References
Barraquand, F. & Yoccoz, N.G. (2013). When can environmental variability benefit population growth? Counterintuitive effects of nonlinearities in vital rates. Theor Popul Biol , 89, 1–11.
Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T.M. (2018). Climate models predict increasing temperature variability in poor countries.Sci Adv , 4.
Beccari, E., Capdevila, P., Salguero-Gómez, R. & Carmona, C.P. (2024). Worldwide diversity in mammalian life histories: Environmental realms and evolutionary adaptations. Ecol Lett , 27.
Bielby, J., Mace, G.M., Bininda‐Emonds, O.R.P., Cardillo, M., Gittleman, J.L., Jones, K.E., et al. (2007). The Fast‐Slow Continuum in Mammalian Life History: An Empirical Reevaluation. Am Nat , 169, 748–757.
Bjørkvoll, E., Lee, A.M., Grøtan, V., Saether, B.-E., Stien, A., Engen, S., et al. (2016). Demographic buffering of life histories? Implications of the choice of measurement scale. Ecology , 97, 40–47.
Bonsall, M.B. & Klug, H. (2011). The evolution of parental care in stochastic environments. J Evol Biol , 24, 645–655.
Boyce, M., Haridas, C., Lee, C. & The NCEAS Stochastic Demography Working Group. (2006). Demography in an increasingly variable world.Trends Ecol Evol , 21, 141–148.
Campos, F.A., Morris, W.F., Alberts, S.C., Altmann, J., Brockman, D.K., Cords, M., et al. (2017). Does climate variability influence the demography of wild primates? Evidence from long-term life-history data in seven species. Glob Chang Biol , 23, 4907–4921.
Carslake, D., Townley, S. & Hodgson, D.J. (2008). Nonlinearity in eigenvalue-perturbation curves of simulated population projection matrices. Theor Popul Biol , 73, 498–505.
Caswell, H. (1978). A general formula for the sensitivity of population growth rate to changes in life history parameters. Theor Popul Biol , 14, 215–230.
Caswell, H. (1996). Second Derivatives of Population Growth Rate: Calculation and Applications. Ecology , 77, 870–879.
Caswell, H. (2001). Matrix Population Models: Construction, Analysis, and Interpretation . Sinauer Associates Inc. Publishers, Sunderland, Massachusetts, USA.
Charlesworth, B. (1994). Evolution in age-structured populations . second edi. Cambridge University Press.
Che-Castaldo, J., Jones, O.R., Kendall, B.E., Burns, J.H., Childs, D.Z., Ezard, T.H.G., et al. (2020). Comments to “Persistent problems in the construction of matrix population models.” Ecol Modell , 416.
Le Coeur, C., Yoccoz, N.G., Salguero‐Gómez, R. & Vindenes, Y. (2022). Life history adaptations to fluctuating environments: Combined effects of demographic buffering and lability. Ecol Lett , 25, 2107–2119.
Compagnoni, A., Bibian, A.J., Ochocki, B.M., Rogers, H.S., Schultz, E.L., Sneck, M.E., et al. (2016). The effect of demographic correlations on the stochastic population dynamics of perennial plants.Ecol Monogr , 86, 480–494.
Compagnoni, A., Evers, S. & Knight, T. (2023). Spatial replication can best advance our understanding of population responses to climate.bioRxiv , https://doi.org/10.1101/2022.06.24.497542.
Compagnoni, A., Levin, S., Childs, D.Z., Harpole, S., Paniw, M., Römer, G., et al. (2021). Herbaceous perennial plants with short generation time have stronger responses to climate anomalies than those with longer generation time. Nat Commun , 12, 1824.
Doak, D.F., Morris, W.F., Pfister, C., Kendall, B.E. & Bruna, E.M. (2005). Correctly Estimating How Environmental Stochasticity Influences Fitness and Population Growth. Am Nat , 166, E14–E21.
Doak, D.F., Waddle, E., Langendorf, R.E., Louthan, A.M., Isabelle Chardon, N., Dibner, R.R., et al. (2021). A critical comparison of integral projection and matrix projection models for demographic analysis. Ecol Monogr , 91, e01447.
Doherty, P.F., Schreiber, E.A., Nichols, J.D., Hines, J.E., Link, W.A., Schenk, G.A., et al. (2004). Testing life history predictions in a long-lived seabird: A population matrix approach with improved parameter estimation. Oikos , 105, 606–618.
Drake, J.M. (2005). Population effects of increased climate variation.Proceedings of the Royal Society B: Biological Sciences , 272, 1823–1827.
Easterling, M.R., Ellner, S.P. & Dixon, P.M. (2000). Size-Specific Sensitivity: Applying a New Structured Population Model. Ecology , 81, 694–708.
