References
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology , 215(3), 403-410.
Bartoń, K. (2020). MuMIn: Multi-model inference [Computer software]. R package version 1.43.17.https://CRAN.R-project.org/package=MuMIn
Beal, A., Kiszka, J., Wells, R., & Eirin-Lopez, J. M. (2019). The Bottlenose dolphin Epigenetic Aging Tool (BEAT): a molecular age estimation tool for small cetaceans. Frontiers in Marine Science , 6, 561.https://doi.org/10.3389/fmars.2019.00561
Bearzi, G. 2000. First report of a common dolphin (Delphinus delphis ) death following penetration of a biopsy dart. Journal of Cetacean Research and Management , 2(3), 217-222.
Birtles, R. A., Arnold, P. W., & Dunstan, A. (2002). Commercial swim programs with dwarf minke whales on the northern Great Barrier Reef, Australia: some characteristics of the encounters with management implications. Australian Mammalogy , 24(1), 23-38.https://doi.org/10.1071/AM02023
Booth, L. N., & Brunet, A. (2016). The aging epigenome. Molecular Cell , 62(5), 728-744.https://doi.org/10.1016/j.molcel.2016.05.013
Bors, E. K., Baker, C. S., Wade, P. R., O’Neill, K. B., Shelden, K. E., Thompson, M. J., Fei, Z., Jarman, S., & Horvath, S. (2020). An epigenetic clock to estimate the age of living beluga whales.Evolutionary Applications ,14, 1263-1273.https://doi.org/10.1111/eva.13195
Carzon, P., Clua, É., Dudzinski, K. M., & Delfour, F. (2023). Deleterious behaviors and risks related to close interactions between humans and free-ranging dolphins: A review. Biological Conservation,  279, 109948.https://doi.org/10.1016/j.biocon.2023.109948
Crimmins, E. M., Shim, H., Zhang, Y. S., & Kim, J. K. (2019). Differences between men and women in mortality and the health dimensions of the morbidity process. Clinical Chemistry , 65(1), 135-145.https://doi.org/10.1373/clinchem.2018.288332
Foulkes, W. D., Flanders, T. Y., Pollock, P. M., & Haywardt, N. K. (1997). The CDKN2A (p16) gene and human cancer. Molecular Medicine , 3(1), 5–20.https://doi.org/10.1007/BF03401664
Fox, J., & Weisberg, S. (2019). An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage. URL:https://socialsciences.mcmaster.ca/jfox/Books/Companion/
García‐Vernet, R., Martín, B., Peinado, M. A., Víkingsson, G., Riutort, M., & Aguilar, A. (2021). CpG methylation frequency of TET2 ,GRIA2 , and CDKN2A genes in the North Atlantic fin whale varies with age and between populations. Marine Mammal Science,37(4), 1230-1244.https://doi.org/10.1111/mms.12808
Guo, L., Lin, W., Zeng, C., Luo, D., & Wu, Y. (2020). Investigating the age composition of Indo-Pacific humpback dolphins in the Pearl River Estuary based on their pigmentation pattern. Marine Biology , 167(4), 1-12.https://doi.org/10.1007/s00227-020-3650-x
Hamano, Y., Manabe, S., Morimoto, C., Fujimoto, S., & Tamaki, K. (2017). Forensic age prediction for saliva samples using methylation-sensitive high resolution melting: exploratory application for cigarette butts. Scientific Reports , 7(1), 1-8.https://doi.org/10.1038/s41598-017-10752-w
Hammond, P. S., Mizroch, S. A., & Donovan, G. P. (Eds.). (1990). Individual recognition of cetaceans: use of photo-identification and other techniques to estimate population parameters. International Whaling Commission (Special Issue 12) , Cambridge, 440.
