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Abstract (146/150 words) 59 

The demographic buffering hypothesis predicts that natural selection reduces the temporal 60 

fluctuations in demographic processes (survival, development, and reproduction) due to their 61 

negative impacts of temporal variation on population dynamics. However, evidencing 62 

buffering patterns at different hierarchical levels – between and within populations – and 63 

understanding how selection shapes those patterns, remains a challenge in Ecology and 64 

Evolution. Here, we introduce a framework that allows for the evidencing of demographic 65 

buffering between and within populations. The framework uses the sum of stochastic 66 

elasticities for between-populations comparisons along with first- and second-order effects of 67 

demographic process variability on fitness for within-population comparisons. We apply this 68 

framework to 43 populations of 37 mammal species to test the hypothesis that buffered 69 

species are under strong concave selection pressures. Using our framework, we show that 70 

demographically buffered species do not necessarily have strong concave selection pressures 71 

in their most impactful demographic processes.  72 

 73 
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Environmental stochasticity shapes organisms’ life histories (Bonsall & Klug 2011; Stearns 102 

1992; Tuljapurkar 1990, 2010). Nonetheless, how organisms will cope with the changing 103 

variation in environmental conditions (Bathiany et al. 2018; Boyce et al. 2006; Morris et al. 104 

2008) remains an intriguing ecological and evolutionary question (Sutherland et al. 2013). 105 

Evolutionary demography provides diverse explanations for how evolutionary processes 106 

shape demographic responses to environmental stochasticity (Charlesworth 1994; Healy et al. 107 

2019; Hilde et al. 2020; Pfister 1998; Tuljapurkar et al. 2009). The long-term stochastic 108 

population growth rate (λs) representing the geometric mean of population growth rates over 109 

time  (λt; Tuljapurkar 1982), forms the basis of the Demographic Buffering Hypothesis 110 

(Morris & Doak 2004; Pélabon et al. 2020).  111 

Increasing the geometric mean of λt over time corresponds to a rise in the long-term 112 

stochastic population growth rate. Conversely, higher variance in λt reduces λs (Morris & 113 

Doak 2004; Tuljapurkar 1982), impacting population persistence (Lefèvre et al. 2016). The 114 

demographic buffering hypothesis (Pfister 1998) suggests life histories are selected to 115 

minimize the negative impacts of environmental variation by constraining the temporal 116 

variance of key demographic processes (e.g., survival, development, reproduction) that have 117 

the highest sensitivity/elasticity to population growth rate, a fitness proxy (Gaillard & Yoccoz 118 

2003; Pfister 1998). Demographic buffering describes the selection-driven constraint on the 119 

temporal variance of these key demographic processes (Gascoigne et al. 2024a, b; Hilde et al. 120 

2020; Morris & Doak 2004; Pfister 1998). Here, we focus on the emerging patterns of 121 

demographic buffering in different animal life histories rather than on the demographic 122 

buffering hypothesis itself. 123 

An integrative approach to evidence demographic buffering is still missing. Indeed, 124 

identifying demographic buffering remains challenging (Doak et al. 2005; Morris & Doak 125 

2004) for several reasons, one of them being different interpretations of results from 126 
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correlational analyses, as in Pfister (1998) and Hilde et al. (2020). Some authors rank species' 158 

life histories on a continuum from buffered to labile using the correlation coefficient 159 

(Spearman’s correlation ρ) between the impact of demographic processes on the population 160 

growth rate and the temporal variance of said demographic processes (McDonald et al. 2017; 161 

Salguero-Gómez 2021). There, negative correlation coefficient values indicate buffering. 162 

Alternatively, the absence of statistical support for buffering may suggest a preference for 163 

demographic variance to track environmental conditions, a phenomenon supported by the 164 

Demographic Lability Hypothesis (Drake 2005; Hilde et al. 2020; Jäkäläniemi et al. 2013; 165 

Koons et al. 2009; Reed & Slade 2012). However, increased variability alone is not enough 166 

to constitute demographic lability; it must also result in significant changes in the mean value 167 

of the demographic process (Le Coeur et al. 2022). 168 

 Another obstacle to generalising a measure of demographic buffering across 169 

populations and species is the targeted hierarchical level of examination. Some studies focus 170 

on characteristics drawn from the entire population model (McDonald et al. 2017; Reed & 171 

Slade 2012). At this between-populations level (hereafter), a life history is considered 172 

demographically buffered if the governing demographic processes have low temporal 173 

variance (Le Coeur et al. 2022; Hilde et al. 2020; Morris & Doak 2004; Pfister 1998). 174 

However, to fully grasp how and why demographic buffering occurs, and how patterns might 175 

change in response to the environment, we must also consider characteristics within an 176 

individual population model (within-populations level hereafter). Within a population, one 177 

demographic process may be buffered against climatic variability while another may be labile 178 

(Barraquand & Yoccoz 2013; Jongejans et al. 2010; Koons et al. 2009). Furthermore, even if 179 

a given demographic process is primarily governing the population growth rate in one year, a 180 

different one might take over next year (Evers et al. 2021). Despite the relevance of within- 181 

and between-populations level processes, thus far studies have focused on evidencing 182 
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demographic buffering at the within- and between-population levels separately. To integrate 203 

these two levels of analysis, here we investigate demographic buffering signatures together. 204 

 To examine demographic buffering at the between-populations level, we use the 205 

summed effect of the variability of all demographic processes on the population growth rate. 206 

A weak summed effect means that the population growth rate is relatively unaffected by the 207 

variability in demographic processes (Haridas & Tuljapurkar 2005), and this lack of effect by 208 

demographic process variability is consistent with demographic buffering. As such, a 209 

summed effect of variability offers a good proxy to evidence demographic buffering 210 

(Gascoigne et al. 2024b; Haridas & Tuljapurkar 2005) and enables the classification of 211 

populations along a continuum. The within-populations level requires a separate approach. 212 

Thus, there we use the relative contribution of each demographic process and how variability 213 

in the governing demographic process(es) affects the population growth rate (e.g., Caswell 214 

1978, 1996, 2001; Ebert 1999; de Kroon et al. 1986). Importantly, by exploring the governing 215 

demographic processes, we also investigate how natural selection affects them (e.g., Caswell 216 

1996; Shyu & Caswell 2014). Understanding the interplay between demographic variability 217 

and natural selection thus not only elucidates population dynamics but also provides insight 218 

into the evolutionary pressures shaping the life-history strategies (Charlesworth 1994; 219 

