4. Conclusion and prospect
The occurrence of cerebrovascular events is the result of many factors.
It is closely associated with various diseases, such as atherosclerosis,
atrial fibrillation, diabetes mellitus, hypertension, obstructive sleep
apnea, and so on. Comorbidities are the hallmark of stroke, which can
both increase the incidence of stroke and worsen the outcome. More and
more studies have shown that ferroptosis is not only involved in the
occurrence and progression of AIS but also involved in the chronic
pathogenesis of AIS risk factors.
This article mainly reviews the mechanism of ferroptosis in the
occurrence and development of acute ischemic stroke. By introducing the
relationship between ferroptosis and AS, AF, HF, DM, OSA, and the
specific mechanism of ferroptosis after acute ischemic stroke, it is
further explained that ferroptosis plays a very important role in the
occurrence and development of AIS. At the same time, the following
thoughts are also triggered: (1) Although this paper describes the
correlation between ferroptosis and AIS risk factors, the research on
the mechanism of ferroptosis and AIS risk factors is limited, and the
specific mechanism of ferroptosis is not clear, which is worthy of
further research by scientists. (2) Smoking, alcohol consumption, and
hyperlipidemia are also common risk factors for AIS. In future studies,
we can establish an acute ischemic stroke model in mice with AIS risk
factors, study the specific mechanism of neuronal ferroptosis, and find
targeted drugs and inhibitors to observe the impact on the prognosis and
treatment of AIS. (3) At least two or more types of programmed cell
death may occur in the occurrence and development of AIS. Therefore,
only targeting ferroptosis may not achieve the desired effect, and in
the future, multiple targets combined with cell death methods such as
apoptosis, autophagy, and necrosis can effectively treat the disease.
(4) So far, there is no clinical trial of inhibitors of ferroptosis for
the treatment of ischemic stroke. This field needs further exploration
and more population-based data are needed to determine whether the
prognosis of AIS patients can be improved by inhibiting ferroptosis.
With the deepening of research, inhibition of ferroptosis is likely to
become an effective strategy for the treatment of ischemic stroke.
References
1 Datta, A. et al. Cell Death Pathways in Ischemic Stroke and
Targeted Pharmacotherapy. Transl Stroke Res 11 ,
1185-1202, doi:10.1007/s12975-020-00806-z (2020).
2 Dixon, S. J. et al. Ferroptosis: an iron-dependent form of
nonapoptotic cell death. Cell 149 , 1060-1072,
doi:10.1016/j.cell.2012.03.042 (2012).
3 Stockwell, B. R. et al. Ferroptosis: A Regulated Cell Death
Nexus Linking Metabolism, Redox Biology, and Disease. Cell171 , 273-285, doi:10.1016/j.cell.2017.09.021 (2017).
4 Tuo, Q. Z. et al. Thrombin induces ACSL4-dependent ferroptosis
during cerebral ischemia/reperfusion. Signal Transduct Target
Ther 7 , 59, doi:10.1038/s41392-022-00917-z (2022).
5 Yu, W. et al. High Level of Uric Acid Promotes Atherosclerosis
by Targeting NRF2-Mediated Autophagy Dysfunction and Ferroptosis.Oxid Med Cell Longev 2022 , 9304383,
doi:10.1155/2022/9304383 (2022).
6 Liu, D. et al. Cardiac Fibroblasts Promote Ferroptosis in
Atrial Fibrillation by Secreting Exo-miR-23a-3p Targeting SLC7A11.Oxid Med Cell Longev 2022 , 3961495,
doi:10.1155/2022/3961495 (2022).
7 Jin, R. et al. Ferroptosis due to Cystathionine gamma
Lyase/Hydrogen Sulfide Downregulation Under High Hydrostatic Pressure
Exacerbates VSMC Dysfunction. Front Cell Dev Biol 10 ,
829316, doi:10.3389/fcell.2022.829316 (2022).
8 Bruni, A. et al. Ferroptosis-inducing agents compromise in
vitro human islet viability and function. Cell Death Dis9 , 595, doi:10.1038/s41419-018-0506-0 (2018).
9 Liu, Z. L. et al. The role of ferroptosis in chronic
intermittent hypoxia-induced cognitive impairment. Sleep Breath ,
doi:10.1007/s11325-022-02760-6 (2023).
10 Millan, M. et al. Targeting Pro-Oxidant Iron with Deferoxamine
as a Treatment for Ischemic Stroke: Safety and Optimal Dose Selection in
a Randomized Clinical Trial. Antioxidants (Basel) 10 ,
doi:10.3390/antiox10081270 (2021).