Hartman, K. L., Wittich, A., Cai, J. J., van der Meulen, F. H., & Azevedo, J. M. (2015). Estimating the age of Risso’s dolphins (Grampus griseus ) based on skin appearance. Journal of Mammalogy , 97(2), 490-502.https://doi.org/10.1093/jmammal/gyv193
Henley, J. M., & Wilkinson, K. A. (2013). AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging.Dialogues Clin Neurosci , 15:11–27.https://doi.org/10.31887/DCNS.2013.15.1/jhenley
Herzing, D. L. (1997). The life history of free-ranging Atlantic spotted dolphins (Stenela frontalis ): age classes, color phases, and female reproduction. Marine Mammal Science , 13(4):576-595.https://doi.org/10.1111/j.1748-7692.1997.tb00085.x
Horvath, S. (2013). DNA methylation age of human tissues and cell types.Genome Biology , 14(10), 1-20.https://doi.org/10.1186/gb-2013-14-10-r115
Horvath, S., Gurven, M., Levine, M. E., Trumble, B. C., Kaplan, H., Allayee, H., Ritz, B. R., Chen, B., Lu, A. T., Rickabaugh, T. M., Jamieson, B. D., Sun, D., Li, S., Chen, W., Quintana-Murci, L., Fagny, M., Kobor, M. S., Tsao, P. P., Reiner, A. P., Edlefsen, K. L., Absent, D., & Assimes, T. L. (2016). An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biology , 17(1), 1-23.https://doi.org/10.1186/s13059-016-1030-0
Kakuda, T., Tajima, Y., Arai, K., Kogi, K., Hishii, T., & Yamada, T., K. (2002). On the resident “bottlenose dolphins” from Mikura Water.Memoirs of the National Science Museum , Tokyo, 38:255-272.
Kita, Y. F., Murayama, M., Kogi, K., Morisaka, T., Sakai, M., & Shiina, T. (2017). Kinship analysis of Indo-Pacific bottlenose dolphin (Tursiops aduncus ) in Mikura Island [御蔵島に生息するミナミハンドウイルカ(Tursiops aduncus )の親子鑑定]. DNA Polymorph , 25, 52–57. (in Japanese)
Kita, Y. F., Kawase, M., Kogi, K., & Murayama, M. (2018). Diet analysis of Indo-Pacific bottlenose dolphin (Tursiops aduncus ) in Mikura Island [御蔵島ミナミハンドウイルカ(Tursiops aduncus )における食性解析]. DNA Polymorph , 26, 51-55. (in Japanese)
Kogi, K., Hishii. T., Imamura, A., Iwatani, T., & Dudzinski, K. M. (2004). Demographic parameters of Indo-Pacific bottlenose dolphins (Tursiops aduncus ) around Mikura island, Japan. Marine Mammal Science , 20(3), 510-526.https://doi.org/10.1111/j.1748-7692.2004.tb01176.x
Kogi, K. (2013). Indo-Pacific bottlenose dolphins around Mikurashima Island [御蔵島のミナミハンドウイルカ]. Kaiyo Monthly , 45, 215–225. (in Japanese)
Krzyszczyk, E., & Mann, J. (2012). Why become speckled? Ontogeny and function of speckling in Shark Bay bottlenose dolphins (Tursiopssp.). Marine Mammal Science , 28(2), 295-307.https://doi.org/10.1111/j.1748-7692.2011.00483.x
Lawn, R. B., Anderson, E. L., Suderman, M., Simpkin, A. J., Gaunt, T. R., Teschendorff, A. E., Widschwendter, M., Hardy, R., Kuh, D., Relton, C. L., & Howe, L. D. (2018). Psychosocial adversity and socioeconomic position during childhood and epigenetic age: analysis of two prospective cohort studies. Human Molecular Genetics, 27(7), 1301-1308.https://doi.org/10.1093/hmg/ddy036
Marini, S., Davis, K. A., Soare, T. W., Zhu, Y., Suderman, M. J., Simpkin, A. J., Smith, A. D. A. C., Wolf, E. J., Relton, C. L., & Dunn, E. C. (2020). Adversity exposure during sensitive periods predicts accelerated epigenetic aging in children. Psychoneuroendocrinology , 113, 104484.https://doi.org/10.1016/j.psyneuen.2019.104484
Lemaître, J. F., Ronget, V., Tidière, M., Allainé, D., Berger, V., Cohas, A., Colchero, F., Conde, D. A., Garratt, M., Liker, A., Marais, G. A. B., Scheuerlein, A., Székely, T., & Gaillard, J. M. (2020). Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proceedings of the National Academy of Sciences , 117(15), 8546-8553.https://doi.org/10.1073/pnas.1911999117
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217.https://doi.org/10.1016/j.cell.2013.05.039
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2022). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien_. R package version 1.7-12, <https://CRAN.R-project.org/package=e1071>.