Salguero-Gómez 2024; Sanghvi et al. 2024). 220 

A powerful approach to reveal the role of natural selection acting on the variability of 221 

demographic processes is through measuring a first and second order effect on population 222 

growth rate (Carslake et al. 2008). First-order effects of demographic processes on population 223 

growth rate, such as elasticities, show how variation in demographic processes affects 224 

population growth rate, and relies on the linear relation between demographic processes and 225 

the growth rate. A second-order effect, on the other hand, reveals the sensitivity of population 226 

growth rate to temporal autocorrelation in variable environments (Tuljapurkar 1990), and 227 
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identifies where demographic processes have a nonlinear effect on population growth rate. 251 

Combining both approaches into a single framework consolidates our understanding of 252 

fitness behaviour near local maxima and minima, among other advantages discussed below. 253 

This approach and has started to pave its way into Ecology (Kajin et al. 2023; Tuljapurkar et 254 

al. 2023). 255 

Here, we propose that an additional metric to examine demographic buffering: the 256 

second-order effect of demographic process variation on population growth rate. We show 257 

that each hierarchical level is best studied with a different method. Moreover, we hypothesise 258 

that buffered species, those where perturbing the variance of demographic processes has little 259 

impact on their fitness, are under strong concave selection pressures (i.e., the force that aims 260 

to diminish temporal variance of a trait, sensu Shyu & Caswell 2014) on the governing 261 

demographic processes. Indeed, the summed effect of demographic process variability on 262 

population growth rate and elasticities are related (Haridas & Tuljapurkar 2005). Concave 263 

selection pressures favour traits that contribute to reducing temporal variance, thereby 264 

enhancing population stability and resilience in the face of environmental volatility. We 265 

discuss the validity of our hypothesis and demonstrate the applicability and advantages of our 266 

framework by testing it with 43 populations of 37 mammal species. 267 
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Rodríguez-Caro et al. 2021; Wang et al. 2023) can also identify demographic buffering. 273 

MPMs and IPMs are structured, discrete-time demographic models (Caswell 2001; Ellner et 274 
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(Doak et al. 2021; Griffith 2017). We refer to demographic processes as MPM A entries aij 413 

(i.e., upper-level parameters sensu Zuidema & Franco 2001) and the vital rates composing the 414 

matrix elements (i.e., lower-level parameters, ditto). The conversion between matrix elements 415 

and vital rates is straightforward (Franco & Silvertown 2004).   416 

We first place species on a variance continuum. The variance continuum represents 417 

the summed effects of proportional increases in temporal variance across all demographic 418 

processes (aij) of the MPM A on the population growth rate λs, operating at the between-419 

populations level. It is based on partitioning the sum of all the stochastic elasticities ("#!!"" ) 420 

into two components: i) the sum of stochastic elasticities with respect to the variance ("#!!""
#
), 421 

which assesses how variability in aij affects λs, and ii) the sum of stochastic elasticities with 422 

respect to the arithmetic mean of demographic processes ("#!!""
$
), which evaluates the impact 423 

of a change in mean values of demographic processes on λs (Haridas & Tuljapurkar 2005).  424 

The equal perturbation of both "#!!"" components assumes that the CV of demographic 425 

processes remains constant (Haridas & Tuljapurkar 2005). Higher absolute value of "#!!""
#
 426 

indicates greater sensitivity of λs to demographic process variability, suggesting the absence 427 

of demographic buffering. Conversely, lower "#!!""
#
 values support the demographic buffering 428 

hypothesis, with λs being is less sensitive to variability (Haridas & Tuljapurkar 2005; 429 

Tuljapurkar et al. 2003) (Fig. 1A).  430 

Species or populations are positioned along the variance continuum based on the 431 

impact of variance on the stochastic population growth rate. Species highly sensitive to 432 

environmental variability are on the left (potentially unbuffered1), while species less sensitive 433 

 
1 Unconstrained variance does not necessarily imply demographic lability, defined as an 

increase in mean value of a demographic process in response to improved environmental 

conditions (Le Coeur et al. 2022). By examining stochastic elasticities, we can assess changes in 

the contribution of demographic process variance to λs, while mean values remain unchanged.  

Deleted: Throughout this manuscript, w434 

Deleted: both 435 

Formatted: Font: Italic

Deleted: matrix entries436 

Deleted: that underline437 

Deleted: , and note that their438 

Deleted: and described elsewhere 439 

Deleted: The framework operates on three steps.¶440 

Deleted: In the first step of our framework, we441 

Deleted: start by 442 

Deleted: calculatinge the impact of variation in demographic 443 
processes on the stochastic growth rate, λs, known as 444 

stochastic elasticities !!"#    (Figure 1A). This calculation 445 

separates the sum of all stochastic elasticities  into two 446 

components: one for assessing how temporal variance affects 447 

λs ( ), and the other for assessing the impact of mean 448 

values of demographic processes on λs, (449 

Deleted: A h450 

Deleted: the sum of stochastic elasticity with respect to 451 
variance (452 

Deleted: ),453 

Deleted: changes in454 

Deleted:  demographic process varianc455 

Deleted: e, 456 

Deleted: ting457 

Deleted: a 458 

Deleted: absolute value459 

Deleted: suggests 460 

Deleted: where 461 

Deleted: less 462 

Deleted: such perturbations463 

Deleted:  464 

Deleted: ¶465 
466 

Deleted: Stochastic elasticities (ES) are calculated through 467 
equal perturbations to mean and variances in demographic 468 
processes across . This equal perturbation is an important 469 
assumption as the impacts of means and variances in 470 
demographic processes are inferred under the assumption that 471 
the coefficient of variaton of said processes remains constant. 472 
Importantly, stochastic elasticities can be decomposed into 473 

contributions from means (#!$!"#
#
) and variances (!$!"#

$
) of 474 

demographic process. 475 

Deleted: This 476 



8 

 

are on the right (potentially buffered) end (Fig. 1A). We expect buffered species to exhibit 477 

concave selection signatures. Although the position on the continuum provides insight into 478 

how environmental variation affects λs, "#!!""
#
does not consider covariances between 479 

demographic processes and serial correlations, crucial for fully diagnosing buffering (Haridas 480 

& Tuljapurkar 2005). Thus, species’ position at the buffered end of the variance continuum is 481 

a necessary but not sufficient condition for evidence of demographic buffering.  To address 482 

this second criterion, we use second derivatives of population growth rate with respect to 483 

demographic processes to elucidate the impact of selection on variance (below). 484 

Next, we delve into within-population level by calculating the partial derivatives of λ1 485 

