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 Semantic communication has attracted significant attention as a key 

technology for emerging 6G communications. Though it has lots of 

potentials specially for high volume media communications, still there is 

no proper quality metric for modelling the semantic noise in semantic 

communications. This paper proposes an autoencoder based image 

quality metric to quantify the semantic noise. An autoencoder is initially 

trained with the reference image to generate the encoder decoder model 
and calculate its latent vector space. Once it is trained, a semantically 

generated/received image is inserted to the same autoencoder to create 

the corresponding latent vector space. Finally, both vector spaces are used 

to define the Euclidean space between two spaces to calculate the Mean 

Square Error between two vector spaces, which is used to measure the 

effectiveness of the semantically generated image. Results indicate that 

the proposed model has a correlation coefficient of 88% with the 

subjective quality assessment. Furthermore, the proposed model is tested 
as a metric to evaluate the image quality in conventional image coding. 

Results indicate that the proposed model can also be used to replace 

conventional image quality metrics such as PSNR,SSIM,MSSIM,UQI, 

VIFP, and SSC whereas these conventional metrics completely failed in 

semantic noise modelling. 

 

Introduction: Semantic communication has led to renewed interest in 

solving "the semantic problem" in communication systems rather than 

further pursuing the limits of solutions to "the technical problem", giving 

rise to the concept of semantic communications, which has now become 

an active field of research [1],[2]. The main idea behind semantic 

communications is that, enabled by shared prior knowledge, a machine 

can identify the meaning of a message based on a semantic representation 

of the original message. An allegory for this concept in human terms 

would be one human being able to reconstruct a vivid picture in their 

mind of an event that they cannot see but can hear about from a radio 

broadcast or can read about from a printed book. Though, current 

semantic research is mainly limited to text and speech transmissions, 

there are some preliminary image transmissions on semantic 

communications through error-prone channels [3] is presented in the 

recent past. However, there is no any objective quality metric available 

for modelling semantic noise in the semantic channel for image 

transmission applications. This paper proposes an autoencoder based 

objective semantic quality evaluation model for quantifying the semantic 

noise in a semantic image transmission system.  

 
Related Work: Due to the advancement of Machine Learning (ML) and 

the exponential growth of media applications, it is expected that semantic 

communication will become the centrepiece of designing end-to-end 

media communication systems, mainly for Machine-to-Machine 

communications and 6G [4],[5],[6]. Semantic communication considers 

integrating the meaning of the data into various tasks related to 

processing and transmitting data, which represents a major change from 

the traditional Shannon paradigm [2]. Semantic communication is mainly 

supported by ML and Artificial Intelligence, more specifically deep 

learning techniques, which allow machines to comprehend information 

and extract the semantic, or meaning of the information, mimicking the 

functionality of the human brain. While some initial semantic 

communication research on text, audio and image transmission has been 

reported, there is no any model available for quantifying the semantic 

noise which is the main criteria for determining the success of the 

semantic communication system.  

There are a few existing semantic quality metrics available for text and 

speech transmission including semantic obviousness, semantic similarity 

measurement based on knowledge mining, and self-supervised 

contrastive projection learning [7],[8],[9]. Semantic communication 

system evaluation uses a semantic similarity measure [10] that combines 

semantic accuracy and completeness of recovered text. Recently, a 

perceptual impact of semantic content on image quality is founded on the 

concept of semantic obviousness [7]. This method extracts two types of 

features: one for capturing local image characteristics and another for 

measuring semantic obviousness. Self-supervised contrastive projection 

learning is a key concept proposed by researchers to evaluate the 

semantic similarity in single-particle diffraction images [8]. 

Dimensionality reduction is one such strategy, which results in 

embeddings with semantic meaning that is consistent with physical 

intuition. Additionally, researchers have extended the knowledge in 

Artificial Neural Networks (ANN) to assessing semantic similarity. This 

research introduces a feature-based approach that leverages artificial 

ANNs to simulate the human similarity ranking process [9]. However, 

none of these methods can be used for semantically generated images, 

since the concepts of semantics used in the papers and semantic 

communication have a significant gap. In response, this paper proposes 

first such model which can quantify the level of semantic noise in a 

semantically generated image, which is a crucial factor in evaluating the 

effectiveness of image based semantic communication system.  

 

Proposed Framework: Figure 1 illustrates the proposed framework for 

estimating the semantic noise of the semantic communication system. As 

shown in figure 1, the proposed autoencoder (presents in Figure 2) is 

trained with the original or reference (undistorted) image and its latent 

vector (Vo) is generated. Once it’s trained, any semantically generated 

image or quantised image is considered as the input to the same 

autoencoder, and the new latent vector (V1) is derived. Finally, the 

Euclidean space between the two vectors (Vo and V1) is considered to 

generate the Mean Square Error between the vector space as presented in 

Equation (1), 

𝐴𝐸𝑄𝑀 = (
∑ (𝑉𝑖𝑜−𝑉𝑖1)2𝑁

𝑖=1

𝑁
)             (1) 

where 𝑉𝑖𝑜, 𝑉𝑖1𝑎𝑛𝑑 𝑁  are latent vector of the original image, latent vector 

of the distorted image and the size of the latent vector space respectively. 

 
Fig. 1 Autoencoder-based semantic noise model framework. 

 
Fig.1a Encoder 

 
Fig.1b Decoder 

Fig. 2 Proposed autoencoder architecture used in the proposed quality 

model. 