Migheli, F., Stoccoro, A., Coppede, F., Wan Omar, W. A., Failli, A., Consolini, R., Seccia, M., Spisni, R., Miccoli, P., & Migliore, L. (2013). Comparison study of MS-HRM and pyrosequencing techniques for quantification of APC and CDKN2A gene methylation. PloS One , 8(1), e52501.https://doi.org/10.1371/journal.pone.0052501
Nakamura, S., Yamazaki, J., Matsumoto, N., Inoue‐Murayama, M., Qi, H., Yamanaka, M., Nakanishi, M., Yanagawa, Y., Sashika, M., Tsubota, T., Ito, H., & Shimozuru, M. (2023). Age estimation based on blood DNA methylation levels in brown bears. Molecular Ecology Resources , 15.https://doi.org/10.1111/1755-0998.13788
Nakano, K., Ito, H., Hamano, Y., Tamaki, K., Udono, T, Hirata, S., Inoue-Murayama, M. (2019). Age estimation based on DNA methylation for chimpanzee fecal samples [チンパンジーの糞試料由来のDNAを用いたメチル化解析による年齢推定].DNA Polymorph, 27, 59-61. (in Japanese)
Nakano, K., Ito, H., Kenji, T., Suzumura, T., Inoue-Murayama, M. (2020). Age estimation based on DNA methylation for wild Japanese macaques [ニホンザルにおける野生個体由来DNAのメチル化解析による年齢推定].DNA Polymorph. 28, 22-25. (in Japanese)
Noren, D. P., & Mocklin, J. A. (2012). Review of cetacean biopsy techniques: factors contributing to successful sample collection and physiological and behavioral impacts. Marine Mammal Science , 28(1), 154-199.https://doi.org/10.1111/j.1748-7692.2011.00469.x
Perrin, W. F., & Myrick, Jr., A. C. (Eds.). (1980). Age determination of toothed whales and sirenians (No. 3). Reports of the International Whaling Commission (Special Issue 3) , Cambridge. 51–229.
Peters, K. J., Gerber, L., Scheu, L., Cicciarella, R., Zoller, J. A., Fei, Z., Horvath, S., Allen, S. J., King, S. J., Connor, R. C., Rollins, L. A., & Krützen, M. (2023). An epigenetic DNA methylation clock for age estimates in Indo‐Pacific bottlenose dolphins (Tursiops aduncus ). Evolutionary Applications. 16, 126-133.https://doi.org/10.1111/eva.13516
Petralia, R. S., Mattson, M. P., & Yao, P. J. (2014). Aging and longevity in the simplest animals and the quest for immortality. Ageing Research Reviews , 16, 66-82.https://doi.org/10.1016/j.arr.2014.05.003
Polanowski, A. M., Robbins, J., Chandler, D., & Jarman, S. N. (2014). Epigenetic estimation of age in humpback whales. Molecular Ecology Resources , 14(5), 976-987.https://doi.org/10.1111/1755-0998.12247
Prado, N. A., Brown, J. L., Zoller, J. A., Haghani, A., Yao, M., Bagryanova, L. R., Campana, M. G., Maldonado, J. E., Raj, K., Schmitt, D., Robeck, T. R., & Horvath, S. (2021). Epigenetic clock and methylation studies in elephants. Aging Cell , 20(7), e13414.https://doi.org/10.1111/acel.13414
Qi, H., Kinoshita, K., Mori, T., Matsumoto, K., Matsui, Y., & Inoue-Murayama, M. (2021). Age estimation using methylation-sensitive high-resolution melting (MS-HRM) in both healthy felines and those with chronic kidney disease. Scientific Reports , 11(1), 1-10.https://doi.org/10.1038/s41598-021-99424-4
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL:https://www.R-project.org/
Reidy, R. D., Lemay, M. A., Innes, K. G., Clemente‐Carvalho, R. B., Janusson, C., Dower, J. F., Cowen, L. E., & Juanes, F. (2022). Fine‐scale diversity of prey detected in humpback whale feces.Ecology and Evolution , 12(12), e9680.https://doi.org/10.1002/ece3.9680
Ryan, C. P., Hayes, M. G., Lee, N. R., McDade, T. W., Jones, M. J., Kobor, M. S., Kuzawa, C. W., & Eisenberg, D. T. (2018). Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women. Scientific Reports , 8(1), 11100.https://doi.org/10.1038/s41598-018-29486-4
Simpkin, A. J., Hemani, G., Suderman, M., Gaunt, T. R., Lyttleton, O., Mcardle, W. L., Ring, S. M., Sharp, G. C., Tilling, K., Horvath, S., Kunze, S., Peters, A., Waldenberger, M., Ward-Caviness, C., Aohr, E. A., Sørensen, T. A., Relton, C. L., & Smith, G. D. (2016). Prenatal and early life influences on epigenetic age in children: a study of mother–offspring pairs from two cohort studies. Human Molecular Genetics , 25(1), 191-201.https://doi.org/10.1093/hmg/ddv456