(obtained by averaging sequential MPMs across the study duration) concerning all matrix 486 

elements aij of the MPM A (Fig. 1B). This step reveals a first-order effect on fitness — how 487 

each demographic process influences λ1. We then evaluate nonlinear selection patterns using 488 

self-second derivatives of λ1 for each aij (Fig. 1C), revealing potential nonlinear selection 489 

pressures (Brodie et al. 1995). Failure to consider these evolutionary processes may lead to 490 

misinterpretation of patterns (e.g., Lawler et al. 2009). 491 

 First- and second-order effects on fitness show average selection pressures over time. 492 

Self-second derivatives of population growth rate with respect to demographic processes 493 
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The sign (>0, =0, <0) of the self-second derivatives determines the selection type. 558 

Negative values (concave selection, ∩-shaped) reduce temporal variance, providing evidence 559 

of buffering (Caswell 1996, 2001; Shyu & Caswell 2014). Positive values (convex selection, 560 

∪-shaped) indicate amplified variance, revealing a lack of selection constraints on 561 

demographic variance (Bruijning et al. 2020; Caswell 1996, 2001; Le Coeur et al. 2022; 562 

Koons et al. 2009; Shyu & Caswell 2014; Vinton et al. 2022).  563 
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established based on the reaction norms. Demographic processes where an increase in the 649 

mean value has a stronger positive impact on population growth rate than the detrimental 650 

effect of increased variance need to be identified. The latter condition is only met when the 651 

process-environment reaction norms are convex (Drake 2005, Koons et al. 2009, Morris et al. 652 

2008) – but see Barraquand & Yoccoz (2013) for an alternative result. Importantly, species 653 

may not be purely buffered or labile some processes may be buffered, others labile, and 654 

others insensitive to environmental variability (e.g., Doak et al. 2005). Deciphering these 655 

patterns is a primary research interest in the field. 656 

 657 

Demographic buffering in mammals: A case study 658 

Here, we examine the performance of our framework and test our hypothesis, that is that 659 

species at the buffered end of the variance continuum display highly negative self-second 660 

derivatives for the governing demographic processes. We use 43 MPMs from 37 mammal 661 

species (16 species at the within-populations level). Mammals are of special interest in the 662 

context of demographic buffering for two reasons: (1) mammalian life histories have been 663 

well studied (Beccari et al. 2024; Bielby et al. 2007; Gillespie 1977; Jones 2011; Stearns 664 

1983) and (2) some of their populations have already been assessed in terms of demographic 665 

buffering, particularly for primates (Campos et al. 2017; Morris et al. 2008, 2011; Reed & 666 

Slade 2012; Rotella et al. 2012). Together, the well-studied life histories and previous 667 

information about the occurrence of buffering in mammals allow us to make accurate 668 

predictions and validate the performance of our framework. 669 

We used MPMs (Caswell 2001) from 43 out of 139 studies with mammals available 670 

in the COMADRE Animal Matrix Database v.3.0.0 (Salguero-Gómez et al. 2016). These 43 671 

populations encompass 37 species from eight taxonomic orders. We carefully selected these 672 

MPMs in our analyses because their models contain values of demographic processes (&#$) 673 
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for three or more contiguous time periods, thus allowing us to obtain the stochastic elasticity 718 

of each &#$ . Although we are aware that not all possible temporal variation in demographic 719 

processes may have been expressed within this period, we assumed three or more transitions 720 

are enough to provide sufficient variation for population comparison (Compagnoni et al. 721 

2023). To mitigate bias in variance estimates, we randomly extracted three MPMs from the 722 

existing data for each species (Supplementary Material, Table S1), calculated the mean of 723 

these three MPMs, and repeated this process 50 times to obtain estimates of "#!!""
#
 and their 724 

corresponding standard errors. A detailed description of the analysed data and their original 725 

sources are detailed in Table S1. Finally, we included MPMs of Homo sapiens to cross-check 726 

our estimates of second-order derivatives, as it is the only mammalian species where these 727 

have been calculated (Caswell 1996). The data for H. sapiens were gathered from 26 modern 728 

populations (Keyfitz & Flieger 1990).  729 

At the within-populations level, we used a subset of 16 populations (including H. 730 

sapiens) whose MPMs were age-based. We specifically selected these populations because 731 

their life cycles can be summarised by two main demographic processes: survival and 732 

contribution to the recruitment of new individuals (Caswell 2010; Ebert 1999).  733 

To quantify the variance continuum and calculate "#!!""
#
 for between-populations level 734 

comparisons, we followed Tuljapurkar et al. (2003) and Haridas & Tuljapurkar (2005). Next, 735 

at the within-populations level, we calculated the deterministic elasticities to each 736 

demographic process using the popbio package (Stubben et al. 2020). The self-second 737 

derivatives were adapted from demogR (Jones 2007) following (Caswell 1996) and applied to 738 

the mean MPM of each study. All analyses were performed using R version 4.4.1 (R Core 739 

Team 2024). 740 

Results  741 
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We ranked 43 populations from the 37 identified mammal species into a variance continuum 807 

according to the cumulative impact of variation in demographic processes on ls (Fig. 2). Most 808 

of the analysed taxonomic orders were placed on the low or zero variance end of the variance 809 

continuum (Fig. 2), corroborating with demographically buffered populations. The smallest 810 

contributions of variation in demographic processes (note that "#!!""
#
 ranges from 0 to -1), 811 

suggesting buffered populations, were assigned to Primates: northern muriqui (Brachyteles 812 

hyphoxantus, "#!!""
#
 = -5.31 × 10-5 ± 2.09 × 10-5) (mean ± S.E.) (Fig. 2 silhouette a), mountain 813 

gorilla (Gorilla beringei, "#!!""
#
 = -1.28 × 10-5 ± 1.32 × 10-5) (Fig. 2 silhouette b), followed by 814 

the blue monkey (Cercopithecus mitis, "#!!""
#
 = -4.43 × 10-5 ± 1.18 × 10-5) (Fig. 2 silhouette 815 

c). The first non-primate species placed near the buffered end of the continuum was the 816 

Columbian ground squirrel (Urocitellus columbianus, Rodentia, "#!!""
#
 = -3.38 × 10-3 ± 6.96 × 817 

10-4) (Fig. 2 silhouette d). On the other opposite, the species with the highest contribution of 818 

variation in demographic processes –  placed at the high-variance end of the continuum –  819 

was the stoat (Mustela erminea, Carnivora, "#!!""
#
 = -0.310 ± 0.0162) (Fig. 2 silhouette e). All 820 

the 14 primate populations occupied the buffered side of the variance continuum, with the 821 

exception of the Patas monkey (Erythrocebus patas, Primates, "#!!""
#
 = -0.0521 ± 5.38 × 10-3) 822 

