[1] Wang, H., Liu, W., Li, Q. Z., et al.: Compensation of negative sequence for a novel AC integrated power supply system of urban rail transit. IET Gener. Transm. Distrib. 15(22), 3188-3203(2021).
[2] Zhang, D. P., Long, Z. Q., Dai, C. H.: Design and realization of a novel position-and-speed measurement system with communication function for the low-speed maglev train. Sens. Actuators. A. 203, 261-271(2013).
[3] Zhai, M. D., Long, Z. Q., Li, X. L.: Calculation and evaluation of load performance of magnetic levitation system in medium-low speed maglev train. I. J. Applied Ele and Mec. 25(6), 1179-1193(2019).
[4] Lei, W, Y., Qian, N., Zheng, J., et al.: Development and Application of the Maglev Transportation System. IEEE-Inst Electrical Electronics Engineers Inc. 18(2), 92-99(2007)
[5] Khodaparastan, M., Dutta, O., Saleh, M., et al.: Modeling and Simulation of DC Electric Rail Transit Systems With Wayside Energy Storage. IEEE Trans. Veh. Technol. 68(3), 2218-2228(2019).
[6] Xiao, S., Li, Y. H., Tong, M. Y., et al.: 3D Modelling of an Integrated Grounding System for High-Speed Trains Considering Rail-Train Current Reflux. IEEE Trans. Veh. Technol. 70(11), 11269-11282(2021).
[7] Yang, X. F., Gu, J. D., Zheng, T. Q., et al.: Faults and reliability analysis of negative resistance converter traction. Microelectron. Reliab. 114, S1(2020)
[8] Ding, J. F., Yang. X., Long, Z. Q., Structure and control design of levitation electromagnet for electromagnetic suspension medium-speed maglev train[J]. Journal of vibration and control. 25(6), 1179-1193(2019).
[9] Liu, Z. G., Liu, T. J., Zhong, W.: Application of Model Based Diagnosis for Diagnosing Faults in the High-speed Maglev’s Traction Power Supply System[J]. Cognitive computation. 2(4): 312-315(2010).
[10] Park, J.D.: Ground Fault Detection and Location for Ungrounded DC Traction Power Systems. IEEE Trans. Veh. Technol. 64(12), 5667-5676(2015).
[11] Huang, K., Liu, Z. G., Zhu, F., et al.: Grounding Behavior and Optimization Analysis of Electric Multiple Units in High-Speed Railways. IEEE Trans. On Electrification. 7(1): 240-255(2021).
[12] Wang, T. T., Sun, G. B., Cao, H., et al.: Analysis of Urban Rail DC Short Circuit Fault and Vehicle-Network Protection Coordination Based on Transient Characteristics. J. Electrical Eng. & Technol. 18(3), 2417-2428(2022).
[13] Li, W. Y., Zhou, L. J., Chen, T. D., et al.: Analysis of Traction Reflux Characteristics of EMU and Improvement of Its Protective Grounding System. IEEE Trans. On Electrification. 8(2)2736-2745(2022).
[14] Jia, Q., Dong, X. Z., Mirsaeidi, S.: A traveling-wave-based line protection strategy against single-line-to-ground faults in active distribution networks. Int. J. Electrical Power & Energy Systems (107), 403-411(2019).
[15] Chen,T. H., Liao R. N.: Modelling, simulation, and verification for detailed short-circuit analysis of a 1×25 kV railway traction system. IET Gener. Transm. Distrib. 10(5), 1124-1135(2016).
[16] Platero, C. A., Serrano, J., Guerrero, J. M., et al.: Ground Fault Location in 2×25 kV High-Speed Train Power Systems by (Auto)Transformers Currents Ratio. IEEE Trans. Power Delivery. 36(5), 3065-3073(2021).
[17] Bendjabeur, A., Kouadri, A., Mekhilef, S.: Transmission line fault location by solving line differential equations. Electr. Power Syst. Res. 192, 106912(2021)
[18] Han, Z. Q., Li, S., Liu, S. P., et al.:A Reactance-Based Fault Location Method for Overhead Lines of AC Electrified Railway. IEEE Trans. Power Delivery. 35(5), 2558-2560(2020).
[19] Tian, X. C., Shu, H. C.: A new method of single terminal traveling wave location based on characteristic of superposition of forward traveling wave and backward traveling wave. Int. J. Electrical Power & Energy Systems. 133, 107072(2021)
[20] Zhang, C. H., Song, G. B., Yang, L. M., et al.: Non-unit travelling wave protection methodfor dc transmission line using waveformcorrelation calculation. IET Gener. Transm. Distrib. 14(12), 2263-2270(2020).
[21] Wang, J., Wang, W.: Frequency analysis and research of the traveling wave signal of catenary line. Int. J. Commun. Systems. 35(5), e4645(2022).
[22] Parsi. M., Crossley. P., Dragotti. P. L., et al.: Wavelet based fault location on power transmission lines using real-world travelling wave data. Electr. Power Syst. Res. 186, 106261(2020).
[23] Li, Z. W., Zeng, X. J., Yao, J. G., et al.: Wide area traveling wave based power grid fault network location method. Int. J. Electrical Power & Energy Systems. 63, 173-177(2014).
[24] Shu H. C., Yang J. J., Zhang G. B.: A Novel Fault-location Method for HVDC Transmission Lines Based on the Ratio of Two-terminal Traveling Wave Frequency Difference. Proc. CSEE. 42(18), 6715-6727(2022).