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The demographic buffering hypothesis, predicts that natural selection reduces the temporal

o CDeleted: 43

fluctuations in demographic processes (survival, development, and reproduction),due to their

negative impacts of temporal variation on population dynamics. However, evidencing

buffering patterns at different hierarchical levels — between and within populations — and

understanding how selection shapes those patterns, remains a challenge in Ecology and

Evolution, Here, we introduce a framework that allows for the evidencing of demographic
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buffering between and within populations. The framework uses the sum of stochastic

elasticities for between-populations comparisons along with first- and second-order effects of

demographic process variability on fitness for within-population comparisons. Wge apply this

framework to 43 populations of 37 mammal species to test the hypothesis that buffered

species are under strong concave selection pressures. Using our framework, we show that

demographically buffered species do not necessarily have strong concave selection pressures

in their most impactful demographic processes.
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‘| Deleted: a comprehensive approach that allows for the

examination of demographic buffering patterns across
multiple species is still lacking

(Deleted: propose

| Deleted: that an additional metric - a second-order effect on

population growth rate — be added to the framework for
evidencing demographic buffering.

» (Deleted: Firstly, w )

| Deleted: categorize species along a continuum of variance

based on the sums of stochastic elasticities. Secondly, we
examine the linear selection gradients, followed by the
examination of nonlinear selection gradients as the third step.
With these three steps, our framework overcomes existing
limitations of conventional approaches to quantify
demographic buffering, allows for multi-species comparisons,
and offers insight into the evolutionary forces that shape
demographic buffering. We apply this framework to
mammal species and discuss both the shortagesadvantages
and potential of our framework."
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Environmental stochasticity shapes organisms’ life histories (Bonsall & Klug 2011; Stearns

1992; Tuljapurkar 1990, 2010). Nonetheless, how organisms will cope with the changing

variation in environmental conditions (Bathiany et al. 2018; Boyce et al. 2006; Morris et al.

2008) remains an intriguing ecological and evolutionary question (Sutherland et al. 2013).

Evolutionary demography provides diverse explanations for how evolutionary processes

shape demographic responses to environmental stochasticity (Charlesworth 1994; Healy et al.

2019; Hilde et al. 2020; Pfister 1998; Tuljapurkar ez al. 2009). The long-term stochastic

population growth rate, (/) representing the geometric mean of population growth rates over

time . (4 Tuljapurkar 1982), forms the basis of the Demographic Buffering Hypothesis,

(Morris & Doak 2004; Pélabon et al. 2020).

Increasing the geometric mean of 4; over time corresponds to a rise in the long-term

stochastic population growth rate, Conversely, higher variance in /, reduces A; (Morris &

Doak 2004; Tuljapurkar 1982), impacting population persistence (Lefévre ez al. 2016). The

demographic buffering hypothesis (Pfister 1998) suggests life histories are selected to

: 'CDeleted: increasing

- 'CDeleted: S

' ‘CDeleted: expressed

g "'[Deleted: as

(Deleted: annual

N [Deleted: 5

i [Deleted: )

(Deleted: (DBH)

'CDeleted: (L., hereafter)

NN ANAANAANAAANAN

~( Deleted: DBH

minimize the negative impacts of environmental variation by constraining the temporal

variance of key demographic processes (e.g., survival, development, reproduction) that have

the highest sensitivity/elasticity to population growth rate, a fitness proxy, (Gaillard & Yoccoz

2003; Pfister 1998), Demographic buffering describes the selection-driven constraint on the

temporal variance of these ke

2020; Morris & Doak 2004: Pfister 1998), Here, we focus on the emerging patterns of

demographic processes {Gascoigne et al. 2024a, b; Hilde et al.

demographic buffering in different animal life histories, rather than on the demographic

buffering hypothesis jtself.

An integrative approach to gvidence demographic buffering is still missing. Indeed,

identifying demographic buffering remains challenging (Doak et al. 2005; Morris & Doak

2004) for several reasons, one of them being different interpretations of results from

| Deleted: predicts that life histories are under selection

pressure to minimise the negative impacts of environmental
variation by constraining the temporal variance of those
demographic processes (e.g., survival, development,
reproduction) to which population growth rate (i.e., a proxy
for fitness)
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DBH, i.e., demographic buffering, describes the selection-
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correlational analyses, as in Pfister (1998) and Hilde ez al. (2020). Some authors rank species'

: 'CDeleted: (e.g., )

life histories on a continuum from buffered to labile using the correlation coefficient

(Spearman’s correlation p) between the impact of demographic processes on the population

growth rate and the temporal variance of said demographic processes (McDonald ef al. 2017;

Salguero-Gomez 2021). There, negative correlation coefficient values indicate buffering,

Alternatively, the absence of statistical support for buffering may suggest a preference for

demographic variance to track environmental conditions, a phenomenon supported by the
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‘| Deleted: Some authors rank species' life histories on a

continuum from buffered to labile using the correlation
coefficient (Spearman’s correlation p), where negative values
indicate buffering (McDonald et al. 2017)

Demographic Lability Hypothesis, (Drake 2005; Hilde ez al. 2020; Jikélaniemi et al. 2013;
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Koons et al. 2009: Reed & Slade 2012). However, increased yariability alone is not enough
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to constitute demographic lability; it must also result in significant changes in the mean value

of the demographic process (Le Coeur et al. 2022).

Another obstacle to generalising a measure of demographic buffering across
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populations and species,s the targeted hierarchical level of examination. Some studies focus

DNy ’CDeleted:z
(Deleted: ation

on characteristics drawn from the entire population model (McDonald ef al. 2017; Reed &

Slade 2012), At this between-populations level (hereafter), a life history is considered
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demographically buffered if the governing demographic processes have low temporal

S (Deleted: (between-populations level)
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variance (Le Coeur et al. 2022; Hilde et al. 2020; Morris & Doak 2004 Pfister 1998).

However, to fully grasp how and why demographic buffering occurs, and how patterns might

change in response to the environment, we must also consider characteristics within an
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individual population model (within-populations level hereafter). Within a population, one
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demographic process may be buffered against climatic variability while another may be labile

(Barraquand & Yoccoz 2013; Jongejans ef al. 2010; Koons et al. 2009). Furthermore, even if

a given demographic process is primarily governing the population growth rate in one year, a

different one might take over next year (Evers et al. 2021). Despite the relevance of within-

and between-populations level processes, thus far studies have focused on evidencing
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demographic buffering at the within- and between-population levels separately. To integrate

these two levels of analysis, here we investigate demographic buffering signatures together.

To examine demographic buffering at the between-populations level, we use the | ‘(Deleted: focus )
o '(Deleted: 0 )
summed effect of the variability of all demographic processes, on the population growth rate. . (Deleted: " variability )

A weak summed effect means that the population growth rate is relatively unaffected by the

variability in demographic processes (Haridas & Tuljapurkar 2005), and this lack of effect by

demographic process variability is consistent with demographic buffering. As such, a

summed effect of variability offers a good proxy to evidence demographic buffering

(Gascoigne et al. 2024b; Haridas & Tuljapurkar 2005) and enables the classification of

populations along a continuum. The within-populations level requires a separate approach.

‘| Deleted: . Thus far, studies have focused on either one of the
hierarchical levels, however, for a mechanistic understanding
of how environmental stochasticity shapes life histories, both
between- and within-population levels need to be addressed at
the same time.
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JThus, there we use fhe relative contribution of each,demographic process and how variability

in the governing demographic process(es) affects the population growth rate (e.g., Caswell

1978, 1996, 2001: Ebert 1999: de Kroon et al. 1986). Importantly, by exploring the governin,

demographic processes, we also investigate how natural selection affects them (e.g., Caswell
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and natural selection thus not only elucidates population dynamics but also provides insight

into the evolutionary pressures shaping the life-history strategies (Charlesworth 1994

Salguero-Goémez 2024; Sanghvi et al. 2024),, . (Deleted: *
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One useful way

growth rate (Carslake et al. 2008). First-order effects of demographic processes on population
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population growth rate, and relies on the /inear relation between demographic processes and

the growth rate. A second-order effect, on the other hand, reveals the sensitivity of population

growth rate to temporal autocorrelation in variable environments (Tuljapurkar 1990), and
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identifies where demographic processes have a nonlinear effect on population growth rate.

Combining poth approaches into a single framework consolidates our understanding of

| Deleted: A second-order effect can be measured by self-

fitness behaviour near local maxima and minima, among other advantages discussed below.