(Fig. 2 silhouette f). The snowshoe hare (Lepus americanus, Lagomorpha, "#!!""
#
 = -0.262 ± 823 

0.0233) (Fig. 2 silhouette g) and the Bush rat (Rattus fuscipes, Rodentia, "#!!""
#
 = -0.245 ± 824 

4.29 × 10-3) (Fig. 2 silhouette h) were positioned on the non-buffered end of the variance 825 

continuum. Additional information (including standard errors of the elasticity estimates) is 826 

provided in Table S1. A posteriori, we quantified the impact of phylogenetic relatedness on 827 

the estimates of the sum of stochastic elasticities (Fig. 2), and then for the correlation 828 

between those estimates and the number of MPMs available per species. For the former, we 829 

estimated Blomberg’s K, a measure of phylogenetic signal that ranges between 0 (weak 830 

Deleted: 40 …opulations from the 37 34 900 ... [20]

Deleted: using the step 1 of our framework …Fig. 2). 901 
Additional information (including standard deviations of the 902 
deviations of the elasticity estimates and number of matrices 903 
available) is provided in the supplementary material (Table 904 
S1). …ost of the analysed taxonomic orders were placed on 905 
the low-…or zero variance end of the variance continuum 906 
2), corroborating with demographifically…emographically 907 
buffered populations. The smallest contributions of variation 908 
in demographic processes (i.e., maximum value o, 909 ... [21]

Deleted: more 910 

Deleted: 0.09…× 10-54…± 2.090.12…× 10-54911 ... [22]
Deleted: standard ….E.error912 ... [23]
Deleted: deviation913 

Deleted: h914 

Deleted: 0.24…× 10-54…± 1.320.08…× 10-54915 ... [24]
Deleted: 0.63…× 10-54…± 1.180.06…× 10-54916 ... [25]

Deleted: low-variance917 

Deleted: -0.003…3.38 × 10-3 ± 6.96 -4.430.63…× 10-40.002918 ... [26]

Deleted: T919 

Deleted: -… placed at the high-variance end of the 920 
continuum –-921 ... [27]
Deleted: 5…± 0.01622922 ... [28]

Deleted: displayed potential evidence of buffering, 923 
occupiedying…the right-hand924 ... [29]
Deleted:  0.03925 

Deleted: 9…± 0.023316926 ... [30]

Deleted:  0.03927 

Deleted: appear …ere positioned on the high-variance928 ... [31]

Deleted: the Supplementary material (…able S1)… A 929 
posteriori, we tested…uantified for930 ... [32]
Deleted: strength…mpact of phylogenetic relatedness on the 931 
estimates of the sum of stochastic elasticities (Fig. 2), and 932 
then for the correlation between those estimates and the 933 
number of MPMs available per species. For the former, we 934 
estimated Blomberg’s K,   (…n…estimate 935 ... [33]
Deleted: [936 



13 

 

signal) to positive values 1 (strong) (Münkemüller et al. 2012). Blomberg’s K in our analyses 937 

was 0.23. The correlation between the number of available MPMs per study and the sum of 938 

stochastic elasticities (post jack-knifing) raised a weakly negative coefficient (-0.002), though 939 

significant (P = 0.017). 940 

We found little evidence in support of our hypothesis. Specifically, the demographic 941 

processes with the highest elasticity values failed to display strong negative self-second 942 

derivatives (Fig. 3). Particularly for the majority of primates, demographic processes with 943 

high elasticities had positive values for the self-second derivatives (indicated by yellow 944 

squares with white dots in Figure 3). Examples of primate species exhibiting high elasticities 945 

and positive values for their self-second derivatives include northern muriqui (Brachyteles 946 

hypoxanthus), mountain gorilla (Gorilla beringei), white-faced capuchin monkey (Cebus 947 

capucinus), rhesus monkey (Macaca mulatta), blue monkey (Cercopithecus mitis), 948 

Verreaux’s sifaka (Propithecus verreauxi) and olive baboon (Papio cynocephalus) (Fig. 3). 949 

This implies that the key demographic processes influencing λ1 do not show evidence of 950 

selective pressure for reducing their variability.  951 

The killer whale (Orcinus orca) showed similar lack of support for our hypothesis as 952 

primates. Indeed, O. orca was positioned at the buffered end of the variance continuum 953 

(Cetacea, "#!!""
#
 = -4.72 × 10-4 ± 1.53 × 10-4) (Fig. 2 silhouette not shown). However, the first- 954 

and second-order effects show that the governing three demographic processes in the killer 955 

whale life cycle (namely, matrix elements a2,2, a3,3, and a4,4) are not under selection pressures 956 

for reducing their temporal variance, but the opposite (yellow and green squares with white 957 

dots, Fig. 3).  958 

Only two species supported our hypothesis: humans and the Columbian ground 959 

squirrel (Urocitellus columbianus). In humans, demographic parameters representing survival 960 

from the first to second age class (matrix element a2,1) displayed high elasticities and negative 961 
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self-second derivatives (depicted as yellow squares with black dots in Fig. 3).  In U. 1000 

columbianus, survival from the first to the second age class (a2,1) too showed evidence of 1001 

selection reducing the variance of this demographic process. Accordingly, U. columbianus 1002 

was positioned near the buffered end of the variance continuum, providing consistent 1003 

evidence supporting our hypothesis by displaying first- and second-order effects indicative of 1004 

temporal variance reduction in the key demographic process. Conversely, the primary 1005 

governing demographic process for Soay sheep (Ovis aries) displayed convex selection 1006 

signatures. For O. aries (Fig. 2, silhouette i), remaining in the third age class (a3,3, Fig. 3) 1007 

governs the influence on λt and is under selection pressure to have its variance increased. 1008 

These characteristics suggest potential conditions for lability, despite the species being 1009 

positioned closer to the buffered end of the variance continuum. 1010 

The first- and second-order effects illustrate the importance of examining buffering 1011 

evidence at the within-populations level. These effects can identify the simultaneous 1012 

contributions of concave and convex selection on different demographic processes within a 1013 

single life cycle. In the polar bear (Ursus maritimus), the key demographic process (a4,4) is 1014 

under convex selection, as depicted by a yellow square with a white dot in Figure 3. 1015 

However, the demographic process with the second highest elasticity value (a5,4) is under 1016 

strong concave selection (depicted by a light green square with a black dot in Figure. 3). 1017 

By adding the second-order effect to the toolbox for demographic buffering, another 1018 

important inference was made possible. The high absolute values of self-second derivatives 1019 