11 Bai, T., Li, M., Liu, Y., Qiao, Z. & Wang, Z. Inhibition of
ferroptosis alleviates atherosclerosis through attenuating lipid
peroxidation and endothelial dysfunction in mouse aortic endothelial
cell. Free Radic Biol Med 160 , 92-102,
doi:10.1016/j.freeradbiomed.2020.07.026 (2020).
12 Fang, J. et al. Ferroportin-mediated ferroptosis involved in
new-onset atrial fibrillation with LPS-induced endotoxemia. Eur J
Pharmacol 913 , 174622, doi:10.1016/j.ejphar.2021.174622
(2021).
13 Liang, C. et al. Inhibition of YAP by lenvatinib in
endothelial cells increases blood pressure through ferroptosis.Biochim Biophys Acta Mol Basis Dis 1869 , 166586,
doi:10.1016/j.bbadis.2022.166586 (2023).
14 Huang, J. et al. The role of ferroptosis and endoplasmic
reticulum stress in intermittent hypoxia-induced myocardial injury.Sleep Breath , doi:10.1007/s11325-022-02692-1 (2022).
15 Halliwell, B. Reactive oxygen species and the central nervous system.J Neurochem 59 , 1609-1623,
doi:10.1111/j.1471-4159.1992.tb10990.x (1992).
16 Qian, Z. M. & Ke, Y. Brain iron transport. Biol Rev Camb
Philos Soc 94 , 1672-1684, doi:10.1111/brv.12521 (2019).
17 Zhao, Y. et al. The Role of Ferroptosis in Blood-Brain Barrier
Injury. Cell Mol Neurobiol 43 , 223-236,
doi:10.1007/s10571-022-01197-5 (2023).
18 Khan, A. I., Liu, J. & Dutta, P. Iron transport kinetics through
blood-brain barrier endothelial cells. Biochimica et Biophysica
Acta (BBA) - General Subjects 1862 , 1168-1179,
doi:10.1016/j.bbagen.2018.02.010 (2018).
19 Hentze, M. W., Muckenthaler, M. U., Galy, B. & Camaschella, C. Two
to tango: regulation of Mammalian iron metabolism. Cell142 , 24-38, doi:10.1016/j.cell.2010.06.028 (2010).
20 Yu, P. & Chang, Y. Z. Brain Iron Metabolism and Regulation.Adv Exp Med Biol 1173 , 33-44,
doi:10.1007/978-981-13-9589-5_3 (2019).
21 Kruszewski, M. Labile iron pool: the main determinant of cellular
response to oxidative stress. Mutat Res 531 , 81-92,
doi:10.1016/j.mrfmmm.2003.08.004 (2003).
22 Chiou, B. et al. Endothelial cells are critical regulators of
iron transport in a model of the human blood-brain barrier. J
Cereb Blood Flow Metab 39 , 2117-2131,
doi:10.1177/0271678X18783372 (2019).
23 Yang, C., Hawkins, K. E., Dore, S. & Candelario-Jalil, E.
Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic
stroke. Am J Physiol Cell Physiol 316 , C135-C153,
doi:10.1152/ajpcell.00136.2018 (2019).
24 Lan, B. et al. Extract of Naotaifang, a compound Chinese
herbal medicine, protects neuron ferroptosis induced by acute cerebral
ischemia in rats. J Integr Med 18 , 344-350,
doi:10.1016/j.joim.2020.01.008 (2020).
25 Liu, W. et al. Edaravone Ameliorates Cerebral
Ischemia-Reperfusion Injury by Downregulating Ferroptosis via the
Nrf2/FPN Pathway in Rats. Biol Pharm Bull 45 , 1269-1275,
doi:10.1248/bpb.b22-00186 (2022).
26 Li, C. et al. Nuclear receptor coactivator 4-mediated
ferritinophagy contributes to cerebral ischemia-induced ferroptosis in
ischemic stroke. Pharmacol Res 174 , 105933,
doi:10.1016/j.phrs.2021.105933 (2021).
27 Guo, W., Zhao, Y., Li, H. & Lei, L. NCOA4-mediated ferritinophagy
promoted inflammatory responses in periodontitis. J Periodontal
Res 56 , 523-534, doi:10.1111/jre.12852 (2021).
28 Winterbourn, C. C. Toxicity of iron and hydrogen peroxide: the Fenton
reaction. Toxicol Lett 82-83 , 969-974,
doi:10.1016/0378-4274(95)03532-x (1995).