This approach,and has started to pave its way into Ecology (Kajin ef al. 2023 Tuljapurkar et

al. 2023),
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second-order effect of demographic process variation on population growth rate, We show
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that each hierarchical level is best studied with a different method. Moreover, we hypothesise

that buffered species, those where perturbing the variance of demographic processes has little

impact on their fitness, are under strong concave selection pressures (i.e., the force that aims

to diminish temporal variance of a trait, sensu Shyu & Caswell 2014) on the governing

demographic processes. Indeed, the summed effect of demographic process variability on

population growth rate and elasticities are related (Haridas & Tuljapurkar 2005). Concave

selection pressures favour traits that contribute to reducing temporal variance, thereby

enhancing population stability and resilience in the face of environmental volatility. We

discuss the validity of our hypothesis and demonstrate the applicability and advantages of our

Jramework by festing it with 43, populations of 37, mammal species,
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Models (/PMs) (Easterling et al. 2000; Ellner et al. 2016; Gascoigne et al. 2023a, 2024b;

Rodriguez-Caro et al. 2021: Wang et al. 2023) can also identify demographic buffering.
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In linear relationships between fitness and demographic
processes, second-order derivatives of population growth rate
(measuring a second-order effect on /) are zero, indicating
natural selection acts on changing the mean values of
demographic processes . Nonzero second derivatives suggest
nonlinear relationships between fitness and a demographic
process, revealing additional aspects of selection on the
variances and covariances of demographic processes . Thus, it
is of biological interest to join the information on first-order
effect with the information on second-order effect.
Furthermore, tThe sign (>0, =0, <0) of the self-second
derivative of L with respect to demographic processes
determines the type of selection. Negative values describe
concave (N-shaped) selection, reducing temporal variance ,
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(Doak et al. 2021; Griffith 2017). We refer to demographic processes as MPM A entries, a;j
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The equal perturbation of both ¥ Egi].components assumes that the CV of demographic
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are on the right (potentially buffered) end (Fig. 1A), We expect buffered species to exhibit
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Caswell 2014; Tuljapurkar et al. 2023). Linear fitness relationships (zero self-second

derivatives) mean selection changes mean demographic values, not variance (Shyu &

Caswell 2014). Nonzero self-second derivatives indicate nonlinear relationships between

fitness and a demographic process, revealing additional aspects of selection on the variances

and covariances of demographic processes (Brodie et al. 1995; Carslake et al. 2008; Shyu &

Caswell 2014). Interpreting both first- and second-order effects offers insights into population
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The sign (>0, =0, <0) of the self-second derivatives determines the selection type.

Negative values (concave selection, N-shaped) reduce temporal variance, providing evidence

of buffering (Caswell 1996. 2001: Shyu & Caswell 2014). Positive values (convex selection

U-shaped) indicate amplified variance, revealing a lack of selection constraints on

demographic variance (Bruijning et al. 2020; Caswell 1996, 2001; Le Coeur et al. 2022;

/| of demographic processes shifts with changing environments
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Combining
Koons et al. 2009; Shyu & Caswell 2014; Vinton et al. 2022). v.(De]eted: three )
Howi b '(Deleted: of our framework )
‘Mg the a o (Deleted: a quantitative identification )
- . e . [Deleted: of )
and within-populations levels. . The joint interpretation of first- and second-order effects

(Deleted: Steps 2 and 3 )

offers insights into why a population is on either end of the variance continuum. Evidence /| Deleted: -- offer key insights as to w/zy a given species or

supporting buffering includes:,

population is placed on either the buffered (2 Eg: ~0) or the
non-buffered end (Z'Elf; ~ -1) of the variance continuum. A
clear and unequivocal evidence for support towards buffering

consists of:

1. A population positioned near the 0 end of the ZELf; continuum.

Deleted: (1)

2. Jdentifying the demographic processes with highest elasticity values within the .

Deleted: Aa species or population being positioned near
the 0 end of the

Deleted: (the right-hand side) in step 1

life cycle,,

having one or more

3. The same processes from (2) associated with negative self-second derivatives

Deleted: of population growth rate

Deleted: species’ or populations’

indicating concave selection.

Deleted: in step 2

Figure 1B shows that, for an imaginary wolf population, the governing demographic process

[ Deleted: ; (2) this species’ or populations’ life cycle
C Deleted: ;

Deleted:

is the fourth stage stasis (MPM element a44), with the highest elasticity value (Fig. 1B yellow

: the chosen

‘ (Deleted:

of a hypothetical wolf species

square). However, Figure, 1C reveals little selection on ay 4 for variance reduction. Hence @e]eted:

most important

;(Deleted:

remaining in

there is no concave selection on, a4+ explaining the positioning on the left-side variance

as this demographic process results inis associated

that a4 4is under

A [Deleted:

continuum (Fig. 1A)., _-_(Deleted: .
L 8 [Deleted:
Although not our primary goal, we briefly introduce steps fo evidence demographic V(Deleted:

N A A AANAAAAANANANAAA . AN N

pressure

. [Deleted:

Thus, there is no clear evidence of buffering("_ 10

E

lability. Compelling lability evidence requires sufficient data across environments [over time Y '-[Delete d)
. .. . . ( Deleted: This way, the lack of concave selection foreq }
or space; but see Perret et al. (2024)] to construct reaction norms depicting demographic ( W ad = [11]
L (Deleted: here, )
responses to environmental changes (Drake 2005; Koons et al. 2009; Morris et al. 2008). _ (Deleted: said )
T (Deleted: 4 )
Non-linear relationships between demographic processes and the environment must be ‘ ‘(Deleted: To establish compelling evidence of lability,(ﬂ.__ [12]

- CDeleted:

However, we note that ¢, which can be chall(”_T13] }




649

650

651

052

053

054

655

656

657

658

659

660

061

662

063

064

065

666

067

668

069

670

671

672

673

established based on the reaction norms. Demographic processes where an increase in the

: '(Deleted: demographic process-environment

mean value has a stronger positive impact on population growth rate than the detrimental

effect of increased variance need, to be identified. The latter condition is only met when the

‘ CDeleted: Lastly, d

: 'CDeleted: s

process-environment reaction norms are convex (Drake 2005, Koons et al. 2009, Morris et al. .-

'(Deleted: demographic

2008) — but see Barraquand & Yoccoz (2013) for an alternative result, Importantly, species

' (Deleted: takes a convex shape

"'[Deleted: (resembling a "U" shape), as described by

may not be purely buffered or labile some processes may be buffered, others labile, and

others insensitive to environmental variability {e.g.. Doak et al. 2005). Deciphering these

(Deleted: and
N "[Deleted: . However, a study by
) (Deleted: reported

N AN

patterns is a primary research interest in the field,

[Deleted: diverging

Demographic buffering in mammals: A case study,

(Deleted: s in this regard
k‘[Deleted: demographically demographic processes

Here, we ¢

species at the buffered end of the variance continuum display highly negative self-second

derivatives for the governing demographic processes. We use 43 MPMs from 37 mammal

xamine the performance of our framework and fest our hypothesis, that is tha,

‘ “CDeleted: w

species (16 species at the within-populations level). Mammals are of special interest in the

context of demographic buffering, for two reasons: (1) mammalian life histories have been

l 'y [Deleted: demonstrate

\ ~(Deleted: framework

\ (Deleted: integrated approach
| (Deleted: validate

well studied (Beccari ef al. 2024; Bielby et al. 2007; Gillespie 1977; Jones 2011; Stearns

1983) and (2) some of their populations have already been assessed in terms of demographic

buffering, particularly for primates (Campos et al. 2017; Morris et al. 2008, 2011; Reed &

Slade 2012; Rotella et al. 2012). Together, the well-studied life histories and previous

information about the occurrence of buffering in mammals allow us to make accurate

1y (Deleted: -
."(Deleted: using

3 (Deleted: 34
(Deleted: here
(Deleted: provide the necessary information

(Deleted: the proposed

predictions and validate the performance of pur framework.