 
 

Figure 2 presents the autoencoder implemented in the proposed quality 

metric introduced in Figure 1. The input layer has the form of (192 x 256 

x 3) pixels and convolutional and de-convolutional layers are used to 

define the architecture of the autoencoder. Four convolutional layers with 

a rectified linear unit (ReLU) activation function are formed as encoder 

layers. The decoder layers include four de-convolutional layers with a 

ReLU activation function, followed by a final convolutional layer with a 

sigmoid activation function. The autoencoder model is then defined as a 

sequential model by combining the encoder and decoder layers. Finally, 

the autoencoder model is compiled with the Adam optimizer with a 

learning rate of 0.001 and a binary cross-entropy loss function before 

training the model. In order to optimize the performance and the 

complexity, the above hyperparameters are selected based on a series of 

experiments. Since the proposed codec uses four convolutional layers, it 

has the capability of capturing the image features accurately, which is 

considered as the foundation of the proposed quality metric. Since 

semantic communication uses the semantic meaning rather than the pixel 

level distortions in an image, the proposed model has the capability of 

evaluating the semantic noise accurately. 

Though the above model assumes an image size of 192x256, it should be 

noted that this can be extended to any image size, since it’s independent 

of the spatial resolution of the image.  

  

Results: The proposed Auto Encoder Quality Model (AEQM) is tested 

with 11 different image categories (Spatial Index ranges from low to 

high) to find out how it is performed against existing most popular image 

quality metrics (Peak Signal-to-Noise Ratio  (PSNR), Universal Quality 

Image Index (UQI), Visual Information Fidelity (VIFP), Structural 

Similarity Index (SSIM), Spatial Correlation Coefficient (SCC), Multi-

scale Structural Similarity Index  (MSSIM)). Table 1 illustrates the 

performance comparisons between the AEQM and the above metrics for 

11 different image groups with different quantization artefacts generated 

from a JPEG codec (Level of quantization of 5% -100% are considered 

during this experiment). Table 1 also presents the corresponding 

subjective quality assessments (DSQA-Double Stimulus Quality 

Assessment) with 50 subjects. Results clearly show that AEQM is highly 

correlated with the subjective scores, like the standard image quality 

metrics considered (range of all metrics are provided in Table 2).  

Table 1: Performance of AEQM in modelling quantization noise.   
Quality 

Metric 

Quantization Level 

Q5 Q10 Q25 Q50 Q75 Q100 

PSNR 23.074 25.345 28.058 30.020 32.21 39.49 

UQI 0.9750 0.9850 0.991 0.994 0.996 0.998 

VIFP 0.2025 0.2858 0.397 0.475 0.553 0.824 

SSIM 0.6498 0.7436 0.842 0.892 0.927 0.985 

SCC 0.1426 0.2361 0.379 0.488 0.583 0.887 

MSSIM 0.870 0.9303 0.969 0.983 0.990 0.998 

AEQM 0.0001 0.000043 0.000016 0.000007 0.000003 0.0000002 

Subject. 

Score 2.51 2.98 3.46 4.12 4.45 4.95 

 

Table 2: Performance of AEQM in modelling semantic noise.   
Quality Metric Quality 

Score 

Lowest 

Score 

Highest 

Score 

Correlation  

Coefficient 

PSNR 12.799 0 dB ∞ dB 30% 

UQI 0.779 0 1 31% 

VIFP 0.059 0 1 21% 

SSIM 0.345 0 1 22% 

SCC 0.029 0 1 6% 

MSSIM 0.385 0 1 25% 

AEQM 0.001 1 0 88% 

Subjective Score 4.891 0 5 N/A 

Finally, the performance of AEQM is investigated for semantically 

generated images in modelling the semantic noise/distortions. The 

models proposed in [3], [11] are considered in generating semantically 

communicated images at the receiver. Generative Adversarial Network 

(GAN) generated images and reference images are used in the model 

proposed as shown in the Figure 1 and Figure 2 in calculating the AEQM. 

For the comparison purpose, same images are considered in conventional 

quality metrics calculations and Table 2 illustrates the performance 

comparisons. As before, subjective experiments (DSQA) with 50 

subjects are conducted in verifying the proposed objective quality metric. 

Results indicate that AEQM has a very high correlation coefficient of 

88% against the subjective scores, while all other conventional metrics 

performed extremely poor.  Conventional image quality metrics are 

designed for measuring the quantization artifacts of the image rather than 

the semantics of it, while proposed metric considers both quantization 

artifacts and semantics of the images.  The proposed encoder has the 

capability of extracting the semantics of the image rather than only the 

statistics of the image and compare against the original image, which 

leads to its superior performance. Though AEQM is computationally 

expensive compared to other metrics considered, it can be considered as 

an objective quality metric in modelling the semantic noise in semantic 

communications due to its outstanding performance.  

 

Conclusions: In this paper, an autoencoder based objective quality metric 

is proposed for modelling semantic noise in semantic communications. 

The autoencoder is trained using an undistorted image, and its latent 

vector is compared against the latent vector of the distorted or generated 

image in the semantic communication system. Vector spaces are used in 

calculating the Mean Square Error between the two vector spaces and 

generate a model for quantifying the semantic noise. Results indicate that 

the proposed AEQM model exhibits a very high correlation (88%) 

against the subjective quality assessment in quantifying the semantic 

noise and outperforms traditional image quality metrics by a significant 

margin. In the future, the proposed model will be further developed in 

modelling the semantic noise in semantic video communications. 
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