29 Gaschler, M. M. & Stockwell, B. R. Lipid peroxidation in cell death.Biochem Biophys Res Commun 482 , 419-425,
doi:10.1016/j.bbrc.2016.10.086 (2017).
30 Zhang, Y., Lu, X., Tai, B., Li, W. & Li, T. Ferroptosis and Its
Multifaceted Roles in Cerebral Stroke. Front Cell Neurosci15 , 615372, doi:10.3389/fncel.2021.615372 (2021).
31 Garcia-Yebenes, I. et al. Iron Overload Exacerbates the Risk
of Hemorrhagic Transformation After tPA (Tissue-Type Plasminogen
Activator) Administration in Thromboembolic Stroke Mice. Stroke49 , 2163-2172, doi:10.1161/STROKEAHA.118.021540 (2018).
32 Tuo, Q. Z. et al. Tau-mediated iron export prevents
ferroptotic damage after ischemic stroke. Mol Psychiatry22 , 1520-1530, doi:10.1038/mp.2017.171 (2017).
33 Bridges, R., Lutgen, V., Lobner, D. & Baker, D. A. Thinking outside
the cleft to understand synaptic activity: contribution of the
cystine-glutamate antiporter (System xc-) to normal and pathological
glutamatergic signaling. Pharmacol Rev 64 , 780-802,
doi:10.1124/pr.110.003889 (2012).
34 Seibt, T. M., Proneth, B. & Conrad, M. Role of GPX4 in ferroptosis
and its pharmacological implication. Free Radic Biol Med133 , 144-152, doi:10.1016/j.freeradbiomed.2018.09.014 (2019).
35 Fan, G., Liu, M., Liu, J. & Huang, Y. The initiator of
neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate
accumulation. Front Mol Neurosci 16 , 1113081,
doi:10.3389/fnmol.2023.1113081 (2023).
36 Yan, H. F., Tuo, Q. Z., Yin, Q. Z. & Lei, P. The pathological role
of ferroptosis in ischemia/reperfusion-related injury. Zool Res41 , 220-230, doi:10.24272/j.issn.2095-8137.2020.042 (2020).
37 Wang, L. et al. ATF3 promotes erastin-induced ferroptosis by
suppressing system Xc(.). Cell Death Differ 27 , 662-675,
doi:10.1038/s41418-019-0380-z (2020).
38 Jiang, L. et al. Ferroptosis as a p53-mediated activity during
tumour suppression. Nature 520 , 57-62,
doi:10.1038/nature14344 (2015).
39 Chen, J. et al. Inhibition of Acyl-CoA Synthetase Long-Chain
Family Member 4 Facilitates Neurological Recovery After Stroke by
Regulation Ferroptosis. Front Cell Neurosci 15 , 632354,
doi:10.3389/fncel.2021.632354 (2021).
40 Guan, X. et al. Galangin attenuated cerebral
ischemia-reperfusion injury by inhibition of ferroptosis through
activating the SLC7A11/GPX4 axis in gerbils. Life Sci264 , 118660, doi:10.1016/j.lfs.2020.118660 (2021).
41 Homma, T., Kobayashi, S., Sato, H. & Fujii, J. Edaravone, a free
radical scavenger, protects against ferroptotic cell death in vitro.Exp Cell Res 384 , 111592,
doi:10.1016/j.yexcr.2019.111592 (2019).
42 Zhuo, Z. et al. Selenium supplementation provides potent
neuroprotection following cerebral ischemia in mice. J Cereb Blood
Flow Metab , 271678X231156981, doi:10.1177/0271678X231156981 (2023).
43 Guan, X. et al. The neuroprotective effects of carvacrol on
ischemia/reperfusion-induced hippocampal neuronal impairment by
ferroptosis mitigation. Life Sci 235 , 116795,
doi:10.1016/j.lfs.2019.116795 (2019).
44 Dai, M., Chen, B., Wang, X., Gao, C. & Yu, H. Icariin enhance mild
hypothermia-induced neuroprotection via inhibiting the activation of
NF-kappaB in experimental ischemic stroke. Metab Brain Dis36 , 1779-1790, doi:10.1007/s11011-021-00731-6 (2021).
45 Luo, H. & Zhang, R. Icariin enhances cell survival in
lipopolysaccharide-induced synoviocytes by suppressing ferroptosis via
the Xc-/GPX4 axis. Exp Ther Med 21 , 72,
doi:10.3892/etm.2020.9504 (2021).