. ' '(Deleted:
! f,i(Deleted: s
’ {Deleted:

We used MPMs, (Caswell 2001) from 43, out of 139 studies with mammals available

V.V(Deleted: d

in the COMADRE Animal Matrix Database v.3.0.0 (Salguero-Gomez et al. 2016), These 43,

. (Deleted:
CDeleted:O

N ANAAANAANAANANA NN

‘| Deleted: Importantly, we note that more likely than

previously thought (e.g., Pfister 1998), species do not exist as
purely buffering or labile, but that within populations, some
vital rates may be buffered, others labile, and others
insensitive to the environment (e.g., (Doak et al. 2005).
Deciphering generality in this likely complex pattern should

.. attract much research attention going forward, in our opinion. |

(Deleted: using the unified framework

( Deleted: 44

(Deleted: Matrix Population Models (

(=]

populations encompass 37,species from eight taxonomic orders. We carefully selected these

p 'CDeleted: 4

MPMs in our analyses because their models contain values of demographic processes (a;;)

e ——— | St —

L (Deleted: s

10

'CDeleted: y

CDeleted: included

A ANACACACANACNACANACANAANACANACANAANAANANA N AANAANANAANANAANANANAN

CDeleted: provide




718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

for three or more contiguous time periods, thus allowing us to obtain the stochastic elasticity (Deleted:

. oL . 4 (Deleted: matrices )
of each a;;. Although we are aware that not all possible temporal variation in demographic {/((Deleted: murmber of matrices defailed in )
e . . .. 7/ ( Deleted: matrices
processes may have been expressed within this period, we assumed three or more transitions ( - - )
| Deleted: Fortunately, several long-lived species,

are enough to provide sufficient variation for population comparison (Compagnoni et al.

'/ | characteriszed by low variation in their demographic
‘| processes, were studied for a long time (e.g., some primates

in our dataset have been studied for over 20 years — Morris et

2023).To mitigate bias in variance estimates, we randomly extracted three MPMs from the

al. 2011). We removed the populations where either only
survival or only reproduction rates were reported, because of

the impossibility to calculate the stochastic growth rate.

existing data for each species (Supplementary Material, Table S1), calculated the mean of (Deleted: available in supplementary material (Supplem
) . ) . - . (Deleted: ) )
these three MPMs, and repeated this process 50 times to obtain estimates of ngij and their (Delete 4 )

A2 K .

) . o o (Deleted: as a way )
corresponding standard errors. A detailed description of the analysed data and their original , (Dele ted: was included in our analyses because )
sources are detailed in Table S1, Finally, we included MPMs of Homo sapiens fo cross-check, ; 'EDeIEted: before %

/ | Deleted: in which second-order derivatives have been applied

our estimates of second-order derivatives, as it is the only mammalian species where these ‘CDeleted: Therefore, Homo sapiens provides an ideal i Ti5])

(Deleted: omo )

have been calculated (Caswell 1996). The data for H. sapiens were gathered from 26 modern ) .(Deleted: located in various cities, allowing us to Consm

lati Kevfitz & Fli 1990 i ; (Deleted: For steps 2 and 3 of our framework, )

populations (Keyfitz 1cger )y ay (Deleted: utilized )

At the within-populations level, we us (eteted: Homo )

(Deleted: population projection matrices ( )

sapiens) whose MPMs were age-based. We specifically selected these populations because : (Deleted: ) )

‘(Deleted: organiszed by )

their life cycles can be summarisgd by two main demographic processes: survival and (Deleted: z )

. . . . - (Deleted: . )
contribution to_the recruitment of new individualsCaswell 2010; Ebert 1999). , — - -

(Deleted: The contribution to recruitment can be interg”_[17] }

To quantify the variance continuum and calculate X' E;fla for between-populations level CDeleted: One advantage of using such matrices MPM(_ [18]3

v o v i i (Deleted: perform the step 1 of our framework )

comparisons, we followed Tuljapurkar e al. (2003) and Haridas & Tuljapurkar (2005). Next,, . EDelmd: obtain %
Y% ( Deleted: the

at the within-populations level,we calculated the deterministic elasticities to,each ) ‘[Deleted: (and zEg;;) ]

. . . "[Deleted:( )

demographic process sing the popbio package (Stubben ef al. 2020). The self:second *  (Derear ( )

derivatives were adapted from demogR (Jones 2007) following (Caswell 1996) and appliedfo = EDeleted: To perform step 2 of our framework %

o ( Deleted: -

the mean MPM of each study. All analyses were performed using R version 4.4.1 (R Core \ ‘(Deleted: - )

[Deleted: s )

Team 2024). . (Deleted: of )

R / ; (Deleted: extracted )

esuits i CDeleted: All analyses were performed using R versior_T19] }

\ CDeleted: to perform the step 3 of our framework t )

CDeleted: for )

11



807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

We ranked 43 populations from the 37 identified mammal species into a variance continuum /[Deleted: 40 ...opulations from the 37 34 . [20]

according to the cumulative impact of variation in demographic processes on As(Fig. 2). Most Deleted: using the step 1 of our framework ...Fig. 2).
i . Additional information (including standard deviations of the

. . . deviations of the elasticity estimates and number of matrices
of the analysed taxonomic orders were placed on the low,or zero variance end of the variance available) is provided in the supplementary material (Table
S1). ...ost of the analysed taxonomic orders were placed on
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self-second derivatives (depicted as yellow squares with black dots in Fig. 3). In U.
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humans

was positioned near the buffered end of the variance continuum, providing consistent

evidence supporting our hypothesis by displaying first- and second-order effects indicative of

temporal variance reduction in the key demographic process, Conversely, the primary

‘[Deleted: indications

’[Deleted: acting to reduce

’[Deleted: a; variance

| Deleted: was positioned close to the buffered end of the

governing demographic process for Soay sheep (Ovis aries) displayed convex selection

signatures. For O. aries (Fig. 2, silhouette i), remaining in the third age class (g3,3, Fig. 3)

governs the jinfluence on 4; and is under selection pressure to have its variance increased.

“CDeleted: )

“| Deleted: The Soay sheep (Ovis aries) was the species furthest

These characteristics suggest potential conditions for lability, despite the species being

positioned closer to the buffered end of the variance continuum,,

CDeleted: the Soay sheep

(Deleted: matrix element

The first- and second-order effects illustrate the importance of examining buffering

Y CDeleted: has
N (Deleted: major

evidence at the within-populations level. These effects can identify the simultaneous

contributions of concave and convex selection on different demographic processes within a

(Deleted: Steps 2 and 3

single life cycle. In the polar bear, (Ursus maritimus), the key demographic process (¢4,4) is

‘ -\ CDeleted:
HCDeleted: on

o % [Deleted: two steps of the framework
N ‘CDeleted: acting

AN N

[Deleted: the Columbian ground squirrel

variance continuum in step 1. Hence, this speciese Columbian
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consistent evidence of buffering -- across all three steps of the
framework.

from the buffered end of the variance continuum that enabled
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under convex selection, as depicted by a yellow square with a white dot in Figure, 3.
However, the demographic process with the second highest elasticity value (g5 4) is under
strong concave selection (depicted by a light green square with a black dot in Figure. 3).
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N "[Deleted: s
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: (Deleted: step 3
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Discussion

We report evidence of demographic buffering assessed at the between and within populations

level. We used stochastic elasticities alongside the first- and second- order perturbation

analysis and applied these analyses to mammal species to test our hypothesis. Here, we find

weak support for said hypothesis, since most populations placed at the buffered end of

variance continuum failed to display concave selection signatures.

Evidencing demographic buffering is not straightforward. Indeed, through the

| Deleted: In the Anthropocene, identifying and quantifying

analysis of stochastic population growth rate (4s) in our application of the framework to 43,

populations of 37 mammal species, we identify the highest density of natural populations

near the buffered end of the variance continuum, However, we show that the same species

then fail to exhibit signs of concave (N-shaped) selection on key demographic parameters,

opposed to our hypothesis, Such results suggest discordance between two features of

demographic buffering, namely: 1) the stochastic population growth rate having a low

sensitivity to temporal variability in demographic processes, and 2) demographic processes

having variability constrained by selection.

The lack of correlation between non-linear selection patterns (concave/convex) and

species positioning on the variance continuum for the studied mammal species may have

several explanations. Firstly, non-linear selection on demographic process variability is

dynamic (Kajin et al. 2023). Within a life cycle, even minor changes in key demographic

processes can trigger a domino effect, affecting not only the process itself but also the
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mechanisms of species responses to stochastic environments
holds crucial importance. This importance is particularly
tangible in the context of the unprecedented environmental
changes and uncertainties that impact the dynamics and
persistence of natural populations . Correlational
demographic analysis, whereby the importance of
demographic processes and their temporal variability is
examined , has attempted to identify how species may buffer
against the negative effects of environmental stochasticity.
However, these widely used approaches have important
limitations (see Introduction and Hilde ef al. 2020). One
significant limitation is the issue of measurement scale
concerning demographic processes . Demographic processes,
such as birth rates, death rates, immigration, and emigration,
operate at various temporal and spatial scales. The choice of
scale at which these processes are measured can impact the
outcomes of correlational demographic analysis . Our novel
framework overcomes said limitations by providing a
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sensitivity of 1; to changes in said process (Stearns 1992). Consequently, correlations

between demographic processes (negative correlations known as trade-offs) are influenced by

minor alterations in the governing demographic processes (Doak ef al. 2005). Therefore, the

observed self-second derivative of the population growth rate represents a momentum that

can be influenced by small changes in any demographic process within the life cycle.

