[2] |
Zhang, D. P., Long, Z. Q., Dai, C. H.: Design and realization
of a novel position-and-speed measurement system with communication
function for the low-speed maglev train. Sens. Actuators. A. 203,
261-271(2013). |
[3] |
Zhai, M. D., Long, Z. Q., Li, X. L.: Calculation and
evaluation of load performance of magnetic levitation system in
medium-low speed maglev train. I. J. Applied Ele and Mec. 25(6),
1179-1193(2019). |
[4] |
Lei, W, Y., Qian, N., Zheng, J., et al.: Development and
Application of the Maglev Transportation System. IEEE-Inst Electrical
Electronics Engineers Inc. 18(2), 92-99(2007) |
[5] |
Khodaparastan, M., Dutta, O., Saleh, M., et al.: Modeling and
Simulation of DC Electric Rail Transit Systems With Wayside Energy
Storage. IEEE Trans. Veh. Technol. 68(3),
2218-2228(2019). |
[6] |
Xiao, S., Li, Y. H., Tong, M. Y., et al.: 3D Modelling of an
Integrated Grounding System for High-Speed Trains Considering Rail-Train
Current Reflux. IEEE Trans. Veh. Technol. 70(11),
11269-11282(2021). |
[7] |
Yang, X. F., Gu, J. D., Zheng, T. Q., et al.: Faults and
reliability analysis of negative resistance converter traction.
Microelectron. Reliab. 114, S1(2020) |
[8] |
Ding, J. F., Yang. X., Long, Z. Q., Structure and control
design of levitation electromagnet for electromagnetic suspension
medium-speed maglev train[J]. Journal of vibration and control.
25(6), 1179-1193(2019). |
[9] |
Liu, Z. G., Liu, T. J., Zhong, W.: Application of Model Based
Diagnosis for Diagnosing Faults in the High-speed Maglev’s Traction
Power Supply System[J]. Cognitive computation. 2(4):
312-315(2010). |
[10] |
Park, J.D.: Ground Fault Detection and Location for
Ungrounded DC Traction Power Systems. IEEE Trans. Veh. Technol. 64(12),
5667-5676(2015). |
[11] |
Huang, K., Liu, Z. G., Zhu, F., et al.: Grounding Behavior
and Optimization Analysis of Electric Multiple Units in High-Speed
Railways. IEEE Trans. On Electrification. 7(1):
240-255(2021). |
[12] |
Wang, T. T., Sun, G. B., Cao, H., et al.: Analysis of Urban
Rail DC Short Circuit Fault and Vehicle-Network Protection Coordination
Based on Transient Characteristics. J. Electrical Eng. & Technol.
18(3), 2417-2428(2022). |
[13] |
Li, W. Y., Zhou, L. J., Chen, T. D., et al.: Analysis of
Traction Reflux Characteristics of EMU and Improvement of Its Protective
Grounding System. IEEE Trans. On Electrification.
8(2)2736-2745(2022). |
[14] |
Jia, Q., Dong, X. Z., Mirsaeidi, S.: A traveling-wave-based
line protection strategy against single-line-to-ground faults in active
distribution networks. Int. J. Electrical Power & Energy Systems (107),
403-411(2019). |
[15] |
Chen,T. H., Liao R. N.: Modelling, simulation, and
verification for detailed short-circuit analysis of a 1×25 kV railway
traction system. IET Gener. Transm. Distrib. 10(5),
1124-1135(2016). |
[16] |
Platero, C. A., Serrano, J., Guerrero, J. M., et al.: Ground
Fault Location in 2×25 kV High-Speed Train Power Systems by
(Auto)Transformers Currents Ratio. IEEE Trans. Power Delivery. 36(5),
3065-3073(2021). |
[17] |
Bendjabeur, A., Kouadri, A., Mekhilef, S.: Transmission line
fault location by solving line differential equations. Electr. Power
Syst. Res. 192, 106912(2021) |
[18] |
Han, Z. Q., Li, S., Liu, S. P., et al.:A Reactance-Based
Fault Location Method for Overhead Lines of AC Electrified Railway. IEEE
Trans. Power Delivery. 35(5), 2558-2560(2020). |
[19] |
Tian, X. C., Shu, H. C.: A new method of single terminal
traveling wave location based on characteristic of superposition of
forward traveling wave and backward traveling wave. Int. J. Electrical
Power & Energy Systems. 133, 107072(2021) |
[20] |
Zhang, C. H., Song, G. B., Yang, L. M., et al.: Non-unit
travelling wave protection methodfor dc transmission line using
waveformcorrelation calculation. IET Gener. Transm. Distrib. 14(12),
2263-2270(2020). |
[21] |
Wang, J., Wang, W.: Frequency analysis and research of the
traveling wave signal of catenary line. Int. J. Commun. Systems. 35(5),
e4645(2022). |
[22] |
Parsi. M., Crossley. P., Dragotti. P. L., et al.: Wavelet
based fault location on power transmission lines using real-world
travelling wave data. Electr. Power Syst. Res. 186,
106261(2020). |
[23] |
Li, Z. W., Zeng, X. J., Yao, J. G., et al.: Wide area
traveling wave based power grid fault network location method. Int. J.
Electrical Power & Energy Systems. 63, 173-177(2014). |
[24] |
Shu H. C., Yang J. J., Zhang G. B.: A Novel Fault-location
Method for HVDC Transmission Lines Based on the Ratio of Two-terminal
Traveling Wave Frequency Difference. Proc. CSEE. 42(18),
6715-6727(2022). |