46 Skouta, R. et al. Ferrostatins inhibit oxidative lipid damage
and cell death in diverse disease models. J Am Chem Soc136 , 4551-4556, doi:10.1021/ja411006a (2014).
47 Das, U. N. Saturated Fatty Acids, MUFAs and PUFAs Regulate
Ferroptosis. Cell Chem Biol 26 , 309-311,
doi:10.1016/j.chembiol.2019.03.001 (2019).
48 Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. Identification of
ACSL4 as a biomarker and contributor of ferroptosis. Biochem
Biophys Res Commun 478 , 1338-1343,
doi:10.1016/j.bbrc.2016.08.124 (2016).
49 Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs
navigate cells to ferroptosis. Nat Chem Biol 13 , 81-90,
doi:10.1038/nchembio.2238 (2017).
50 Liang, D., Minikes, A. M. & Jiang, X. Ferroptosis at the
intersection of lipid metabolism and cellular signaling. Mol
Cell , doi:10.1016/j.molcel.2022.03.022 (2022).
51 Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms,
biology and role in disease. Nat Rev Mol Cell Biol 22 ,
266-282, doi:10.1038/s41580-020-00324-8 (2021).
52 Gubern, C. et al. miRNA expression is modulated over time
after focal ischaemia: up-regulation of miR-347 promotes neuronal
apoptosis. FEBS J 280 , 6233-6246, doi:10.1111/febs.12546
(2013).
53 Cui, Y. et al. ACSL4 exacerbates ischemic stroke by promoting
ferroptosis-induced brain injury and neuroinflammation. Brain,
Behavior, and Immunity 93 , 312-321,
doi:https://doi.org/10.1016/j.bbi.2021.01.003(2021).
54 Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids
by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A113 , E4966-4975, doi:10.1073/pnas.1603244113 (2016).
55 Jin, G. et al. Protecting against cerebrovascular injury:
contributions of 12/15-lipoxygenase to edema formation after transient
focal ischemia. Stroke 39 , 2538-2543,
doi:10.1161/STROKEAHA.108.514927 (2008).
56 Yigitkanli, K., Zheng, Y., Pekcec, A., Lo, E. H. & van Leyen, K.
Increased 12/15-Lipoxygenase Leads to Widespread Brain Injury Following
Global Cerebral Ischemia. Transl Stroke Res 8 , 194-202,
doi:10.1007/s12975-016-0509-z (2017).
57 Dos Santos, L., Bertoli, S. R., Avila, R. A. & Marques, V. B. Iron
overload, oxidative stress and vascular dysfunction: Evidences from
clinical studies and animal models. Biochim Biophys Acta Gen Subj1866 , 130172, doi:10.1016/j.bbagen.2022.130172 (2022).
58 Marques, V. B. et al. Chronic iron overload intensifies
atherosclerosis in apolipoprotein E deficient mice: Role of oxidative
stress and endothelial dysfunction. Life Sci 233 ,
116702, doi:10.1016/j.lfs.2019.116702 (2019).
59 Vinchi, F. et al. Atherosclerosis is aggravated by iron
overload and ameliorated by dietary and pharmacological iron
restriction. Eur Heart J 41 , 2681-2695,
doi:10.1093/eurheartj/ehz112 (2020).
60 Stadler, N., Lindner, R. A. & Davies, M. J. Direct detection and
quantification of transition metal ions in human atherosclerotic
plaques: evidence for the presence of elevated levels of iron and
copper. Arterioscler Thromb Vasc Biol 24 , 949-954,
doi:10.1161/01.ATV.0000124892.90999.cb (2004).
61 Chen, X., Kang, R., Kroemer, G. & Tang, D. Ferroptosis in infection,
inflammation, and immunity. J Exp Med 218 ,
doi:10.1084/jem.20210518 (2021).
62 Wolf, D. & Ley, K. Immunity and Inflammation in Atherosclerosis.Circ Res 124 , 315-327, doi:10.1161/CIRCRESAHA.118.313591
(2019).
63 Wu, Z. et al. High-Dose Ionizing Radiation Accelerates
Atherosclerotic Plaque Progression by Regulating P38/NCOA4-Mediated
Ferritinophagy/Ferroptosis of Endothelial Cells. Int J Radiat
Oncol Biol Phys , doi:10.1016/j.ijrobp.2023.04.004 (2023).