Because of these characteristics, second-order derivatives reveal “fine scale” fitness

behaviour compared to sums of stochastic elasticities. Evolutionary demography still requires

a tool to connect second-order fitness effects with stochastic elasticities in a biologically

interpretable manner (but see Tuljapurkar et al. 2023).

When placing our study species along a variance continuum, primates tend to be

located on the buffered end. However, most primates displayed convex — instead of the

expected concave — selection on adult survival. Similar results, where the key demographic

process failed to display constrained temporal variability, have been reported for long-lived

seabirds (Doherty et al. 2004). One explanation for the unexpected convex selection on adult

survival involves trade-offs, as suggested by (Doak et al. 2005). When two demographic

parameters are negatively correlated, the variance of population growth rate can be increased

or decreased (Compagnoni et al. 2016; Evans & Holsinger 2012).

Correlations among demographic processes (positive and negative) inherently

influence the biological limits of variance (Haridas & Tuljapurkar 2005). This is because the

magnitude of variation in a particular demographic process is constrained by the variation of

other demographic processes. Not surprisingly, correlations among demographic processes

have been shown to be strongly subjected to ecological factors (Fay et al. 2022). Therefore,

future studies may benefit from deeper insights using cross-second derivatives (Caswell

1996. 2001) to investigate correlations among demographic processes.
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Biological variance estimates are inevitably subjected to several sources of bias

(Simmonds & Jones 2024). To minimise bias, we randomly sampled the available matrices

before obtaining the estimates. Despite the significant correlation between X E,f: and the

number of available matrices per species, the relative positioning of species remains

meaningful for between-population level comparisons, as the correlation is very weak (-

0.002). Still, researchers carrying out macroecological comparisons of demographic buffering

might want to be even more restringent than we have been here with their datasets, as these

grow longer with time (Compagnoni ef al. 2021; Salguero-Gomez et al. 2021).

Regarding phylogenetic effects, our tests revealed a mild signal, but we note that

future work regressing % Eg; values against potential independent variables (e.g., climate

values) may want to correct for this phylogenetic dependence. By having carefully chosen

studies from a database that contains >400 species and retained only those that passed

through a set of selection criteria (Che-Castaldo et al. 2020; Gascoigne et al. 2023b; Kendall

et al. 2019; Romer et al. 2024; Simmonds & Jones 2024), we mitigate those biases a priori.

Furthermore, we are using an elasticity-based approach, meaning we are comparing

proportional variances. At present, the available methods still do not account for constraints

in variance nor performing a perturbation approach disproportionately.

The analyses at both between- and within-populations levels are fundamentally

interconnected. This connection is grounded on the fact that large summed elasticities with

respect to variance are intrinsically linked to high elasticity values, as demonstrated in

equation 6 in (Haridas & Tuljapurkar 2005). This finding robustly endorses the perspective

that species' positions along the variance continuum should be interpreted with consideration

of first and second-order effects, and additionally, in the context of selection pressures acting

on the variability of demographic processes, as revealed by a second order effect.
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Combining first- and second-order analyses is crucial for understanding the factors

shaping demographic buffering patterns. The second-order effect reveals that the role of

natural selection in shaping temporal variation in demographic processes is more complex

than initially thought. Indeed, demographic processes within our study populations often face

a mix of convex and concave selection. This mix of selection patterns was suggested by Doak

et al. (2005), who noted that dramatic changes in population growth rate sensitivities are

influenced by correlations among demographic processes. Here, only two of the 16 mammal

‘| Deleted: Combining the three steps into a unified framework

species revealed concave selection on the key demographic processes: Columbian ground

squirrel (Urocitellus columbianus), and humans, (Homo sapiens), These two species were

placed near the buffered end of the variance continuum, supporting, our hypothesis. Evidence

of buffering has been reported across 22 ungulate species (Gaillard & Yoccoz 2003).

However, in the one ungulate we examined, the moose (4lces alces), we found only partial

‘L al. (2005).
| CDeleted: out
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is of outmost importance. In steps 2 and 3 of the framework,
we find relatively limited overall evidence of buffering in the
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in long-lived species tends to be buffered. Indeed, Gaillard et al. (1998) found that adult

female survival varied considerably less than juvenile survival in large herbivores. This
finding was also supported by further studies in ungulates (Gaillard & Yoccoz 2003), turtles
(Heppell 1998), vertebrates and plants (Pfister 1998), and more recently across nine species

of plants (McDonald et al. 2017). However, an alternative result was also reported by

Gaillard and Yoccoz (2003) for small mammals, where variability in adult survival was
unexpectedly high, even though the studied small mammals were annual, and as such

comparable to large mammal model. Seasonality, frequency and method of sampling all

influence survival estimates and their estimated variability, thus, when comparing multiples
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species/studies, all of the latter characteristics should be taken into account when interpreting

the results.

[Examining the drivers of demographic buffering has become an important piece of the

ecological and evolutionary puzzle of demography. As such, understanding buffering can

help us better predict population responses to environmental variability, climate change, and

direct anthropogenic disturbances (Boyce et al. 2006; Gascoigne et al. 2024a; McDonald et

al. 2017; Pfister 1998; Vazquez et al. 2017). By setting demographic buffering into a broader
and integrated framework, we hope to enhance comprehension and prediction of the
implications of heightened environmental stochasticity on the evolution of life history traits.
This understanding is crucial in mitigating the risk of extinction for the most vulnerable

species.
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supporting the results can be accessed here:

https://github.com/SamuelGascoigne/Demographic_buffering unified framework.

References

Barraquand, F. & Yoccoz, N.G. (2013). When can environmental variability benefit
population growth? Counterintuitive effects of nonlinearities in vital rates. Theor Popul
Biol, 89, 1-11.

Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T.M. (2018). Climate models predict
increasing temperature variability in poor countries. Sci Adv, 4.

Beccari, E., Capdevila, P., Salguero-Gémez, R. & Carmona, C.P. (2024). Worldwide
diversity in mammalian life histories: Environmental realms and evolutionary
adaptations. Ecol Lett, 27.

Bielby, J.. Mace, G.M., Bininda-Emonds, O.R.P., Cardillo, M., Gittleman, J.L.., Jones, K.E.,
et al. (2007). The Fast-Slow Continuum in Mammalian Life History: An Empirical
Reevaluation. Am Nat, 169, 748-757.

Bonsall, M.B. & Klug, H. (2011). The evolution of parental care in stochastic environments.
J Evol Biol, 24, 645-655.

Boyce, M., Haridas, C., Lee, C. & The NCEAS Stochastic Demography Working Group.
(2006). Demography in an increasingly variable world. Trends Ecol Evol, 21, 141-148.

Brodie, E.I., Moore, A. & Janzen, F. (1995). Visualizing and quantifying natural selection.
Trends Ecol Evol, 10, 313-318.

Campos, F.A., Morris, W.F., Alberts, S.C., Altmann, J., Brockman, D.K., Cords, M., et al.
(2017). Does climate variability influence the demography of wild primates? Evidence
from long-term life-history data in seven species. Glob Chang Biol, 23, 4907—4921.

Carslake, D., Townley. S. & Hodgson, D.J. (2008). Nonlinearity in eigenvalue-perturbation
curves of simulated population projection matrices. Theor Popul Biol, 73, 498-505.

Caswell, H. (1978). A general formula for the sensitivity of population growth rate to
changes in life history parameters. Theor Popul Biol, 14, 215-230.

Caswell, H. (1996). Second Derivatives of Population Growth Rate: Calculation and
Applications. Ecology, 77, 870-879.

Caswell, H. (2001). Matrix Population Models: Construction, Analysis, and Interpretation.
Sinauer Associates Inc. Publishers, Sunderland, Massachusetts, USA.

Charlesworth, B. (1994). Evolution in age-structured populations. second edi. Cambridge

University Press.
Che-Castaldo, J.. Jones, O.R.. Kendall, B.E., Burns, J.H., Childs, D.Z., Ezard, T.H.G., et al.