(large dots, either black or white, Fig. 3) indicate where the sensitivity of λ1 to demographic 1020 

parameters is itself prone to environmental changes. For instance, if the value of a5,4 for U. 1021 

maritimus increased, the sensitivity of λt to a5,4 would decrease because the self-second 1022 

derivative of a5,4 is highly negative (depicted by the largest black dot in polar bear, Fig. 3 1023 

silhouette j). The opposite holds for the a4,4 demographic process, where an increase in the 1024 
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value of a4,4 would increase the sensitivity of λt to a4,4, because the self-second derivative of 1068 

a4,4 is highly positive (the largest white dot in the polar bear MPM). Thus, sensitivities (or 1069 

equally elasticities) of demographic processes with high absolute values for self-second 1070 

derivatives are dynamic and can easily change. 1071 

 1072 

Discussion 1073 

We report evidence of demographic buffering assessed at the between and within populations 1074 

level. We used stochastic elasticities alongside the first- and second- order perturbation 1075 

analysis and applied these analyses to mammal species to test our hypothesis. Here, we find 1076 

weak support for said hypothesis, since most populations placed at the buffered end of 1077 

variance continuum failed to display concave selection signatures.  1078 

Evidencing demographic buffering is not straightforward. Indeed, through the 1079 

analysis of stochastic population growth rate (λs) in our application of the framework to 43 1080 

populations of 37 mammal species, we identify the highest density of natural populations 1081 

near the buffered end of the variance continuum.  However, we show that the same species 1082 

then fail to exhibit signs of concave (∩-shaped) selection on key demographic parameters, 1083 

opposed to our hypothesis. Such results suggest discordance between two features of 1084 

demographic buffering, namely: 1) the stochastic population growth rate having a low 1085 

sensitivity to temporal variability in demographic processes, and 2) demographic processes 1086 

having variability constrained by selection.  1087 

The lack of correlation between non-linear selection patterns (concave/convex) and 1088 

species positioning on the variance continuum for the studied mammal species may have 1089 

several explanations. Firstly, non-linear selection on demographic process variability is 1090 

dynamic (Kajin et al. 2023). Within a life cycle, even minor changes in key demographic 1091 

processes can trigger a domino effect, affecting not only the process itself but also the 1092 
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sensitivity of λ1 to changes in said process (Stearns 1992). Consequently, correlations 1125 

between demographic processes (negative correlations known as trade-offs) are influenced by 1126 

minor alterations in the governing demographic processes (Doak et al. 2005). Therefore, the 1127 

observed self-second derivative of the population growth rate represents a momentum that 1128 

can be influenced by small changes in any demographic process within the life cycle. 1129 

Because of these characteristics, second-order derivatives reveal “fine scale” fitness 1130 

behaviour compared to sums of stochastic elasticities. Evolutionary demography still requires 1131 

a tool to connect second-order fitness effects with stochastic elasticities in a biologically 1132 

interpretable manner (but see Tuljapurkar et al. 2023).  1133 

When placing our study species along a variance continuum, primates tend to be 1134 

located on the buffered end. However, most primates displayed convex – instead of the 1135 

expected concave – selection on adult survival.  Similar results, where the key demographic 1136 

process failed to display constrained temporal variability, have been reported for long-lived 1137 

seabirds (Doherty et al. 2004). One explanation for the unexpected convex selection on adult 1138 

survival involves trade-offs, as suggested by (Doak et al. 2005). When two demographic 1139 

parameters are negatively correlated, the variance of population growth rate can be increased 1140 

or decreased (Compagnoni et al. 2016; Evans & Holsinger 2012). 1141 

Correlations among demographic processes (positive and negative) inherently 1142 

influence the biological limits of variance (Haridas & Tuljapurkar 2005). This is because the 1143 

magnitude of variation in a particular demographic process is constrained by the variation of 1144 

other demographic processes. Not surprisingly, correlations among demographic processes 1145 

have been shown to be strongly subjected to ecological factors (Fay et al. 2022). Therefore, 1146 

future studies may benefit from deeper insights using cross-second derivatives (Caswell 1147 

1996, 2001) to investigate correlations among demographic processes.  1148 Deleted: finding confirms that placing the species near the 1149 
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Biological variance estimates are inevitably subjected to several sources of bias 1154 

(Simmonds & Jones 2024). To minimise bias, we randomly sampled the available matrices 1155 

before obtaining the estimates. Despite the significant correlation between "#!!""
#
 and the 1156 

number of available matrices per species, the relative positioning of species remains 1157 

meaningful for between-population level comparisons, as the correlation is very weak (-1158 

0.002). Still, researchers carrying out macroecological comparisons of demographic buffering 1159 

might want to be even more restringent than we have been here with their datasets, as these 1160 

grow longer with time (Compagnoni et al. 2021; Salguero-Gómez et al. 2021).  1161 

Regarding phylogenetic effects, our tests revealed a mild signal, but we note that 1162 

future work regressing "#!!""
#
 values against potential independent variables (e.g., climate 1163 

values) may want to correct for this phylogenetic dependence. By having carefully chosen 1164 

studies from a database that contains >400 species and retained only those that passed 1165 

through a set of selection criteria (Che-Castaldo et al. 2020; Gascoigne et al. 2023b; Kendall 1166 

et al. 2019; Römer et al. 2024; Simmonds & Jones 2024), we mitigate those biases a priori. 1167 

Furthermore, we are using an elasticity-based approach, meaning we are comparing 1168 

proportional variances. At present, the available methods still do not account for constraints 1169 

in variance nor performing a perturbation approach disproportionately.  1170 

The analyses at both between- and within-populations levels are fundamentally 1171 

interconnected. This connection is grounded on the fact that large summed elasticities with 1172 

respect to variance are intrinsically linked to high elasticity values, as demonstrated in 1173 

equation 6 in (Haridas & Tuljapurkar 2005). This finding robustly endorses the perspective 1174 

that species' positions along the variance continuum should be interpreted with consideration 1175 

of first and second-order effects, and additionally, in the context of selection pressures acting 1176 

on the variability of demographic processes, as revealed by a second order effect. 1177 
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Combining first- and second-order analyses is crucial for understanding the factors 1178 

shaping demographic buffering patterns. The second-order effect reveals that the role of 1179 

natural selection in shaping temporal variation in demographic processes is more complex 1180 

than initially thought. Indeed, demographic processes within our study populations often face 1181 

a mix of convex and concave selection. This mix of selection patterns was suggested by Doak 1182 

et al. (2005), who noted that dramatic changes in population growth rate sensitivities are 1183 

influenced by correlations among demographic processes. Here, only two of the 16 mammal 1184 

species revealed concave selection on the key demographic processes: Columbian ground 1185 

squirrel (Urocitellus columbianus), and humans, (Homo sapiens). These two species were 1186 

placed near the buffered end of the variance continuum, supporting our hypothesis. Evidence 1187 

of buffering has been reported across 22 ungulate species (Gaillard & Yoccoz 2003). 1188 