64 Hu, G., Yuan, Z. & Wang, J. Autophagy inhibition and ferroptosis
activation during atherosclerosis: Hypoxia-inducible factor 1alpha
inhibitor PX-478 alleviates atherosclerosis by inducing autophagy and
suppressing ferroptosis in macrophages. Biomed Pharmacother161 , 114333, doi:10.1016/j.biopha.2023.114333 (2023).
65 Peng, Q. et al. Effect of autophagy on ferroptosis in foam
cells via Nrf2. Mol Cell Biochem 477 , 1597-1606,
doi:10.1007/s11010-021-04347-3 (2022).
66 Sluimer, J. C. et al. Hypoxia, hypoxia-inducible transcription
factor, and macrophages in human atherosclerotic plaques are correlated
with intraplaque angiogenesis. J Am Coll Cardiol 51 ,
1258-1265, doi:10.1016/j.jacc.2007.12.025 (2008).
67 Martinet, W., Coornaert, I., Puylaert, P. & De Meyer, G. R. Y.
Macrophage Death as a Pharmacological Target in Atherosclerosis.Front Pharmacol 10 , 306, doi:10.3389/fphar.2019.00306
(2019).
68 Zhou, Y. et al. Verification of ferroptosis and pyroptosis and
identification of PTGS2 as the hub gene in human coronary artery
atherosclerosis. Free Radic Biol Med 171 , 55-68,
doi:10.1016/j.freeradbiomed.2021.05.009 (2021).
69 Guo, Z. et al. Suppression of atherogenesis by overexpression
of glutathione peroxidase-4 in apolipoprotein E-deficient mice.Free Radic Biol Med 44 , 343-352,
doi:10.1016/j.freeradbiomed.2007.09.009 (2008).
70 Mathew, O. P., Ranganna, K. & Milton, S. G. Involvement of the
Antioxidant Effect and Anti-inflammatory Response in Butyrate-Inhibited
Vascular Smooth Muscle Cell Proliferation. Pharmaceuticals
(Basel) 7 , 1008-1027, doi:10.3390/ph7111008 (2014).
71 Alim, I. et al. Selenium Drives a Transcriptional Adaptive
Program to Block Ferroptosis and Treat Stroke. Cell 177 ,
1262-1279 e1225, doi:10.1016/j.cell.2019.03.032 (2019).
72 Zhang, J. et al. Qing-Xin-Jie-Yu Granule inhibits ferroptosis
and stabilizes atherosclerotic plaques by regulating the GPX4/xCT
signaling pathway. J Ethnopharmacol 301 , 115852,
doi:10.1016/j.jep.2022.115852 (2023).
73 Zhang, M., Yu, Z., Zhao, L. & Luo, H. Long non-coding RNA PVT1
regulates atherosclerosis progression via the microRNA-106b-5p/ACSL4
axis. Biochem Biophys Res Commun 667 , 170-179,
doi:10.1016/j.bbrc.2023.05.037 (2023).
74 Vogel, L. K. et al. Intestinal PTGS2 mRNA levels, PTGS2 gene
polymorphisms, and colorectal carcinogenesis. PLoS One9 , e105254, doi:10.1371/journal.pone.0105254 (2014).
75 Chen, G., Li, L. & Tao, H. Bioinformatics Identification of
Ferroptosis-Related Biomarkers and Therapeutic Compounds in Ischemic
Stroke. Front Neurol 12 , 745240,
doi:10.3389/fneur.2021.745240 (2021).
76 Huang, T. et al. Construction of a Novel Ferroptosis-Related
Gene Signature of Atherosclerosis. Front Cell Dev Biol9 , 800833, doi:10.3389/fcell.2021.800833 (2021).
77 Migdady, I., Russman, A. & Buletko, A. B. Atrial Fibrillation and
Ischemic Stroke: A Clinical Review. Semin Neurol 41 ,
348-364, doi:10.1055/s-0041-1726332 (2021).
78 Bjerkreim, A. T. et al. Five-year readmission and mortality
differ by ischemic stroke subtype. J Neurol Sci 403 ,
31-37, doi:10.1016/j.jns.2019.06.007 (2019).
79 Rose, R. A. et al. Iron overload decreases CaV1.3-dependent
L-type Ca2+ currents leading to bradycardia, altered electrical
conduction, and atrial fibrillation. Circ Arrhythm Electrophysiol4 , 733-742, doi:10.1161/CIRCEP.110.960401 (2011).
80 Korantzopoulos, P., Letsas, K., Fragakis, N., Tse, G. & Liu, T.
Oxidative stress and atrial fibrillation: an update. Free Radic
Res 52 , 1199-1209, doi:10.1080/10715762.2018.1500696 (2018).
