References
1. Ragauskas AJ, Williams CK, Davison BH, et al. The path forward for biofuels and biomaterials. science.2006;311(5760):484-489.
2. Teong SP, Yi G, Zhang Y. Hydroxymethylfurfural production from bioresources: past, present and future. Green Chemistry.2014;16(4):2015-2026.
3. Manochio C, Andrade B, Rodriguez R, Moraes B. Ethanol from biomass: A comparative overview. Renewable and Sustainable Energy Reviews. 2017;80:743-755.
4. Liu Y, Nie Y, Lu X, et al. Cascade utilization of lignocellulosic biomass to high-value products. Green Chemistry.2019;21(13):3499-3535.
5. Mao L, Zhang L, Gao N, Li A. Seawater-based furfural production via corncob hydrolysis catalyzed by FeCl 3 in acetic acid steam. Green chemistry. 2013;15(3):727-737.
6. van Osch DJ, Kollau LJ, van den Bruinhorst A, Asikainen S, Rocha MA, Kroon MC. Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Physical Chemistry Chemical Physics. 2017;19(4):2636-2665.
7. Schutyser W, Renders aT, Van den Bosch S, Koelewijn S-F, Beckham G, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading.Chemical Society Reviews. 2018;47(3):852-908.
8. Ragauskas AJ, Beckham GT, Biddy MJ, et al. Lignin valorization: improving lignin processing in the biorefinery.science. 2014;344(6185):1246843.
9. Zhao X, Zhang L, Liu D. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining. 2012;6(4):465-482.
10. Zhang Q, De Oliveira Vigier K, Royer S, Jerome F. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. Nov 7 2012;41(21):7108-7146.
11. Satlewal A, Agrawal R, Bhagia S, Sangoro J, Ragauskas AJ. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities.Biotechnol. Adv. Dec 2018;36(8):2032-2050.
12. Wang Y, Kim KH, Jeong K, Kim N-K, Yoo CG. Sustainable biorefinery processes using renewable deep eutectic solvents.Curr. Opin. Green Sustain. Chem. 2021;27.
13. Shen X-J, Wen J-L, Mei Q-Q, et al. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization.Green Chem. 2019;21(2):275-283.
14. Kim KH, Dutta T, Sun J, Simmons B, Singh S. Biomass pretreatment using deep eutectic solvents from lignin derived phenols.Green Chem. 2018;20(4):809-815.
15. Wang Y, Meng X, Jeong K, et al. Investigation of a Lignin-Based Deep Eutectic Solvent Using p-Hydroxybenzoic Acid for Efficient Woody Biomass Conversion. ACS Sustainable Chem. Eng.2020;8(33):12542-12553.
16. Huang C, Zhan Y, Cheng J, et al. Facilitating enzymatic hydrolysis with a novel guaiacol-based deep eutectic solvent pretreatment. Bioresour. Technol. Apr 2021;326:124696.
17. Wang Y, Kim KH, Jeong K, Kim N-K, Yoo CG. Sustainable biorefinery processes using renewable deep eutectic solvents.Current Opinion in Green and Sustainable Chemistry.2021;27:100396.
18. Bhatia SK, Jagtap SS, Bedekar AA, et al. Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges.Bioresource technology. 2020;300:122724.
19. Shen X-J, Wen J-L, Mei Q-Q, et al. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization.Green chemistry. 2019;21(2):275-283.
20. Padilha CEdA, Nogueira CdC, Alencar BRA, et al. Production and application of lignin-based chemicals and materials in the cellulosic ethanol production: An overview on lignin closed-loop biorefinery approaches. Waste and Biomass Valorization.2021;12(12):6309-6337.
21. Kumar AK, Parikh BS, Pravakar M. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res. Int. May 2016;23(10):9265-9275.
22. Xia Q, Liu Y, Meng J, et al. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem. 2018;20(12):2711-2721.
23. Okamura-Abe Y, Abe T, Nishimura K, et al. Beta-ketoadipic acid and muconolactone production from a lignin-related aromatic compound through the protocatechuate 3,4-metabolic pathway. J Biosci Bioeng. Jun 2016;121(6):652-658.
24. Kunjapur AM, Prather KLJ. Development of a vanillate biosensor for the vanillin biosynthesis pathway in E. coli.ACS Synth. Biol. 2019;8:1958-1967.
25. Chen Z, Shen X, Wang J, Wang J, Yuan Q, Yan Y. Rational engineering of p-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway.Biotechnol Bioeng. Nov 2017;114(11):2571-2580.
26. Tian Y, Yang M, Lin C-Y, et al. Expression of Dehydroshikimate Dehydratase in Sorghum Improves Biomass Yield, Accumulation of Protocatechuate, and Biorefinery Economics. ACS Sustainable Chemistry & Engineering. 2022;10(38):12520-12528.