However, in the one ungulate we examined, the moose (Alces alces), we found only partial 1189 

support for our hypothesis, as it is near the buffered end of the variance continuum but lacks 1190 

concave selection pressures.  1191 

Our overall findings reveal varying levels of support for the notion that adult survival 1192 

in long-lived species tends to be buffered. Indeed, Gaillard et al. (1998) found that adult 1193 

female survival varied considerably less than juvenile survival in large herbivores. This 1194 

finding was also supported by further studies in ungulates (Gaillard & Yoccoz 2003), turtles 1195 

(Heppell 1998), vertebrates and plants (Pfister 1998), and more recently across nine species 1196 

of plants (McDonald et al. 2017). However, an alternative result was also reported by 1197 

Gaillard and Yoccoz (2003) for small mammals, where variability in adult survival was 1198 

unexpectedly high, even though the studied small mammals were annual, and as such 1199 

comparable to large mammal model. Seasonality, frequency and method of sampling all 1200 

influence survival estimates and their estimated variability, thus, when comparing multiples 1201 
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species (out of 34 in step 1). Step 3 of our framework reveals 1206 
that the role of natural selection shaping temporal variation in 1207 
demographic processes is more complex than expected. 1208 
Indeed, demographic processes within our study populations 1209 
are often under a mix of convex and concave selection. This 1210 
mix of selection patterns was already suggested by Doak et 1211 
al. (2005). 1212 

Deleted: out 1213 

Deleted: acting 1214 

Deleted: (Columbian ground squirrel [Urocitellus 1215 
columbianus], and humans, [Homo sapiens sapiens])1216 

Deleted: also 1217 

Deleted: therefore 1218 

Deleted: meeting all the necessary conditions to diagnose 1219 
buffering1220 

Deleted: However, finding 12.5% (two out of 16) species that 1221 
meet the criteria for demographic buffering is not in 1222 
concordance with previous studies. 1223 

Deleted: I1224 

Deleted: find 1225 

Deleted: buffering in adult survival1226 

Deleted: since this species is placed1227 

Deleted: in step 1 1228 

Deleted: does not show1229 

Deleted:  on adult survival in step 2/3, as would be necessary 1230 
to confirm the occurrence of buffering1231 

Deleted: It is worth noting that a varying number of matrices 1232 
per species were employed, ranging from 1 to 21, with an 1233 
average of 8.1 matrices per species (as shown in Table S1). 1234 
Naturally, having a greater number of matrices is preferred in 1235 
such analyses. Furthermore, while the size of matrices (matrix 1236 
dimensions) does not directly bias the results of our 1237 
framework in any way – since steps 2 and 3 are shown for all 1238 
the demographic processes independent of matrix dimension 1239 
– potential implications of varying matrix dimensions should 1240 
be further investigated in the future. ¶1241 
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species/studies, all of the latter characteristics should be taken into account when interpreting 1242 

the results. 1243 

Examining the drivers of demographic buffering has become an important piece of the 1244 

ecological and evolutionary puzzle of demography. As such, understanding buffering can 1245 

help us better predict population responses to environmental variability, climate change, and 1246 

direct anthropogenic disturbances (Boyce et al. 2006; Gascoigne et al. 2024a; McDonald et 1247 

al. 2017; Pfister 1998; Vázquez et al. 2017). By setting demographic buffering into a broader 1248 

and integrated framework, we hope to enhance comprehension and prediction of the 1249 

implications of heightened environmental stochasticity on the evolution of life history traits. 1250 

This understanding is crucial in mitigating the risk of extinction for the most vulnerable 1251 

species. 1252 
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Similar results, where the key demographic process failed to 1270 
display constrained temporal variability, have been reported 1271 
for long-lived seabirds . One explanation for the unexpected 1272 
convex selection on adult survival involves trade-offs, as 1273 
suggested by . When two demographic parameters are 1274 
negatively correlated, the variance of population growth rate 1275 

(ë) can be increased or decreased . The well-established trade-1276 
off between survival and fecundity  might explain the 1277 
observed deviation of our results. Because variation in 1278 
primate recruitment is already constrained by physiological 1279 
limitations , when adult survival and recruitment are engaged 1280 
in a trade-off, this trade-off might lead to our unexpected 1281 
result. Correlations among demographic processes (positive 1282 
and negative) inherently influence the biological limits of 1283 
variance (Haridas & Tuljapurkar, 2005). This is because the 1284 
magnitude of variation in a particular demographic process is 1285 
constrained by (the variation of) other demographic processes 1286 
that exert an influence on it. Not surprisingly, correlations 1287 
among demographic processes have been shown to be 1288 
strongly subjected to ecological factors . HereTherefore, 1289 
future studies may benefit from deeper insights via using 1290 
cross-second derivatives  to investigate correlations among 1291 
demographic processes. ¶1292 

Deleted: quantifying 1293 

Deleted: In the Anthropocene, identifying and quantifying 1294 
mechanisms of species responses to stochastic environments 1295 
holds crucial importance. This importance is particularly 1296 
tangible in the context of the unprecedented environmental 1297 
changes and uncertainties that impact the dynamics and 1298 
persistence of natural populations . Correlational 1299 
demographic analysis, whereby the importance of 1300 
demographic processes and their temporal variability is 1301 
examined , has attempted to identify how species may buffer 1302 
against the negative effects of environmental stochasticity. 1303 
However, these widely used approaches have important 1304 
limitations (see Introduction and Hilde et al. 2020). One 1305 
significant limitation is the issue of measurement scale 1306 
concerning demographic processes . Demographic processes, 1307 
such as birth rates, death rates, immigration, and emigration, 1308 
operate at various temporal and spatial scales. The choice of 1309 
scale at which these processes are measured can impact the 1310 
outcomes of correlational demographic analysis . Our novel 1311 
framework overcomes said limitations by providing a 1312 
rigorous approach to quantify demographic buffering (. ¶1313 
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supporting the results can be accessed here: 1318 

https://github.com/SamuelGascoigne/Demographic_buffering_unified_framework. 1319 
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Figure legends 1553 

 1554 

Figure 1. A) The variance continuum for 37 hypothetical species based on the summed 1555 

stochastic elasticities ("#!!""
#
) at the between populations hierarchical level. The closer the 1556 