81 Nomani, H. et al. Atrial fibrillation in beta-thalassemia
patients with a focus on the role of iron-overload and oxidative stress:
A review. J Cell Physiol 234 , 12249-12266,
doi:10.1002/jcp.27968 (2019).
82 Kim, Y. M. et al. A myocardial Nox2 containing NAD(P)H oxidase
contributes to oxidative stress in human atrial fibrillation. Circ
Res 97 , 629-636, doi:10.1161/01.RES.0000183735.09871.61
(2005).
83 Ren, X. et al. Mechanisms and Treatments of Oxidative Stress
in Atrial Fibrillation. Curr Pharm Des 24 , 3062-3071,
doi:10.2174/1381612824666180903144042 (2018).
84 Guo, Y. H. & Yang, Y. Q. Atrial Fibrillation: Focus on Myocardial
Connexins and Gap Junctions. Biology (Basel) 11 ,
doi:10.3390/biology11040489 (2022).
85 Gemel, J. et al. Intermittent hypoxia causes NOX2-dependent
remodeling of atrial connexins. BMC Cell Biol 18 , 7,
doi:10.1186/s12860-016-0117-5 (2017).
86 Dai, C. et al. Inhibition of ferroptosis reduces
susceptibility to frequent excessive alcohol consumption-induced atrial
fibrillation. Toxicology 465 , 153055,
doi:10.1016/j.tox.2021.153055 (2022).
87 Yu, L. M. et al. Inhibition of ferroptosis by icariin
treatment attenuates excessive ethanol consumption-induced atrial
remodeling and susceptibility to atrial fibrillation, role of SIRT1.Apoptosis , doi:10.1007/s10495-023-01814-8 (2023).
88 Kong, B. et al. Gut Microbiota Dysbiosis Induced by a High-Fat
Diet Increases Susceptibility to Atrial Fibrillation. Can J
Cardiol 38 , 1962-1975, doi:10.1016/j.cjca.2022.08.231 (2022).
89 Zhang, Z. et al. Elabela alleviates ferroptosis, myocardial
remodeling, fibrosis and heart dysfunction in hypertensive mice by
modulating the IL-6/STAT3/GPX4 signaling. Free Radic Biol Med181 , 130-142, doi:10.1016/j.freeradbiomed.2022.01.020 (2022).
90 Zhang, S. et al. Induction of ferroptosis promotes vascular
smooth muscle cell phenotypic switching and aggravates neointimal
hyperplasia in mice. Mol Med 28 , 121,
doi:10.1186/s10020-022-00549-7 (2022).
91 Chen, Y. et al. Astaxanthin Attenuates Hypertensive Vascular
Remodeling by Protecting Vascular Smooth Muscle Cells from Oxidative
Stress-Induced Mitochondrial Dysfunction. Oxid Med Cell Longev2020 , 4629189, doi:10.1155/2020/4629189 (2020).
92 Montezano, A. C. et al. Oxidative stress and human
hypertension: vascular mechanisms, biomarkers, and novel therapies.Can J Cardiol 31 , 631-641,
doi:10.1016/j.cjca.2015.02.008 (2015).
93 Avendano, M. S. et al. Role of COX-2-derived PGE2 on vascular
stiffness and function in hypertension. Br J Pharmacol173 , 1541-1555, doi:10.1111/bph.13457 (2016).
94 Li, Y., Tian, D., Zhu, C. & Ren, L. Demethoxycurcumin Preserves
Renovascular Function by Downregulating COX-2 Expression in
Hypertension. Oxid Med Cell Longev 2016 , 9045736,
doi:10.1155/2016/9045736 (2016).
95 Tanase, D. M. et al. Oxidative Stress in Arterial Hypertension
(HTN): The Nuclear Factor Erythroid Factor 2-Related Factor 2 (Nrf2)
Pathway, Implications and Future Perspectives. Pharmaceutics14 , doi:10.3390/pharmaceutics14030534 (2022).
96 Farooqui, Z., Mohammad, R. S., Lokhandwala, M. F. & Banday, A. A.
Nrf2 inhibition induces oxidative stress, renal inflammation and
hypertension in mice. Clin Exp Hypertens 43 , 175-180,
doi:10.1080/10641963.2020.1836191 (2021).
97 Li, X. T. et al. Sirtuin 7 mitigates renal ferroptosis,
fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2
signaling. Free Radic Biol Med 193 , 459-473,
doi:10.1016/j.freeradbiomed.2022.10.320 (2022).