Smith, S. C., & Whitehead, H. (2000). The diet of Galapagos sperm whales Physeter macrocephalus as indicated by fecal sample analysis. Marine Mammal Science , 16(2), 315-325.https://doi.org/10.1111/j.1748-7692.2000.tb00927.x
Suzuki, A., Akuzawa, K., Kogi, K., Ueda, K., & Suzuki, M. (2021). Captive environment influences the composition and diversity of fecal microbiota in Indo‐Pacific bottlenose dolphins, Tursiops aduncusMarine Mammal Science37 (1), 207-219.https://doi.org/10.1111/mms.12736
Takahashi, T., Sakai, M., Kogi, K., Morisaka, T., Segawa, T., & Ohizmi, H. (2020). Prey species and forage behaviour of Indo-Pacific bottlenose dolphins (Tursiops aduncus ) around Mikura Island in Japan.Aquatic Mammals , 46(6), 531-541.https://doi.org/10.1578/AM.46.6.2020.531
Tanabe, A., Shimizu, R., Osawa, Y., Suzuki, M., Ito, S., Goto, M., Pastene, L. A., Fujise, Y., & Sahara, H. (2020). Age estimation by DNA methylation in the Antarctic minke whale. Fisheries Science , 86(1), 35-41.https://doi.org/10.1007/s12562-019-01371-7
Tse, M. Y., Ashbury, J. E., Zwingerman, N., King, W. D., Taylor, S. A., & Pang, S. C. (2011). A refined, rapid and reproducible high resolution melt (HRM)-based method suitable for quantification of global LINE-1 repetitive element methylation. BMC Research Notes , 4, 1-11.https://doi.org/10.1186/1756-0500-4-565
Warnecke, P. M., Stirzaker, C., Melki, J. R., Millar, D. S., Paul, C. L., & Clark, S. J. (1997). Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Research,  25(21), 4422-4426.https://doi.org/10.1093/nar/25.21.4422
Wang, J. Y. (2018). Bottlenose dolphin, Tursiops aduncus , Indo-Pacific bottlenose dolphin. In Encyclopedia of Marine Mammals (pp. 125-130). Academic Press.https://doi.org/10.1016/B978-0-12-804327-1.00073-X
Wang, X., & Li, G. (2018). PAmeasures: Prediction and Accuracy Measures for Nonlinear Models and for Right-Censored Time-to-Event Data. R package version 0.1.0,https://CRAN.R-project.org/package=PAmeasures
Weller, D. W., Cockcroft, V. G., Würsig, B., Lynn, S. K., & Fertl, D. (1997). Behavioral responses of bottlenose dolphins to remote biopsy sampling and observations of surgical biopsy wound healing.Aquatic Mammals. 23(1): 49-58.
Wojdacz, T. K., & Dobrovic, A. (2007). Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Research , 35(6), e41.https://doi.org/10.1093/nar/gkm013
Wojdacz, T. K., Dobrovic, A., & Hansen, L. L. (2008). Methylation-sensitive high-resolution melting. Nature Protocols , 3(12), 1903-1908.https://doi.org/10.1038/nprot.2008.191
Wright, P. G., Mathews, F., Schofield, H., Morris, C., Burrage, J., Smith, A., Dempster, E. L., & Hamilton, P. B. (2018). Application of a novel molecular method to age free‐living wild Bechstein’s bats.Molecular Ecology Resources, 18(6), 1374-1380.https://doi.org/10.1111/1755-0998.12925
Yagi, G., Sakai, M., & Kogi, K. (2022). Age‐related changes to the speckle patterns on wild Indo‐Pacific bottlenose dolphins. Marine Mammal Science , 38(1), 73-86.https://doi.org/10.1111/mms.12845
Yagi, G., Kogi, K., & Sakai, M. Noninvasive age estimation for wild Indo-Pacific bottlenose dolphins (Tursiops aduncus ) using speckle appearance based on quantification-theory model I analysis. Marine Mammal Science , 39(2), 662-670.https://doi.org/10.1111/mms.12999
Zhao, R., Choi, B. Y., Lee, M. H., Bode, A. M., & Dong, Z. (2016). Implications of genetic and epigenetic alterations of CDKN2A(p16INK4a) in cancer. EBioMedicine , 8(127), 30–39.https://doi.org/10.1016/j.ebiom.2016.04.017
Table 1 Details of target gene, primer, and PCR information, and accession number.