Ebert, T. (1999). Plant and animal populations: Methods in demography . Academis Press, San Diego, CA, USA.
Ellner, S.P., Childs, D.Z. & Rees, M. (2016). Data-driven Modelling of Structured Populations. A practical guide to the Integral Projection Model . Lecture Notes on Mathematical Modelling in the Life Sciences. Springer International Publishing, Cham.
Evans, M.E.K. & Holsinger, K.E. (2012). Estimating covariation between vital rates : A simulation study of connected vs . separate generalized linear mixed models (GLMMs). Theor Popul Biol , 82, 299–306.
Evers, S.M., Knight, T.M., Inouye, D.W., Miller, T.E.X., Salguero‐Gómez, R., Iler, A.M., et al. (2021). Lagged and dormant season climate better predict plant vital rates than climate during the growing season.Glob Chang Biol , 27, 1927–1941.
Fay, R., Hamel, S., van de Pol, M., Gaillard, J.M., Yoccoz, N.G., Acker, P., et al. (2022). Temporal correlations among demographic parameters are ubiquitous but highly variable across species. Ecol Lett , 25, 1640–1654.
Franco, M. & Silvertown, J. (2004). A comparative demography of plants based upon elasticities of vital rates. Ecology , 85, 531–538.
Gaillard, J.M., Festa-Bianchet, M. & Yoccoz, N.G. (1998). Population dynamics of large herbivores: Variable recruitment with constant adult survival. Trends Ecol Evol , 13, 58–63.
Gaillard, J.-M. & Yoccoz, N. (2003). Temporal Variation in Survival of Mammals: a Case of Environmental Canalization? Ecology , 84, 3294–3306.
Gascoigne, S.J.L., Kajin, M. & Salguero-Gómez, R. (2024a). Criteria for buffering in ecological modeling. Trends Ecol Evol , 39, 116–118.
Gascoigne, S.J.L., Kajin, M., Sepil, I. & Salguero-Gómez, R. (2024b). Testing for efficacy in four measures of demographic buffering.EcoEvoRxiv , 0–2.
Gascoigne, S.J.L., Kajin, M., Tuljapurkar, S.D., Silva Santos, G., Compagnoni, A., Steiner, U.K., et al. (2023a). Structured demographic buffering: A framework to explore the environment drivers and demographic mechanisms underlying demographic buffering.bioRxiv .
Gascoigne, S.J.L., Rolph, S., Sankey, D., Nidadavolu, N., Stell Pičman, A.S., Hernández, C.M., et al. (2023b). A standard protocol to report discrete stage-structured demographic information. Methods Ecol Evol , 14, 2065–2083.
Gillespie, J.H. (1977). Natural Selection for Variances in Offspring Numbers: A New Evolutionary Principle. Am Nat , 111, 1010–1014.
Grant, A., Benton, T.G. & Mar, N. (2007). Elasticity Analysis for Density-Dependent Populations in Stochastic Environments, 81, 680–693.
Griffith, A.B. (2017). Perturbation approaches for integral projection models. Oikos , 126, 1675–1686.
Haridas, C. V. & Tuljapurkar, S. (2005). Elasticities in Variable Environments: Properties and Implications. Am Nat , 166, 481–495.
Haridas, C. V & Tuljapurkar, S. (2007). Time, transients and elasticity. Ecol Lett , 10, 1143–53.
Haridas, C. V., Tuljapurkar, S. & Coulson, T. (2009). Estimating stochastic elasticities directly from longitudinal data. Ecol Lett , 12, 806–812.
Healy, K., Ezard, T.H.G., Jones, O.R., Salguero-Gómez, R. & Buckley, Y.M. (2019). Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat Ecol Evol , 3, 1217–1224.
Heppell, S.S. (1998). Application of Life-History Theory and Population Model Analysis to Turtle Conservation. Copeia , 1998, 367.
Hilde, C.H., Gamelon, M., Sæther, B.-E., Gaillard, J.-M., Yoccoz, N.G. & Pélabon, C. (2020). The Demographic Buffering Hypothesis: Evidence and Challenges. Trends Ecol Evol , 35, 523–538.
Jäkäläniemi, A., Ramula, S. & Tuomi, J. (2013). Variability of important vital rates challenges the demographic buffering hypothesis.Evol Ecol , 27, 533–545.
Jones, J.H. (2007). demogR: A Package for the Construction and Analysis of Age-structured Demographic Models in R. J Stat Softw , 22, 1–28.
Jones, J.H. (2011). Primates and the evolution of long, slow life histories. Current Biology , 21, R708–R717.