(2020). Comments to “Persistent problems in the construction of matrix population
models.” Ecol Modell, 416.

Le Coeur, C., Yoccoz, N.G., Salguero-Gomez, R. & Vindenes, Y. (2022). Life history
adaptations to fluctuating environments: Combined effects of demographic buffering
and lability. Ecol Lett, 25, 2107-2119.

Compagnoni, A., Bibian, A.J., Ochocki, B.M., Rogers, H.S., Schultz, E.L., Sneck, M.E., et
al. (2016). The effect of demographic correlations on the stochastic population dynamics
of perennial plants. Ecol Monogr, 86, 480—494.

Compagnoni, A., Evers, S. & Knight, T. (2023). Spatial replication can best advance our

understanding of population responses to climate. bioRxiv,
https://doi.org/10.1101/2022.06.24.497542.

20



bt b e b b b bk e e b b e b ek e ek b e e bk b e b e b bk e e ek ek e e ek b b b e et e e b ek e e e e e —m —

B64
B65
B66
B67
368
B69
B70
B71
B72
B73
B74
B75
B76
B77
B78
B79
380
B81
382
383
384
B85
B86
387
388
389
390
B91
392
393
394
395
396
397
398
399
#00
401
#02
103
#04
A0S
H06
#07
#08
#09
#10
411
412

#13

Compagnoni, A., Levin, S., Childs, D.Z., Harpole, S., Paniw, M., Romer, G., et al. (2021).
Herbaceous perennial plants with short generation time have stronger responses to
climate anomalies than those with longer generation time. Nat Commun, 12, 1824.

Doak, D.F., Morris, W.F., Pfister, C., Kendall, B.E. & Bruna, E.M. (2005). Correctly
Estimating How Environmental Stochasticity Influences Fitness and Population Growth.
Am Nat, 166, E14-E21.

Doak, D.F., Waddle, E.. Langendorf, R.E.. Louthan, A.M., Isabelle Chardon, N., Dibner,
R.R., et al. (2021). A critical comparison of integral projection and matrix projection
models for demographic analysis. Ecol Monogr, 91, €01447.

Doherty, P.F., Schreiber, E.A., Nichols, J.D., Hines, J.E., Link, W.A., Schenk, G.A., et al.

(2004). Testing life history predictions in a long-lived seabird: A population matrix
approach with improved parameter estimation. Oikos, 105, 606—618.

Drake, J.M. (2005). Population effects of increased climate variation. Proceedings of the
Roval Society B: Biological Sciences, 272, 1823—-1827.

Easterling, M.R., Ellner, S.P. & Dixon, P.M. (2000). Size-Specific Sensitivity: Applying a

New Structured Population Model. Ecology, 81, 694-708.

Ebert, T. (1999). Plant and animal populations: Methods in demography. Academis Press
San Diego, CA, USA.

Ellner, S.P., Childs, D.Z. & Rees, M. (2016). Data-driven Modelling of Structured
Populations. A practical guide to the Integral Projection Model. Lecture Notes on
Mathematical Modelling in the Life Sciences. Springer International Publishing, Cham.

Evans, M.E.K. & Holsinger, K.E. (2012). Estimating covariation between vital rates : A
simulation study of connected vs . separate generalized linear mixed models (GLMMs).
Theor Popul Biol, 82, 299-306.

Evers, S.M., Knight, T.M., Inouye, D.W., Miller, T.E.X., Salguero-Gémez, R., Iler, A.M., et
al. (2021). Lagged and dormant season climate better predict plant vital rates than
climate during the growing season. Glob Chang Biol, 27, 1927-1941.

Fay, R., Hamel, S.. van de Pol, M., Gaillard, J.M.. Yoccoz, N.G., Acker, P., et al. (2022).
Temporal correlations among demographic parameters are ubiquitous but highly
variable across species. Ecol Lett, 25, 1640-1654.

Franco, M. & Silvertown, J. (2004). A comparative demography of plants based upon
elasticities of vital rates. Ecology, 85, 531-538.

Gaillard, J.M., Festa-Bianchet, M. & Yoccoz, N.G. (1998). Population dynamics of large
herbivores: Variable recruitment with constant adult survival. Trends Ecol Evol, 13, 58—
63.

Gaillﬁz J.-M. & Yoccoz, N. (2003). Temporal Variation in Survival of Mammals: a Case of

Environmental Canalization? Ecology, 84, 3294-3306.
Gascoigne, S.J.L., Kajin, M. & Salguero-Gomez. R. (2024a). Criteria for buffering in

ecological modeling. Trends Ecol Evol, 39, 116—118.

Gascoigne, S.J.L., Kajin, M., Sepil. I. & Salguero-Gémez, R. (2024b). Testing for efficacy in
four measures of demographic buffering. EcoEvoRxiv, 0-2.

Gascoigne, S.J.L., Kajin, M., Tuljapurkar, S.D., Silva Santos, G., Compagnoni, A., Steiner,
U.K., et al. (2023a). Structured demographic buffering: A framework to explore the
environment drivers and demographic mechanisms underlying demographic buffering.
bioRxiv.

Gascoigne, S.J.L., Rolph, S., Sankey, D., Nidadavolu, N., Stell Pi¢cman, A.S., Hernandez,
C.M., et al. (2023b). A standard protocol to report discrete stage-structured demographic
information. Methods Ecol Evol, 14, 2065-2083.

Gillespie, J.H. (1977). Natural Selection for Variances in Offspring Numbers: A New
Evolutionary Principle. Am Nat, 111, 1010-1014.

21



bt b e b b b bk e e b b e b ek e ek b e e bk b e b e b bk e e ek ek e e ek b b b e et e e b ek e e e e e —m —

414
115
116
117
418
119
120
121
122
U23
U24
125
126
u27
128
129
130
U31
132
133
134
U35
U36
137
138
139
140
141
142
U43
ua4
145
146
147
148
149
150
151
us2
153
154
155
us6
us7
158
159
160
161
162

#63

Griffith, A.B. (2017). Perturbation approaches for integral projection models. Qikos, 126,
1675-1686.

Haridas, C. V. & Tuljapurkar, S. (2005). Elasticities in Variable Environments: Properties
and Implications. 4m Nat, 166, 481-495.

K., Ezard, T.H.G., Jones, O.R., Salguero-Gémez, R. & Buckley, Y.M. (2019). Animal
life history is shaped by the pace of life and the distribution of age-specific mortality and
reproduction. Nat Ecol Evol, 3, 1217-1224.

Heppell, S.S. (1998). Application of Life-History Theory and Population Model Analysis to
Turtle Conservation. Copeia, 1998, 367.

Hilde, C.H., Gamelon, M., Sather, B.-E., Gaillard, J.-M., Yoccoz, N.G. & Pélabon, C.
(2020). The Demographic Buffering Hypothesis: Evidence and Challenges. Trends Ecol
Evol, 35, 523-538.

Jakildniemi, A., Ramula, S. & Tuomi, J. (2013). Variability of important vital rates
challenges the demographic buffering hypothesis. Evol Ecol, 27, 533-545.

Jones, J.H. (2007). demogR: A Package for the Construction and Analysis of Age-structured
Demographic Models in R. J Stat Softw, 22, 1-28.

Jones, J.H. (2011). Primates and the evolution of long, slow life histories. Current Biology,
21, R708-R717.

Jongejans, E., De Kroon, H., Tuljapurkar, S. & Shea, K. (2010). Plant populations track
rather than buffer climate fluctuations. Ecol Lett, 13, 736—743.

Kajin, M., Gentile, R., Almeida, P.J.A.L. de, Vieira, M.V. & Cerqueira, R. (2023). Vital
rates, their variation and natural selection: a case for an Atlantic forest marsupial.
Oecologia Australis, 27.

Kendall, B.E., Fujiwara, M., Diaz-Lopez, J.. Schneider, S.. Voigt, J. & Wiesner, S. (2019).
Persistent problems in the construction of matrix population models. Ecol Modell, 406,
33-43.

Keyfitz, N. & Flieger, W. (1990). World Population Growth and Aging: Demographic
Trends in the Late Twentieth Century. University of Chicago Press, Chicago.

Koons, D.N., Pavard, S., Baudisch, A. & Jessica E. Metcalf, C. (2009). Is life-history
buffering or lability adaptive in stochastic environments? QOikos, 118, 972-980.