"#!!""
#
 is to zero, the weaker the impact of variation in demographic processes on the 1557 

stochastic population growth rate, λs. The variance continuum ranges from potentially 1558 

buffered (right-hand side) to less buffered (left-hand side) species/populations. The yellow-1559 

dotted species/populations can be classified as having potentially buffered life cycles. The 1560 

left-hand side of the graph represents species/populations where variability in demographic 1561 

processes results in strong impact on λs (blue dots). Thus, the blue-dotted species/populations 1562 

can be classified as having potentially unbuffered life cycles. The vertical axis delineates the 1563 

values of the probability density function, indicating the number of species/populations at 1564 

each value of "#!!""
#
. The placement of data points (species/populations) along the horizontal 1565 

axis corresponds to their calculated values of "#!!""
#
 and is arranged linearly, while the 1566 

placement  along the y-axis is random for improved visual comprehension. B) First-order 1567 

effects or linear selection pressures for individual species/populations at within-species level 1568 

(see text). Shown are the elasticities of the deterministic population growth rate (λ1) for a 1569 

hypothetical population of wolves and revealing the governing demographic process(es) in 1570 

the life cycle (yellow cells: high elasticity, blue cells: low elasticity). C) Combined results for 1571 

first (yellow and blue cells) and second order effects (black dots), where the latter reveals the 1572 

nonlinear selection pressures at the within-species level.  1573 
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c) Cercopithecus mitis, d) Urocitellus columbianus, e) Mustela erminea, f) Erythrocebus 1649 

patas, g) Lepus americanus, h) Rattus fuscipes, i) Ovis aries, j) Homo sapiens, k) Macropus 1650 

eugenii, and l) Felis catus. The vertical axis delineates the values of the probability density 1651 

function, indicating the number of species/populations at each value of "#!!""
#
. The placement 1652 

of data points (species/populations) along the horizontal axis corresponds to their calculated 1653 

values of "#!!""
#
 and is arranged linearly, while the placement along the y-axis is random for 1654 

improved visual comprehension. 1655 

 1656 

Figure 3: First and second order effects on population growth rate, λ1 (corresponding to 1657 

elasticities and self-second derivatives of population growth rate, respectively) for 16 1658 

mammal species. The 16 plots represent populations where the MPMs built by ages were 1659 

available in the COMADRE Animal Matrix Database. The yellow-blue colour scale 1660 

represents elasticity values for each of the demographic processes in the MPM, where yellow 1661 

cells represent high and blue cells low elasticity of population growth rate to changes in 1662 

demographic processes. No colour means elasticity=0. The black dots represent negative self-1663 

second derivatives of λ1 - corresponding to concave selection - and the white dots represent 1664 

positive self-second derivatives of λ1 - ditto convex selection. The dot sizes are scaled by the 1665 

absolute value of self-second derivatives, where the smaller the dot, the closer a self-second 1666 

derivative is to 0, indicating weak or no nonlinearity. Thus, large dots indicate strong 1667 

nonlinear selection forces, either concave (black) or convex (white). Since the derivatives of 1668 

population growth rate are confounded by eigen-structure (Kroon et al. 2000), the scaling of 1669 

the elasticity values and second-derivative values is species specific - i.e., each plot has its 1670 

own scale. Species-specific scales can be found in Supplementary material (Table S2). 1671 
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Supplementary material – Data available in COMADRE Version 3.0.0 and results from Step 1 of the framework 1715 

 1716 

Table S1. The metadata used and the respective results presented in the main text. The first four columns represent the information from where 1717 

Matrix Populations Models (MPMs) were extract precisely as presented in COMADRE 3.0.0.  1718 

 1719 

Species Common name Species 
(COMADRE) 

Order # matrices '1 '% "!&!"'
#

 "!&!"'
#

(SE) 

Homo sapiens 
sapiens 

Human Homo_sapiens_sub
sp._sapiens 

Primates 26 1.063707 1.061537 -2.24E-03 3.15E-04 

Alces alces Moose Alces_alces Artiodactyla 14 1.205368 1.205161 -6.69E-04 8.42E-05 

Antechinus 
agilis 

Agile antechinus Antechinus_agilis Dasyuromorphia 3 0.931076 0.885919 -1.11E-01 1.62E-03 

Bos primigenius Cattle Bos_primigenius Artiodactyla 8 1.002505 1.000493 -2.83E-03 2.96E-04 

Brachyteles 
hypoxanthus 

Northern muriqui Brachyteles_hypox
anthus 

Primates 25 1.05122 1.051273 -5.31E-05 2.09E-05 

Callospermophil
us lateralis 

Golden-mantled 
ground squirrel 

Callospermophilus
_lateralis 

Rodentia 18 2.052345 1.970253 -6.68E-02 8.72E-03 

Cebus capucinus White faced 
capuchin monkey 

Cebus_capucinus Primates 22 1.020887 1.020868 -2.04E-04 4.75E-05 

Cercopithecus 
mitis 

Blue monkey Cercopithecus_miti
s 

Primates 28 1.036082 1.036075 -4.43E-05 1.18E-05 

Deleted: in step 1 of our framework 1720 

Deleted: 21721 

Deleted: 11722 

Deleted: Column titles differ from the database as 1723 
“SpeciesAuthorComadre” is equivalent to “SpeciesAuthor” 1724 
and “SpeciesName” is equivalent to “SpeciesAccepted” in 1725 
COMADRE 3.0.0.  The remaining columns present the 1726 
results of step 1, where we present the raw values o a, their 1727 
respective standard deviation, the stochastic population 1728 
growth rate λs, and the number of available matrices (# 1729 
matrices). 1730 
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Cervus 
canadensis 
subsp. nelsoni 

Rocky Mountain elk Cervus_canadensis
_subsp._nelsoni 

Artiodactyla 10 1.107412 1.099838 -8.55E-03 1.09E-03 

Eumetopias 
jubatus 

Northern sea lion; 
Steller sea lion 

Eumetopias_jubatu
s 

Carnivora 4 0.904383 0.902155 -4.52E-03 2.44E-04 

Felis catus Feral cat Felis_catus Carnivora 3 1.948471 1.8259 -1.34E-01 1.89E-03 

Gorilla beringei Mountain gorilla Gorilla_beringei Primates 41 1.026827 1.02682 -1.28E-05 1.32E-05 