Jongejans, E., De Kroon, H., Tuljapurkar, S. & Shea, K. (2010). Plant populations track rather than buffer climate fluctuations. Ecol Lett , 13, 736–743.
Kajin, M., Gentile, R., Almeida, P.J.A.L. de, Vieira, M.V. & Cerqueira, R. (2023). Vital rates, their variation and natural selection: a case for an Atlantic forest marsupial. Oecologia Australis , 27.
Kendall, B.E., Fujiwara, M., Diaz-Lopez, J., Schneider, S., Voigt, J. & Wiesner, S. (2019). Persistent problems in the construction of matrix population models. Ecol Modell , 406, 33–43.
Keyfitz, N. & Flieger, W. (1990). World Population Growth and Aging: Demographic Trends in the Late Twentieth Century . University of Chicago Press, Chicago.
Koons, D.N., Pavard, S., Baudisch, A. & Jessica E. Metcalf, C. (2009). Is life-history buffering or lability adaptive in stochastic environments? Oikos , 118, 972–980.
Kroon, H. De, Groenendael, J. Van & Ehrlen, J. (2000). Elasticities: A review of methods and model limitations. Ecology , 81, 607–618.
de Kroon, H., Plaisier, A., van Groenendael, J. & Caswell, H. (1986). Elasticity: The Relative Contribution of Demographic Parameters to Population Growth Rate. Ecology , 67, 1427–1431.
Lande, R. (1982). A Quantitative Genetic Theory of Life History Evolution. Ecology , 63, 607–615.
Lawler, R.R., Caswell, H., Richard, A.F., Ratsirarson, J., Dewar, R.E. & Schwartz, M. (2009). Demography of Verreaux’s sifaka in a stochastic rainfall environment. Oecologia , 161, 491–504.
Lefèvre, C.D., Nash, K.L., González-Cabello, A. & Bellwood, D.R. (2016). Consequences of extreme life history traits on population persistence: do short-lived gobies face demographic bottlenecks?Coral Reefs , 35, 399–409.
McDonald, J.L., Bailey, T., Delahay, R.J., McDonald, R.A., Smith, G.C. & Hodgson, D.J. (2016). Demographic buffering and compensatory recruitment promotes the persistence of disease in a wildlife population. Ecol Lett , 19, 443–449.
McDonald, J.L., Franco, M., Townley, S., Ezard, T.H.G., Jelbert, K. & Hodgson, D.J. (2017). Divergent demographic strategies of plants in variable environments. Nat Ecol Evol , 1, 0029.
Morris, W.F., Altmann, J., Brockman, D.K., Cords, M., Fedigan, L.M., Pusey, A.E., et al. (2011). Low Demographic Variability in Wild Primate Populations: Fitness Impacts of Variation, Covariation, and Serial Correlation in Vital Rates. Am Nat , 177, E14–E28.
Morris, W.F. & Doak, D.F. (2004). Buffering of Life Histories against Environmental Stochasticity: Accounting for a Spurious Correlation between the Variabilities of Vital Rates and Their Contributions to Fitness. Am Nat , 163, 579–590.
Morris, W.F., Pfister, C.A., Tuljapurkar, S., Haridas, C. V., Boggs, C.L., Boyce, M.S., et al. (2008). Longevity can buffer plant and animal populations against changing climatic variability.Ecology , 89, 19–25.
Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., et al. (2012). How to measure and test phylogenetic signal. Methods Ecol Evol , 3, 743–756.
Pélabon, C., Hilde, C.H., Einum, S. & Gamelon, M. (2020). On the use of the coefficient of variation to quantify and compare trait variation.Evol Lett , 4, 180–188.
Perret, D.L., Evans, M.E.K. & Sax, D.F. (2024). A species’ response to spatial climatic variation does not predict its response to climate change. Proc Natl Acad Sci U S A , 121, e2304404120.
Pfister, C. (1998). Patterns of variance in stage-structured populations: Evolutionary predictions and ecological implications.Proceedings of the National Academy of Sciences , 95, 213–218.
R Core Team. (2024). R: A Language and Environment for Statistical Computing.
Reed, A.W. & Slade, N.A. (2012). Buffering and plasticity in vital rates of oldfield rodents. Journal of Animal Ecology , 81, 953–959.
Rodríguez‐Caro, R.C., Capdevila, P., Graciá, E., Barbosa, J.M., Giménez, A. & Salguero‐Gómez, R. (2021). The limits of demographic buffering in coping with environmental variation. Oikos , 130, 1346–1358.
Rodríguez-Caro, R.C., Capdevila, P., Graciá, E., Barbosa, J.M., Giménez, A. & Salguero-Gómez, R. (2021). The limits of demographic buffering in coping with environmental variation. Oikos , 130, 1346–1358.
