberloff D (2012) Risks of biological control for conservation purposes. Biocontrol 57: 263-276. doi:10.1007/s10526-011-9392-4.
Van Driesche R, Hoddle M & Center T (2008) Control of Pests and Weeds by Natural Enemis: An Introduction to Biological Control. Blackwell Publishing, Malden, MA, USA. pp. 473
Van Driesche RG (2012) The role of biological control in wildlands. Biocontrol 57: 131-137. doi:10.1007/s10526-011-9432-0.
Van Driesche RG, Carruthers RI, Center T, Hoddle MS, Hough-Goldstein J, Morin L, Smith L, Wagner DL, Blossey B, Brancatini V, Casagrande R, Causton CE, Coetzee JA, Cuda J, Ding J, Fowler SV, Frank JH, Fuester R, Goolsby J, Grodowitz M, Heard TA, Hill MP, Hoffmann JH, Huber J, Julien M, Kairo MTK, Kenis M, Mason P, Medal J, Messing R, Miller R, Moore A, Neuenschwander P, Newman R, Norambuena H, Palmer WA, Pemberton R, Perez Panduro A, Pratt PD, Rayamajhi M, Salom S, Sands D, Schooler S, Schwarzländer M, Sheppard A, Shaw R, Tipping PW & van Klinken RD (2010) Classical biological control for the protection of natural ecosystems. Biological Control 54: S2-S33. doi:http://dx.doi.org/10.1016/j.biocontrol.2010.03.003.
Van Driesche RG, Simberloff D, Blossey B, Causton C, Hoddle MS, Marks C, Heinz K, Wagner D & Warner K, eds. (2016) Integrating Biological Control into Conservation Practice. John Wiley & Sons, Oxford, UK.
Warren DL (2012) In defense of ‘niche modeling’. Trends in Ecology & Evolution 27: 497-500. doi:10.1016/j.tree.2012.03.010
Zalucki MP & van Klinken RD (2006) Predicting population dynamics of weed biological control agents: science or gazing into crystal balls? Australian Journal of Entomology 45: 331-344. doi:10.1111/j.1440-6055.2006.00560.x.