98 Wang, C. et al. NRF2 prevents hypertension, increased ADMA,
microvascular oxidative stress, and dysfunction in mice with two weeks
of ANG II infusion. Am J Physiol Regul Integr Comp Physiol314 , R399-R406, doi:10.1152/ajpregu.00122.2017 (2018).
99 Xu, P. et al. Elabela-APJ axis attenuates cerebral
ischemia/reperfusion injury by inhibiting neuronal ferroptosis.Free Radic Biol Med 196 , 171-186,
doi:10.1016/j.freeradbiomed.2023.01.008 (2023).
100 Millan, M. et al. Increased body iron stores are associated
with poor outcome after thrombolytic treatment in acute stroke.Stroke 38 , 90-95, doi:10.1161/01.STR.0000251798.25803.e0
(2007).
101 Yang, J., Wang, M., Wang, S., Li, G. & Gao, Y. Study on ferroptosis
pathway that operates in hypertensive brain damage. Clin Exp
Hypertens 42 , 748-752, doi:10.1080/10641963.2020.1783545
(2020).
102 Cipolla, M. J., Liebeskind, D. S. & Chan, S. L. The importance of
comorbidities in ischemic stroke: Impact of hypertension on the cerebral
circulation. J Cereb Blood Flow Metab 38 , 2129-2149,
doi:10.1177/0271678X18800589 (2018).
103 Stead, L. G. et al. The impact of blood pressure hemodynamics
in acute ischemic stroke: a prospective cohort study. Int J Emerg
Med 5 , 3, doi:10.1186/1865-1380-5-3 (2012).
104 Kernan, W. N. & Inzucchi, S. E. Type 2 Diabetes Mellitus and
Insulin Resistance: Stroke Prevention and Management. Curr Treat
Options Neurol 6 , 443-450, doi:10.1007/s11940-004-0002-y
(2004).
105 Beckman, J. A., Paneni, F., Cosentino, F. & Creager, M. A. Diabetes
and vascular disease: pathophysiology, clinical consequences, and
medical therapy: part II. Eur Heart J 34 , 2444-2452,
doi:10.1093/eurheartj/eht142 (2013).
106 Wang, J. & Wang, H. Oxidative Stress in Pancreatic Beta Cell
Regeneration. Oxid Med Cell Longev 2017 , 1930261,
doi:10.1155/2017/1930261 (2017).
107 Li, D. et al. Quercetin Alleviates Ferroptosis of Pancreatic
beta Cells in Type 2 Diabetes. Nutrients 12 ,
doi:10.3390/nu12102954 (2020).
108 Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by
shaping cellular lipid composition. Nat Chem Biol 13 ,
91-98, doi:10.1038/nchembio.2239 (2017).
109 Killion, E. A. et al. A role for long-chain acyl-CoA
synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and
obesity-associated adipocyte dysfunction. Mol Metab 9 ,
43-56, doi:10.1016/j.molmet.2018.01.012 (2018).
110 Ansari, I. H. et al. Characterization of Acyl-CoA synthetase
isoforms in pancreatic beta cells: Gene silencing shows participation of
ACSL3 and ACSL4 in insulin secretion. Arch Biochem Biophys618 , 32-43, doi:10.1016/j.abb.2017.02.001 (2017).
111 Gong, W., Zhu, G., Li, J. & Yang, X. LncRNA MALAT1 promotes the
apoptosis and oxidative stress of human lens epithelial cells via
p38MAPK pathway in diabetic cataract. Diabetes Res Clin Pract144 , 314-321, doi:10.1016/j.diabres.2018.06.020 (2018).
112 Dhananjayan, R., Koundinya, K. S., Malati, T. & Kutala, V. K.
Endothelial Dysfunction in Type 2 Diabetes Mellitus. Indian J Clin
Biochem 31 , 372-379, doi:10.1007/s12291-015-0516-y (2016).
113 Luo, E. F. et al. Role of ferroptosis in the process of
diabetes-induced endothelial dysfunction. World J Diabetes12 , 124-137, doi:10.4239/wjd.v12.i2.124 (2021).
114 Yokoyama, M. et al. p53 plays a crucial role in endothelial
dysfunction associated with hyperglycemia and ischemia. J Mol Cell
Cardiol 129 , 105-117, doi:10.1016/j.yjmcc.2019.02.010 (2019).