Römer, G., Dahlgren, J.P., Salguero‐Gómez, R., Stott, I.M. & Jones, O.R. (2024). Plant demographic knowledge is biased towards short‐term studies of temperate‐region herbaceous perennials. Oikos , 2024.
Rotella, J.J., Link, W.A., Chambert, T., Stauffer, G.E. & Garrott, R.A. (2012). Evaluating the demographic buffering hypothesis with vital rates estimated for Weddell seals from 30 years of mark-recapture data.Journal of Animal Ecology , 81, 162–173.
Salguero-Gómez, R. (2021). Commentary on the life history special issue: The fast-slow continuum is not the end-game of life history evolution, human or otherwise. Evolution and Human Behavior , 42, 281–283.
Salguero-Gómez, R. (2024). More social species live longer, have higher generation times, and longer reproductive windows. bioRxiv; https://doi.org/10.1101/2024.01.22.575897 .
Salguero-Gómez, R., Jackson, J. & Gascoigne, S.J.L. (2021). Four key challenges in the open-data revolution. Journal of Animal Ecology , 90, 2000–2004.
Salguero-Gómez, R., Jones, O.R., Archer, C.R., Bein, C., de Buhr, H., Farack, C., et al. (2016). COMADRE: A global data base of animal demography. Journal of Animal Ecology , 85, 371–384.
Sanghvi, K., Vega-Trejo, R., Nakagawa, S., Gascoigne, S.J.L., Johnson, S.L., Salguero-Gómez, R., et al. (2024). Meta-analysis shows no consistent evidence for senescence in ejaculate traits across animals.Nat Commun , 15, 558.
Shyu, E. & Caswell, H. (2014). Calculating second derivatives of population growth rates for ecology and evolution. Methods Ecol Evol , 5, 473–482.
Simmonds, E.G. & Jones, O.R. (2024). Uncertainty propagation in matrix population models: Gaps, importance and guidelines. Methods Ecol Evol , 15, 427–438.
Stearns, S. (1992). The Evolution of Life Histories . Oxford University Press, New York, USA.
Stearns, S.C. (1983). The Influence of Size and Phylogeny on Patterns of Covariation among Life-History Traits in the Mammals. Oikos , 41, 173.
Stubben, C., Milligan, B., Nantel, P. & Stubben, M.C. (2020). Package ‘popbio.’
Sutherland, W.J., Freckleton, R.P., Godfray, H.C.J., Beissinger, S.R., Benton, T., Cameron, D.D., et al. (2013). Identification of 100 fundamental ecological questions. Journal of Ecology , 101, 58–67.
Van Tienderen, P.H. (2000). Elasticities and the link between demographic and evolutionary dynamics. Ecology , 81, 666–679.
Tuljapurkar, S. (1990). Population Dynamics in Variable Environments. In: Lecture notes in Biomathematics , Lecture Notes in Biomathematics (ed. Levin, S.). Springer Berlin Heidelberg.
Tuljapurkar, S. (2010). Environmental variance, population growth and evolution. J Anim Ecol , 79, 1–3.
Tuljapurkar, S., Gaillard, J.-M. & Coulson, T. (2009). From stochastic environments to life histories and back. Philosophical Transactions of the Royal Society B: Biological Sciences , 364, 1499–1509.
Tuljapurkar, S., Horvitz, C.C. & Pascarella, J.B. (2003). The Many Growth Rates and Elasticities of Populations in Random Environments.Am Nat , 162, 489–502.
Tuljapurkar, S., Jaggi, H., Gascoigne, S.J.L., Zuo, W., Kajin, M. & Salguero-Gómez, R. (2023). From disturbances to nonlinear fitness and back. bioRxiv , 2023.10.20.563360.
Tuljapurkar, S.D. (1982). Population dynamics in variable environments. III. Evolutionary dynamics of r-selection. Theor Popul Biol , 21, 141–165.
Vázquez, D.P., Gianoli, E., Morris, W.F. & Bozinovic, F. (2017). Ecological and evolutionary impacts of changing climatic variability.Biological Reviews , 92, 22–42.
Wang, J., Yang, X., Silva Santos, G., Ning, H., Li, T., Zhao, W.,et al. (2023). Flexible demographic strategies promote the population persistence of a pioneer conifer tree (Pinus massoniana) in ecological restoration. For Ecol Manage , 529, 120727.
Zuidema, P.A. & Franco, M. (2001). Integrating vital rate variability into perturbation analysis: an evaluation for matrix population models of six plant species. Journal of Ecology , 89, 995–1005.