Kroon, H. De, Groenendael, J. Van & Ehrlen, J. (2000). Elasticities: A review of methods
and model limitations. Ecology, 81, 607-618.

de Kroon, H., Plaisier, A., van Groenendael, J. & Caswell, H. (1986). Elasticity: The Relative
Contribution of Demographic Parameters to Population Growth Rate. Ecology, 67,
1427-1431.

Lawler, R.R., Caswell, H., Richard, A.F., Ratsirarson, J., Dewar, R.E. & Schwartz, M.
(2009). Demography of Verreaux’s sifaka in a stochastic rainfall environment.
Oecologia, 161, 491-504.

Lefévre, C.D., Nash, K.L., Gonzalez-Cabello, A. & Bellwood, D.R. (2016). Consequences of
extreme life history traits on population persistence: do short-lived gobies face
demographic bottlenecks? Coral Reefs, 35, 399-409.

McDonald, J.L., Franco, M., Townley, S., Ezard, T.H.G., Jelbert, K. & Hodgson, D.J. (2017).
Divergent demographic strategies of plants in variable environments. Nat Ecol Evol, 1,
0029.

Morris, W.F., Altmann, J., Brockman, D.K., Cords, M., Fedigan, L.M., Pusey, A.E., et al.
(2011). Low Demographic Variability in Wild Primate Populations: Fitness Impacts of
Variation, Covariation, and Serial Correlation in Vital Rates. Am Nat, 177, E14—E28.

Morris, W.F. & Doak, D.F. (2004). Buffering of Life Histories against Environmental

Stochasticity: Accounting for a Spurious Correlation between the Variabilities of Vital
Rates and Their Contributions to Fitness. Am Nat, 163, 579-590.

Heal

22



bt b e b b b bk e e b b e b ek e ek b e e bk b e b e b bk e e ek ek e e ek b b b e et e e b ek e e e e e —m —

Ho4
A65
H66
Ho7
H68
#69
#70
471
A72
A73
#74
475
#76
w77
A78
#79
#80
A81
#82
H83
H84
A85
H86
Ha87
H88
#89
#90
#91
#92
#93
#o4
#95
#96
#o7
#98
#99
500
501
502
503
504
505
506
507
508
509
510
511
512

513

Morris, W.F., Pfister, C.A., Tuljapurkar, S., Haridas, C. V., Boggs, C.L., Boyce, M.S.. et al.
(2008). Longevity can buffer plant and animal populations against changing climatic
variability. Ecology, 89, 19-25.

Miinkemiiller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., et al.
(2012). How to measure and test phylogenetic signal. Methods Ecol Evol, 3, 743-756.

Pélabon, C., Hilde, C.H., Einum, S. & Gamelon, M. (2020). On the use of the coefficient of

variation to quantify and compare trait variation. Evol Lett, 4, 180—188.

Perret, D.L., Evans, M.E.K. & Sax, D.F. (2024). A species’ response to spatial climatic
variation does not predict its response to climate change. Proc Natl Acad Sci U S A, 121,
€2304404120.

Pfister, C. (1998). Patterns of variance in stage-structured populations: Evolutionary
predictions and ecological implications. Proceedings of the National Academy of
Sciences, 95,213-218.

R Core Team. (2024). R: A Language and Environment for Statistical Computing.

Reed, A.W. & Slade, N.A. (2012). Buffering and plasticity in vital rates of oldfield rodents.
Journal of Animal Ecology, 81, 953-959.

Rodriguez-Caro, R.C., Capdevila, P., Gracia, E., Barbosa, J.M., Giménez, A. & Salguero-
Gomez, R. (2021). The limits of demographic buffering in coping with environmental
variation. Oikos. 130, 1346—1358.

Roémer, G., Dahlgren, J.P., Salguero-Gomez, R., Stott, .M. & Jones, O.R. (2024). Plant
demographic knowledge is biased towards short-term studies of temperate-region
herbaceous perennials. Oikos, 2024.

Rotella, J.J., Link, W.A., Chambert, T., Stauffer, G.E. & Garrott, R.A. (2012). Evaluating the
demographic buffering hypothesis with vital rates estimated for Weddell seals from 30
years of mark-recapture data. Journal of Animal Ecology, 81, 162—-173.

Salguero-Gomez. R. (2021). Commentary on the life history special issue: The fast-slow
continuum is not the end-game of life history evolution, human or otherwise. Evolution
and Human Behavior, 42, 281-283.

Salguero-Goémez, R. (2024). More social species live longer, have higher generation times
and longer reproductive windows. bioRxiv, https://doi.org/10.1101/2024.01.22.575897.

Salguero-Gomez, R., Jackson, J. & Gascoigne, S.J.L. (2021). Four key challenges in the
open-data revolution. Journal of Animal Ecology. 90, 2000-2004.

Salguero-Goémez, R., Jones, O.R., Archer, C.R., Bein, C., de Buhr, H., Farack, C., et al.
(2016). COMADRE: A global data base of animal demography. Journal of Animal
Ecology, 85, 371-384.

Sanghvi, K., Vega-Trejo, R., Nakagawa, S., Gascoigne, S.J.L., Johnson, S.L., Salguero-
Gbémez, R., et al. (2024). Meta-analysis shows no consistent evidence for senescence in

ejaculate traits across animals. Nat Commun, 15, 558.

Shyu, E. & Caswell, H. (2014). Calculating second derivatives of population growth rates for
ecology and evolution. Methods Ecol Evol, 5, 473-482.

Simmonds, E.G. & Jones, O.R. (2024). Uncertainty propagation in matrix population models:
Gaps, importance and guidelines. Methods Ecol Evol, 15, 427-438.

Stearns, S. (1992). The Evolution of Life Histories. Oxford University Press, New York
USA.

Stearns, S.C. (1983). The Influence of Size and Phylogeny on Patterns of Covariation among

Life-History Traits in the Mammals. Oikos, 41, 173.
Stubben, C., Milligan, B., Nantel, P. & Stubben, M.C. (2020). Package ‘popbio.’

Sutherland, W.J., Freckleton, R.P., Godfray, H.C.J., Beissinger, S.R., Benton, T., Cameron,

D.D., et al. (2013). Identification of 100 fundamental ecological questions. Journal of
Ecology, 101, 58-67.

23



1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536

1537

1538
1539
1540

Tuljapurkar, S. (1990). Population Dynamics in Variable Environments. In: Lecture notes in
Biomathematics, Lecture Notes in Biomathematics (ed. Levin, S.). Springer Berlin
Heidelberg.

Tuljapurkar, S. (2010). Environmental variance, population growth and evolution. J Anim
Ecol, 79, 1-3.

Tuljapurkar, S., Gaillard, J.-M. & Coulson, T. (2009). From stochastic environments to life
histories and back. Philosophical Transactions of the Royal Society B: Biological
Sciences, 364, 1499-1509.

Tuljapurkar, S., Horvitz, C.C. & Pascarella, J.B. (2003). The Many Growth Rates and
Elasticities of Populations in Random Environments. 4m Nat, 162, 489-502.

Tuljapurkar, S., Jaggi, H., Gascoigne, S.J.L., Zuo, W., Kajin, M. & Salguero-Gémez, R.
(2023). From disturbances to nonlinear fitness and back. bioRxiv, 2023.10.20.563360.

Tuljapurkar, S.D. (1982). Population dynamics in variable environments. III. Evolutionary
dynamics of r-selection. Theor Popul Biol, 21, 141-165.

Vazquez, D.P., Gianoli, E., Morris, W.F. & Bozinovic, F. (2017). Ecological and
evolutionary impacts of changing climatic variability. Biological Reviews, 92, 22-42.

Wang, J., Yang, X., Silva Santos, G., Ning, H., Li, T., Zhao, W., et al. (2023). Flexible
demographic strategies promote the population persistence of a pioneer conifer tree
(Pinus massoniana) in ecological restoration. For Ecol Manage, 529, 120727.

Zuidema, P.A. & Franco, M. (2001). Integrating vital rate variability into perturbation
analysis: an evaluation for matrix population models of six plant species. Journal of
Ecology, 89, 995-1005.