115 Chen, C. et al. Long noncoding RNA Meg3 mediates ferroptosis
induced by oxygen and glucose deprivation combined with hyperglycemia in
rat brain microvascular endothelial cells, through modulating the
p53/GPX4 axis. Eur J Histochem 65 ,
doi:10.4081/ejh.2021.3224 (2021).
116 Liu, C. et al. Blocking P2RX7 Attenuates Ferroptosis in
Endothelium and Reduces HG-induced Hemorrhagic Transformation After MCAO
by Inhibiting ERK1/2 and P53 Signaling Pathways. Mol Neurobiol60 , 460-479, doi:10.1007/s12035-022-03092-y (2023).
117 Gonzalez-Aquines, A. et al. [Obstructive sleep apnea
syndrome and its relationship with ischaemic stroke]. Rev
Neurol 69 , 255-260, doi:10.33588/rn.6906.2019061 (2019).
118 Salari, N. et al. The effect of obstructive sleep apnea on
the increased risk of cardiovascular disease: a systematic review and
meta-analysis. Neurol Sci 43 , 219-231,
doi:10.1007/s10072-021-05765-3 (2022).
119 Xu, L., Yang, Y. & Chen, J. The role of reactive oxygen species in
cognitive impairment associated with sleep apnea. Exp Ther Med20 , 4, doi:10.3892/etm.2020.9132 (2020).
120 Zhou, L. et al. Dysfunction of Nrf2-ARE Signaling Pathway:
Potential Pathogenesis in the Development of Neurocognitive Impairment
in Patients with Moderate to Severe Obstructive Sleep Apnea-Hypopnea
Syndrome. Oxid Med Cell Longev 2018 , 3529709,
doi:10.1155/2018/3529709 (2018).
121 Chen, L. D. et al. Nrf2 plays protective role during
intermittent hypoxia-induced ferroptosis in rat liver (BRL-3A) cells.Sleep Breath , doi:10.1007/s11325-023-02801-8 (2023).
122 Sarma, M. K. et al. Accelerated Echo Planer J-resolved
Spectroscopic Imaging of Putamen and Thalamus in Obstructive Sleep
Apnea. Sci Rep 6 , 31747, doi:10.1038/srep31747 (2016).
123 Fung, S. J. et al. Apnea promotes glutamate-induced
excitotoxicity in hippocampal neurons. Brain Res 1179 ,
42-50, doi:10.1016/j.brainres.2007.08.044 (2007).
Figure 1 Mechanism and
regulation of ferroptosis in acute ischemic stroke
Related regulatory mechanisms of iron metabolism: damage of the
blood-brain barrier, imbalance of iron transport, and NCOA4-mediated
ferritin autophagy can lead to iron overload and induce the Fenton
reaction to produce a large number of ROS. Lipid metabolism related
regulatory mechanisms: The increased expression of acyl-CoA synthetase
long-chain family member 4 (ACSL4) and lipoxygenases (LOXs) induced
lipid peroxidation. Amino acid metabolism related regulatory mechanisms:
The expression of solute carrier family 7 member 11(SLC7A11) was
inhibited and the synthesis of glutathione (GSH) was restricted. The
decreased content of glutathione peroxidase 4 (GPX4) eventually led to
excessive accumulation of lipid peroxide. Polyunsaturated fatty acids
(PUFAs); prostaglandin-endoperoxide synthase 2 (PTGS2); cyclooxygenase-2
(COX2); arachidonic acid (AA); adrenic acid (AdA);
lyso-phosphatidylcholine acyltransferase-3 (LPCAT3); lipid peroxide
(L-OOH); Phospholipids-H (L-OH); solute carrier family 3 member A2
(SLC3A2); glutathione- cysteine ligase (GCL); glutathione synthase
(GSS); oxidized glutathione (GSSH); transferrin (TF); transferrin
receptor1 (TFR1); Divalent metal transporter 1 (DMT1); Six-transmembrane
epithelial antigen of prostate 3 (STEAP3); labile iron pool (LIP);
ferroportin (FPN)
Figure 2 Atherosclerosis associated ferroptosis hub gene
TP53 , MAPK1 , STAT3 , HMOX1 and PTGS2may be the key hub genes of AS-associated ferroptosis.
Figure 3 Atrial fibrillation risk factors regulate ferroptosis
and affect atrial fibrillation susceptibility
Alcohol consumption, obesity, and sepsis are risk factors for atrial
fibrillation, which can participate in the regulation of ferroptosis and
affect the susceptibility to atrial fibrillation.