27. Alt S, Burkard N, Kulik A, Grond S, Heide L. An artificial pathway to 3, 4-dihydroxybenzoic acid allows generation of new aminocoumarin antibiotic recognized by catechol transporters of E. coli.Chemistry & biology. 2011;18(3):304-313.
28. Wang Y, Meng X, Tian Y, et al. Engineered Sorghum Bagasse Enables a Sustainable Biorefinery with p‐Hydroxybenzoic Acid‐Based Deep Eutectic Solvent. ChemSusChem. 2021;14(23):5235-5244.
29. Sluiter A, Hames B, Ruiz R, et al. Determination of Structural Carbohydrates and Lignin in Biomass. Technical Report NREL. 2008;NREL/TP-510-42618.
30. Adney B, Baker J. Measurement of Cellulase Activities 1996.
31. Resch MG, Baker JO, Decker SR. Low Solids Enzymatic Saccharification of Lignocellulosic Biomass 2015.
32. Hayyan A, Mjalli FS, AlNashef IM, Al-Wahaibi YM, Al-Wahaibi T, Hashim MA. Glucose-based deep eutectic solvents: Physical properties.Journal of Molecular Liquids. 2013;178:137-141.
33. Wang Y, Meng X, Tian Y, et al. Engineered Sorghum Bagasse Enables a Sustainable Biorefinery with p-Hydroxybenzoic Acid-Based Deep Eutectic Solvent. ChemSusChem. Sep 17 2021.
34. Tian Y, Yang M, Lin C-Y, et al. Expression of Dehydroshikimate Dehydratase in Sorghum Improves Biomass Yield, Accumulation of Protocatechuate, and Biorefinery Economics. ACS Sustainable Chemistry & Engineering. 2022;10(38):12520-12528.
35. Kumar AK, Shah E, Patel A, Sharma S, Dixit G. Physico-chemical characterization and evaluation of neat and aqueous mixtures of choline chloride + lactic acid for lignocellulosic biomass fractionation, enzymatic hydrolysis and fermentation. Journal of Molecular Liquids. 2018;271:540-549.
36. Li N, Meng F, Yang H, Shi Z, Zhao P, Yang J. Enhancing enzymatic digestibility of bamboo residues using a three-constituent deep eutectic solvent pretreatment. Bioresour Technol. Feb 2022;346:126639.
37. Usman MA, Fagoroye OK, Ajayi TO. Evaluation of hybrid solvents featuring choline chloride-based deep eutectic solvents and ethanol as extractants for the liquid-liquid extraction of benzene from n-hexane: towards a green and sustainable paradigm. Appl Petrochem Res. 2021;11(3):335-351.
38. Meng X, Pu Y, Yoo CG, et al. An in‐depth understanding of biomass recalcitrance using natural poplar variants as the feedstock.ChemSusChem. 2017;10(1):139-150.
39. Meng X, Sun Q, Kosa M, Huang F, Pu Y, Ragauskas AJ. Physicochemical Structural Changes of Poplar and Switchgrass during Biomass Pretreatment and Enzymatic Hydrolysis. ACS Sustainable Chemistry & Engineering. 2016;4(9):4563-4572.
40. Han Y, Bai Y, Zhang J, Liu D, Zhao X. A comparison of different oxidative pretreatments on polysaccharide hydrolyzability and cell wall structure for interpreting the greatly improved enzymatic digestibility of sugarcane bagasse by delignification.Bioresources and Bioprocessing. 2020;7(1):1-16.
41. Chiranjeevi T, Mattam AJ, Vishwakarma KK, et al. Assisted single-step acid pretreatment process for enhanced delignification of rice straw for bioethanol production. ACS Sustainable Chemistry & Engineering. 2018;6(7):8762-8774.
42. He J, Huang C, Lai C, Jin Y, Ragauskas A, Yong Q. Investigation of the effect of lignin/pseudo-lignin on enzymatic hydrolysis by Quartz Crystal Microbalance. Industrial Crops and Products. 2020;157:112927.
43. Hu F, Jung S, Ragauskas A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresource technology.2012;117:7-12.
44. Huang C, Cheng J, Zhan Y, et al. Utilization of guaiacol-based deep eutectic solvent for achieving a sustainable biorefinery. Bioresource Technology. 2022;362:127771.
45. Wen JL, Sun SL, Xue BL, Sun RC. Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR) Methodology. Materials Jan 23 2013;6(1):359-391.
46. Mansfield SD, Kim H, Lu F, Ralph J. Whole plant cell wall characterization using solution-state 2D NMR. Nat. Protoc. Sep 2012;7(9):1579-1589.
47. Ralph J. Hydroxycinnamates in lignification.Phytochemistry Reviews. 2009;9(1):65-83.
48. Grabber JH, Hatfield RD, Lu F, Ralph J. Coniferyl Ferulate Incorporation into Lignin Enhances the Alkaline Delignification and Enzymatic Degradation. Biomacromolecules. 2008;9.