Hippocamelus 
bisulcus 

Huemul deer Hippocamelus_bis
ulcus 

Artiodactyla 3 0.996197 0.995462 -1.80E-03 1.09E-04 

Leopardus 
pardalis 

Ocelot Leopardus_pardalis Carnivora 4 1.086146 1.086122 -2.94E-04 3.89E-05 

Lepus 
americanus 

Snowshoe hare Lepus_americanus Lagomorpha 5 0.811904 0.707678 -2.62E-01 2.33E-02 

Lycaon pictus African wild dog Lycaon_pictus Carnivora 3 1.500429 1.430517 -9.70E-02 9.91E-04 

Macaca mulatta Rhesus macaque Macaca_mulatta_3 Primates 24 1.127496 1.12735 -3.84E-04 6.83E-05 

Macropus 
eugenii 

Tammar wallaby Macropus_eugenii Diprotodontia 15 0.981097 0.970794 -1.43E-02 1.62E-03 

Marmota 
flaviventris 

Yellow-bellied 
marmot 

Marmota_flavivent
ris_2 

Rodentia 8 0.89031 0.886098 -8.80E-03 6.98E-04 

Marmota 
flaviventris 

Yellow-bellied 
marmot 

Marmota_flavivent
ris_3 

Rodentia 8 0.920541 0.916392 -7.00E-03 7.04E-04 
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Microtus 
oeconomus 

Root vole Microtus_oeconom
us 

Rodentia 28 1.027531 1.027095 -5.60E-04 1.06E-04 

Mustela erminea Stoat Mustela_erminea Carnivora 4 1.258462 1.074391 -3.10E-01 1.62E-02 

Orcinus orca Killer whale Orcinus_orca_2 Cetacea 50 0.998658 0.998351 -4.72E-04 1.53E-04 

Ovis aries Soay sheep Ovis_aries_2 Artiodactyla 6 1.09877 1.080656 -3.45E-02 2.96E-03 

Pan troglodytes 
subsp. 
schweinfurthii 

Eastern chimpanzee Pan_troglodytes_su
bsp._schweinfurthii 

Primates 45 0.982286 0.982191 -1.94E-04 5.06E-05 

Papio 
cynocephalus 

Olive baboon Papio_cynocephalu
s 

Primates 37 1.053872 1.053789 -2.41E-04 6.97E-05 

Peromyscus 
maniculatus 

Deer mouse Peromyscus_manic
ulatus_2 

Rodentia 4 1.10686 1.101117 -9.41E-03 6.88E-04 

Phascolarctos 
cinereus 

Koala Phascolarctos_cine
reus_2 

Diprotodontia 4 1.064011 1.062744 -2.53E-03 2.16E-04 

Phocarctos 
hookeri 

New Zealand sea 
lion 

Phocarctos_hooker
i 

Carnivora 16 1.023016 1.020083 -3.56E-03 4.15E-04 

Propithecus 
verreauxi 

Verreaux's sifaka Propithecus_verrea
uxi 

Primates 24 0.985592 0.985399 -3.06E-04 6.29E-05 

Rattus fuscipes Bush rat Rattus_fuscipes Rodentia 3 1.304662 1.188931 -2.45E-01 4.29E-03 

Urocitellus 
armatus 

Uinta ground 
squirrel 

Spermophilus_arm
atus 

Rodentia 6 1.125011 1.113416 -1.73E-02 1.68E-03 
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Urocitellus 
armatus 

Uinta ground 
squirrel 

Spermophilus_arm
atus_2 

Rodentia 6 1.094693 1.084304 -1.47E-02 1.56E-03 

Urocitellus 
columbianus 

Columbian ground 
squirrel 

Spermophilus_colu
mbianus 

Rodentia 6 1.008949 0.984575 -3.80E-02 3.26E-03 

Urocitellus 
columbianus 

Columbian ground 
squirrel 

Spermophilus_colu
mbianus_3 

Rodentia 6 1.200353 1.197473 -3.38E-03 6.96E-04 

Ursus 
americanus 
subsp. floridanus 

Florida black bear Ursus_americanus_
subsp._floridanus 

Carnivora 4 1.01989 1.018094 -3.68E-03 3.97E-04 

Ursus arctos 
subsp. horribilis 

Grizzly bear Ursus_arctos_subs
p._horribilis_5 

Carnivora 7 1.025712 1.024785 -1.38E-03 1.26E-04 

Ursus maritimus Polar bear Ursus_maritimus_2 Carnivora 5 0.940646 0.931697 -1.91E-02 9.23E-04 

Brachyteles 
hypoxanthus 

Northern muriqui Brachyteles_hypox
anthus_2 

Primates 25 1.110953 1.110983 1.22E-05 5.05E-06 

Cebus capucinus White-faced 
capuchin monkey 

Cebus_capucinus_
2 

Primates 22 1.059311 1.059248 -1.03E-04 2.85E-05 

Chlorocebus 
aethiops 

Vervet Chlorocebus_aethi
ops_2 

Primates 8 1.187136 1.148862 -8.03E-02 1.31E-02 

Erythrocebus 
patas 

Patas monkey Erythrocebus_patas Primates 9 1.127974 1.092178 -5.21E-02 5.38E-03 

Gorilla beringei 
subsp. beringei 

Mountain gorilla Gorilla_beringei_s
ubsp._beringei 

Primates 41 1.052588 1.05255 -6.81E-05 1.11E-05 

1731 
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Table S2. The species-specific scales for the elasticity of l1 to changes in demographic processes and for the self-second derivatives of l1 with 1732 

respect to demographic processes for the 16 mammal species studied. 1733 

 1734 

Figure 3 

reference 
Species common name 

Emin=elasticity 

minimum value 

Emax=elasticity 

maximum value 

SSDmin=self-second 

derivative minimum 

value 

SSDmax=self-second 

derivative maximum 

value 

A Blue monkey 0 0.52 -1.25 1.27 

B Columbian ground squirrel 0 0.23 -1.48 0.01 

C Eastern chimpanzee 0 0.60 -4.39 2.59 

D Human 0 0.18 -0.15 0.08 

E Killer whale 0 0.55 -5.72 3.43 

F  Moose 0 0.55 -0.66 0.36 

G Mountain gorilla 0 0.81 -1.46 0.28 

H Northern muriqui 0 0.72 -1.17 0.35 

I Olive baboon 0 0.54 -0.57 1.13 

J Polar bear 0 0.26 -0.73 0.54 

K Rhesus macaque 0 0.51 -0.54 0.71 

L Root vole 0 0.86 -2.54 0.22 

M Soay sheep 0 0.56 -0.22 0.40 

N Tammar wallaby 0 0.55 -0.64 0.34 

O Verreaux’s sifaka 0 0.60 -2.64 1.34 

P 
White faced capuchin 

monkey 0 0.66 -2.66 1.21 
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