24



1541

1542

Figure 1
A)

2 Esu

-0.01
-0.02
-0.03
-0.04
-0.05

S
-— .
z E Elasticity
) 03
0.2
Elasticity 01
03
0.0
02
Second-order derivative
01
@ -
0.0

. <75

@ 50
Column Column ® 25
.« 00

25

( Deleted:

A) Step 1

Density

-0.05

B) Step 2

Celumn




1544

1545
1546

Figure 2

30

20

10

Order

¢ Artiodactyla

e Carnivora

¢ Cetacea

¢ Dasyuromorphia

Y - Diprotodontia

e Lagomorpha
e Primates

d ° Rodentia

8 # matrices

26

r N
30+
> 201 Q
=
]
c
[
[a]
104
0 : -
0.3 0.2
<
\ Deleted: . < XE J




1548

1549
1550
1551

Figure 3

Blue monkey

P23 45 6 7 8 &
Killor whalo

- | |
"E
it en

1

MPM rows

2
.
.
s
.
,
o 1

12 3 4 5 6 7 8
Soay sheep

Columbian ground sauirrel

"

F

1
Polar bear

©J
[ T R
Tammar walaby

1

2

3l

Eastem chimpanzee Human
om
2@
3@
4 L]
5
6
7
8
9
10
"
C 2 D

123456786 91011121314151617
Mountain gorilla

G

Rhesus macaque

1234667801111
Northern muriqui

K

iz 3 4 s i 2 3
White faced capuchin monkey

Verreaux's sifaka

oM : e
2 1 v'
:
,,
5 2 3
s M (6]
56 i 2 12 3 4 5 6 7 8

MPM columns

Elasticity
0.8

0000

2

4
6
8

27

~

-
Blue monkey Columbian ground squirre
! .
2 2@
3 3 .
4 4 O
5 5
6 6
7 7
8 8
9 9
12 3 4 5 6 7 8 9 i 2 3 4 5
Killer whale Moose
4
.
2!
B
4 2
5
- [
3
w 7
3
2 1 2 3 5 6 7 1 2
S Olivebaboon Polar bear
a
s ! - 1
2
2
: y
4 3
s 4
6
5
B q
8 6-
i 2 3 4 5 6 7 8 12 3 4
Soay sheep Tammar wallaby
. H
i ” '
3l
4!
51 2
6!
12 3 4 5 6 1
(Deleted:




1553
1554
1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

—_

574
575

—

1576

1577

1578

Fi igure legends ’,(Deleted: A three-step framework proposed to: Step

r'(Deleted: 1 - allocate species and/or populations on a

Figure 1. A),The, variance continuum for 37 hypothetical species based on the summed

(Deleted: (plot A, dots representing
[Deleted: 50
(Deleted: )

stochastic elasticities (X Eg:) at the between populations hierarchical level'. The closer the

AN

50 . . L. . . Deleted: The variance continuum operates at the between-
Xz Eai]. is to zero, the weaker the impact of variation in demographic processes on the /| populations level (see text) and is represented by partitioning

the sum of all the stochastic elasticities into two
compounds: i) sums of stochastic elasticities with res;

) (Deleted: (or
',(Deleted: )
'(Deleted: -
(Deleted: — based on all the demographic processes
. (Deleted: (or
i (Deleted: )
[Deleted: a perturbation of the variance
(Deleted: (or

e
=

stochastic population growth rate, ;. The variance continuum ranges from potentially

buffered (right-hand side) to less buffered (left-hand side) species/populations. . The yellow-

dotted species/populations, can be classified as having potentially buffered life cycles, The

left-hand side of the graph represents species/populations,where yariability in demographic .-~

processes results in strong impact on 4 (blue dots). Thus, the blue-dotted species/populations,

can be classified as having potentially unbuffered life cycles, The vertical axis delineates the '”CDeleted: )
‘ (Deleted: — based on all the demographic processes
values of the probability density function, indicating the number of species/populations at . O)eleted: distribution

(Deleted: breadth

i ,(Deleted: solely
(Deleted: Step
(Deleted: 2-
(Deleted:
(Deleted: Access the
- (Deleted: or
(Deleted: (plot B)

each value of X' Eg;. The placement of data points (species/populations) along the horizontal

axis corresponds to their calculated values of 2E g:; and is arranged linearly, while the

placement, along the y-axis is random, for improved visual comprehension. B) First-order

effects or Jinear selection pressures for individual species/populations at within-species level

(see text), Shown arg the elasticities of the deterministic population growth rate (4,) for a ) '(Deleted: Step 2
S, ) (Deleted: displays
hypothetical population of wolves,and revealing the governing demographic process(es),jn (Deleted: ,
. ' . . , ( Deleted: wolf
the life cycle (yellow cells: high elasticity, blue cells: low elasticity), C) Combined results for [Delete & s
first (yellow and blue cells) and second order effects (black dots), where the latter reveals the * - %Deleted: finear selection gradients
=4 Deleted: ,

. ‘;‘(Deleted: and which demographic processes are the m(”_[35
[Deleted: A

[Deleted: Step 3
Figure 2. The variance continuum for 43 populations from 37 species of mammals from the 9 ‘[Delete(r

nonlinear selection pressures at the within-species level,

B CDeleted: Access the n
[Deleted: (see text) (plot C)
) (Deleted: In the third step self-second derivatives for t{”
. CDeleted: 40
CDeleted: 34
“’CDeleted: Results for step 1 of our framework showing™__ 37

COMADRE database based on the summed stochastic elasticities (X Eg;) at the between

36

populations hierarchical level. Colors represent different taxonomic orders with Primates

occupying the right-hand side. Silhouettes: a) Brachyteles hyphoxantus, b) Gorilla beringhei,

g

28



1649
1650
1651

1652

1653
1’654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671

1672

¢) Cercopithecus mitis, d) Urocitellus columbianus, €) Mustela erminea, f) Erythrocebus
patas, g) Lepus americanus, h) Rattus fuscipes, 1) Ovis aries, j) Homo sapiens, k) Macropus
eugenii, and 1) Felis catus. The vertical axis delineates the values of the probability density

function, indicating the number of species/populations at each value of X Eg;. The placement

of data points (species/populations) along the horizontal axis corresponds to their calculated

values of Z‘Eg; and is arranged linearly, while the placement along the y-axis is random for

improved visual comprehension.

Figure 3: First and second order effects on population growth rate, 4; (corresponding to

elasticities and self-second derivatives of population growth rate, respectively) for 16

mammal species. The 16 plots represent populations where the MPMs built by ages were

v (Deleted: d
é V(Deleted: (see text)

available in the COMADRE Animal Matrix Database, The yellow-blue colour scale

i (Deleted: color
(Deleted: s

CDeleted: breadth
(Deleted: solely

(AN

Deleted: Results from steps 2 and 3 of the proposed
framework (see Fig. 2B, C).

represents elasticity values for each of the demographic processes in the MPM, where yellow

cells represent, high and blue cells low elasticity of population growth rate to changes in

/ (Deleted: values.
CDeleted: color

' { Deleted: Because the aim of step 2 is to identify the most

demographic processes. No colour means elasticity=0. The black dots represent negative self- ;

second derivatives of A; - corresponding to concave selection - and the white dots represent

positive self-second derivatives of 4; - ditto convex selection. The dot sizes are scaled by the

absolute value of self-second derivatives, where the smaller the dot, the closer a self-second

derivative is to 0. indicating weak or no nonlinearity. Thus, large dots indicate strong

nonlinear selection forces, either concave (black) or convex (white). Since the derivatives of

population growth rate are confounded by eigen-structure (Kroon et al. 2000), the scaling of

the elasticity values and second-derivative values is species specific - i.e., each plot has its

own scale. Species-specific scales can be found in Supplementary material (Table S2).

/| represent positive self-second derivatives of 4; - thus convex

29

NN AN/ AN AN AN A N

impacting demographic process within each species’ life
cycle (the within-populations level, see text) - not to compare
the elasticity values among species - each plot has its own
scale (see end of legend).

