Climate change, inter-annual precipitation variability, recurrent droughts, and flash flooding, coupled with increasing water needs, are shaping the co-evolution of socioeconomic and cultural assemblages, water laws and regulations, and equitable drinking water access and allocation worldwide. Recognizing the need for mitigation strategies for drinking water availability in urban areas, the Isotope Hydrology Section of the International Atomic Energy Agency (IAEA) coordinated a state-of-the-art global assessment to evaluate water sources and distribution of drinking water supply in urban centers, an initiative entitled “Use of Isotope Techniques for the Evaluation of Water Sources for Domestic Supply in Urban Areas (2018-2023)”. Here, we report on a) current research trends for studying urban drinking water systems during the last two decades and b) the development, testing, and integration of new methodologies, aiming for a better assessment, mapping, and management of water resources used for drinking water supply in urban settings. Selected examples of water isotope applications (Canada, USA, Costa Rica, Ecuador, Morocco, Botswana, Romania, Slovenia, India, and Nepal) provide context to the insights and recommendations reported and highlight the versatility of water isotopes to underpin seasonal and temporal variations across various environmental and climate scenarios. The study revealed that urban areas depend on a large spectrum of water recharge across mountain ranges, extensive local groundwater extraction, and water transfer from nearby or distant river basins. The latter is reflected in the spatial isotope snapshot variability. High-resolution monitoring (hourly and sub-hourly) isotope sampling revealed large diurnal variations in the wet tropics (Costa Rica) (up to 1.5‰ in δ 18O) and more uniform diurnal variations in urban centers fed by groundwater sources (0.08 ‰ in δ 18O) ([Ljubljana](https://www.google.com/search?client=firefox-b-1-d&sca_esv=f5a20a2e9138d638&sca_upv=1&sxsrf=ADLYWIKR6-DvBtjaWqFYRhn6VgnegOa8kg:1717189104058&q=Ljubljana&stick=H4sIAAAAAAAAAONgVuLQz9U3SMrNNXnEaMwt8PLHPWEprUlrTl5jVOHiCs7IL3fNK8ksqRQS42KDsnikuLjgmngWsXL6ZJUm5WQl5iUCAAFa64FOAAAA&sa=X&ved=2ahUKEwjMrrz047iGAxWyG9AFHSVwCBgQzIcDKAB6BAgTEAE), Slovenia). Similarly, while d-excess was fairly close to the global mean value (+10 ‰) across all urban centers (10-15‰), reservoir-based drinking water systems show significantly lower values (up to ~ -20 ‰) (Arlington, TX, USA and Gaborone, Botswana), as a result of strong evapoconcentration processes. δ 18O time series and depth-integrated sampling highlighted the influence of the catchment damping ratio in the ultimate intake water composition. By introducing new, traceable spatial and temporal tools that span from the water source to the end-user and are linked to the engineered and socio-economic structure of the water distribution system, governmental, regional, or community-based water operators and practitioners could enhance drinking water treatment strategies (including more accurate surface water blending estimations) and improve urban water management and conservation plans in the light of global warming.

Cécile Carton

and 4 more

Rationale: Stable isotopes of water in precipitation are powerful tracers of atmospheric processes. Automatic rain samplers are valuable for high temporal resolution isotopic studies but building them from scratch requires significant financial and material resources. A commercial water autosampler has been modified to prevent evaporation after sampling and to allow precipitation sampling during an event. Methods: New sampling bottles were created by reducing the original volume and opening area. Evaporation tests were carried out on different volumes of water for 72 hours under laboratory conditions. These were used to determine the minimum amount of rain to collect to minimize the impact of isotopic fractionation by evaporation. The impact of the autosampler’s air moisture saturation was also tested. Samples were analyzed by dual-inlet isotope ratio mass spectrometry and cavity ring-down spectroscopy. Results: For samples larger than 10 mL, evaporative heavy isotope enrichment due to Rayleigh distillation remains negligible compared to the overall analytical uncertainty. Intentional saturation of the autosampler’s atmosphere significantly reduces post-sampling evaporation but leads to equilibration of the samples with the added water. We have investigated the maximum time that samples must be left for this fractionation to remain negligible. Under these conditions, this autosampler is suitable for intra-event rainfall sampling for isotopic analysis. Conclusions: It is now possible to perform low-cost high-resolution precipitation sampling for isotopic analysis. The intentional air saturation of the sampler, which effectively prevents post-sampling evaporation, had never been proposed before. All instructions for modifying this sampler are now available in open access so the scientific community can easily repeat them.