Deleted: The black dots represent negative self-second
derivatives of A, - thus concave selection - and the white dots

selection. The dot sizes are scaled by the absolute value of
self-second derivatives, where the smaller the dot, the closer a
self-second derivative is to 0, indicating weak or no
nonlinearity. Large dots indicate strong nonlinear selection
forces. Scales (Emin-max=clasticity minimum and maximum
value, SSDin-max=self-second derivative minimum and
maximum value): Blue monkey Emin-max=0.00-0.52, SSDpin-
max=-1.25-1.27; Columbian ground squirrel: Emin-max=0.00-
0.23, SSDmin-max=-1.48-0.01; Eastern chimpanzee: Enin-
max=0.00-0.60, SSDpin-max=-4.39-2.59; Human: Epin-
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Supplementary material — Data available in COMADRE Version 3.0.0 and results from Step 1 of the framework

Table S1. The metadata used and the respective results presented in the main text. The first four columns represent the information from where

o CDeleted: in step 1 of our framework

Matrix Populations Models (MPMs) were extract precisely as presented in COMADRE 3,0.0,,

Species Common name Species Order # matrices Y As JES YES (SE)
(COMADRE) v v

Homo sapiens Human Homo_sapiens_sub | Primates 26 1.063707 1.061537 -2.24E-03 3.15E-04

sapiens sp._sapiens

Alces alces Moose Alces_alces Artiodactyla 14 1.205368 1.205161 -6.69E-04 8.42E-05

Antechinus Agile antechinus Antechinus_agilis Dasyuromorphia | 3 0.931076 0.885919 -1.11E-01 1.62E-03

agilis

Bos primigenius | Cattle Bos_primigenius Artiodactyla 8 1.002505 1.000493 -2.83E-03 2.96E-04

Brachyteles Northern muriqui Brachyteles_hypox | Primates 25 1.05122 1.051273 -5.31E-05 2.09E-05

hypoxanthus anthus

Callospermophil | Golden-mantled Callospermophilus | Rodentia 18 2.052345 1.970253 -6.68E-02 8.72E-03

us lateralis ground squirrel lateralis

Cebus capucinus | White faced Cebus capucinus Primates 22 1.020887 1.020868 -2.04E-04 4.75E-05
capuchin monkey

Cercopithecus Blue monkey Cercopithecus_miti | Primates 28 1.036082 1.036075 -4.43E-05 1.18E-05

mitis

S
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Cervus Rocky Mountain elk | Cervus_canadensis | Artiodactyla 10 1.107412 1.099838 -8.55E-03 1.09E-03
canadensis subsp._nelsoni

subsp. nelsoni

Eumetopias Northern sea lion; Eumetopias jubatu | Carnivora 4 0.904383 0.902155 -4.52E-03 2.44E-04
jubatus Steller sea lion s

Felis catus Feral cat Felis_catus Carnivora 3 1.948471 1.8259 -1.34E-01 1.89E-03
Gorilla beringei | Mountain gorilla Gorilla beringei Primates 41 1.026827 1.02682 -1.28E-05 1.32E-05
Hippocamelus Huemul deer Hippocamelus bis | Artiodactyla 3 0.996197 0.995462 -1.80E-03 1.09E-04
bisulcus ulcus

Leopardus Ocelot Leopardus_pardalis | Carnivora 4 1.086146 1.086122 -2.94E-04 3.89E-05
pardalis

Lepus Snowshoe hare Lepus_americanus | Lagomorpha 5 0.811904 0.707678 -2.62E-01 2.33E-02
americanus

Lycaon pictus African wild dog Lycaon_pictus Carnivora 3 1.500429 1.430517 -9.70E-02 9.91E-04
Macaca mulatta | Rhesus macaque Macaca mulatta 3 | Primates 24 1.127496 1.12735 -3.84E-04 6.83E-05
Macropus Tammar wallaby Macropus_eugenii | Diprotodontia 15 0.981097 0.970794 -1.43E-02 1.62E-03
eugenii

Marmota Yellow-bellied Marmota_flavivent | Rodentia 8 0.89031 0.886098 -8.80E-03 6.98E-04
flaviventris marmot ris_2

Marmota Yellow-bellied Marmota_flavivent | Rodentia 8 0.920541 0.916392 -7.00E-03 7.04E-04
flaviventris marmot ris 3
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Microtus Root vole Microtus_oeconom | Rodentia 28 1.027531 1.027095 -5.60E-04 1.06E-04
oeconomus us

Mustela erminea | Stoat Mustela_erminea Carnivora 4 1.258462 1.074391 -3.10E-01 1.62E-02
Orcinus orca Killer whale Orcinus_orca 2 Cetacea 50 0.998658 0.998351 -4.72E-04 1.53E-04
Ovis aries Soay sheep Ovis_aries 2 Artiodactyla 6 1.09877 1.080656 -3.45E-02 2.96E-03
Pan troglodytes Eastern chimpanzee | Pan_troglodytes su | Primates 45 0.982286 0.982191 -1.94E-04 5.06E-05
subsp. bsp._schweinfurthii

schweinfurthii

Papio Olive baboon Papio_cynocephalu | Primates 37 1.053872 1.053789 -2.41E-04 6.97E-05
cynocephalus s

Peromyscus Deer mouse Peromyscus_manic | Rodentia 4 1.10686 1.101117 -9.41E-03 6.88E-04
maniculatus ulatus 2

Phascolarctos Koala Phascolarctos_cine | Diprotodontia 4 1.064011 1.062744 -2.53E-03 2.16E-04
cinereus reus 2

Phocarctos New Zealand sea Phocarctos_hooker | Carnivora 16 1.023016 1.020083 -3.56E-03 4.15E-04
hookeri lion i

Propithecus Verreaux's sifaka Propithecus_verrea | Primates 24 0.985592 0.985399 -3.06E-04 6.29E-05
verreauxi uxi

Rattus fuscipes Bush rat Rattus_fuscipes Rodentia 3 1.304662 1.188931 -2.45E-01 4.29E-03
Urocitellus Uinta ground Spermophilus_arm | Rodentia 6 1.125011 1.113416 -1.73E-02 1.68E-03
armatus squirrel atus

32



1731

Urocitellus Uinta ground Spermophilus_arm | Rodentia 6 1.094693 1.084304 -1.47E-02 1.56E-03

armatus squirrel atus 2

Urocitellus Columbian ground Spermophilus_colu | Rodentia 6 1.008949 0.984575 -3.80E-02 3.26E-03

columbianus squirrel mbianus

Urocitellus Columbian ground Spermophilus_colu | Rodentia 6 1.200353 1.197473 -3.38E-03 6.96E-04

columbianus squirrel mbianus 3

Ursus Florida black bear Ursus_americanus_ | Carnivora 4 1.01989 1.018094 -3.68E-03 3.97E-04

americanus subsp._floridanus

subsp. floridanus

Ursus arctos Grizzly bear Ursus_arctos subs | Carnivora 7 1.025712 1.024785 -1.38E-03 1.26E-04

subsp. horribilis p._horribilis_5

Ursus maritimus | Polar bear Ursus_maritimus_2 | Carnivora 5 0.940646 0.931697 -1.91E-02 9.23E-04

Brachyteles Northern muriqui Brachyteles_hypox | Primates 25 1.110953 1.110983 1.22E-05 5.05E-06

hypoxanthus anthus 2

Cebus capucinus | White-faced Cebus_capucinus Primates 22 1.059311 1.059248 -1.03E-04 2.85E-05
capuchin monkey 2

Chlorocebus Vervet Chlorocebus_aethi | Primates 8 1.187136 1.148862 -8.03E-02 1.31E-02

acthiops ops_2

Erythrocebus Patas monkey Erythrocebus_patas | Primates 9 1.127974 1.092178 -5.21E-02 5.38E-03

patas

Gorilla beringei | Mountain gorilla Gorilla beringei s | Primates 41 1.052588 1.05255 -6.81E-05 1.11E-05

subsp. beringei

ubsp._beringei
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Table S2. The species-specific scales for the elasticity of 4; to changes in demographic processes and for the self-second derivatives of A; with

respect to demographic processes for the 16 mammal species studied.

SSDmin=self-second

SSDmax=self-second

Figure 3 Species common name E@:elastlcltv Em_mf:elastlclty derivative minimum derivative maximum
reference minimum value maximum value

value value
A Blue monkey 0 0.52 -1.25 1.27
B Columbian ground squirrel 0 0.23 -1.48 0.01
C Eastern chimpanzee 0 0.60 -4.39 2.59
D Human 0 0.18 -0.15 0.08
E Killer whale 0 0.55 -5.72 343
F Moose 0 0.55 -0.66 0.36
G Mountain gorilla 0 0.81 -1.46 0.28
H Northern muriqui 0 0.72 -1.17 0.35
I Olive baboon 0 0.54 -0.57 1.13
J Polar bear 0 0.26 -0.73 0.54
K Rhesus macaque 0 0.51 -0.54 0.71
L Root vole 0 0.86 -2.54 0.22
M Soay sheep 0 0.56 -0.22 0.40
N Tammar wallaby 0 0.55 -0.64 0.34
(0] Verreaux’s sifaka 0 0.60 -2.64 1.34
P White faced capuchin
- monkey 0 0.66 -2.66 1.21

34



