References
1. Chiang C-E, Naditch-Brûlé L, Murin J, Goethals M, Inoue H, O’Neill J,
et al. Distribution and risk profile of paroxysmal, persistent, and
permanent atrial fibrillation in routine clinical practice: insight from
the real-life global survey evaluating patients with atrial fibrillation
international registry. Circ Arrhythm Electrophysiol. 2012 Aug
1;5(4):632–9.
2. Duytschaever M, Vijgen J, De Potter T, Scherr D, Van Herendael H,
Knecht S, et al. Standardized pulmonary vein isolation workflow to
enclose veins with contiguous lesions: the multicentre VISTAX trial.
Europace. 2020 Nov 1;22(11):1645–52.
3. Reinsch N, Füting A, Buchholz J, Ruprecht U, Holzendorf V, Buschmeier
F, et al. One-year outcome and durability of pulmonary vein isolation
after prospective use of ablation index for catheter ablation in
patients with persistent atrial fibrillation. J Interv Card
Electrophysiol. 2021 Oct;62(1):143–51.
4. Kalin A, Usher-Smith J, Jones VJ, Huang CL-H, Sabir IN. Cardiac
Arrhythmia: A Simple Conceptual Framework. Trends Cardiovasc Med. 2010
Apr;20(3):103–7.
5. Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, et
al. Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats
Originating in the Pulmonary Veins. N Engl J Med. 1998 Sep
3;339(10):659–66.
6. Hocini M, Jaïs P, Sanders P, Takahashi Y, Rotter M, Rostock T, et al.
Techniques, Evaluation, and Consequences of Linear Block at the Left
Atrial Roof in Paroxysmal Atrial Fibrillation. Circulation. 2005 Dec
13;112(24):3688–96.
7. Jaïs P, Hocini M, Hsu L-F, Sanders P, Scavee C, Weerasooriya R, et
al. Technique and Results of Linear Ablation at the Mitral Isthmus.
Circulation. 2004 Nov 9;110(19):2996–3002.
8. Sheikh I, Krum D, Cooley R, Dhala A, Blanck Z, Bhatia A, et al.
Pulmonary vein isolation and linear lesions in atrial fibrillation
ablation. J Interv Card Electrophysiol. 2006 Nov;17(2):103–9.
9. Nademanee K, McKenzie J, Kosar E, Schwab M, Sunsaneewitayakul B,
Vasavakul T, et al. A new approach for catheter ablation of atrial
fibrillation: mapping of the electrophysiologic substrate. J Am Coll
Cardiol. 2004 Jun 2;43(11):2044–53.
10. Narayan SM, Krummen DE, Rappel W-J. Clinical Mapping Approach To
Diagnose Electrical Rotors and Focal Impulse Sources for Human Atrial
Fibrillation. J Cardiovasc Electrophysiol. 2012 May;23(5):447–54.
11. Buch E, Share M, Tung R, Benharash P, Sharma P, Koneru J, et al.
Long-term clinical outcomes of focal impulse and rotor modulation for
treatment of atrial fibrillation: A multicenter experience. Hear Rhythm.
2016 Mar;13(3):636–41.
12. Verma A, Jiang C, Betts TR, Chen J, Deisenhofer I, Mantovan R, et
al. Approaches to catheter ablation for persistent atrial fibrillation.
N Engl J Med. 2015 May 7;372(19):1812–22.
13. Morillo CA, Klein GJ, Jones DL, Guiraudon CM. Chronic Rapid Atrial
Pacing. Circulation [Internet]. 1995 Mar 1 [cited 2022 Nov
28];91(5):1588–95. Available from:
https://www.ahajournals.org/doi/abs/10.1161/01.cir.91.5.1588
14. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial
fibrillation begets atrial fibrillation. A study in awake chronically
instrumented goats. Circulation. 1995 Oct 1;92(7):1954–68.
15. Davies MJ, Pomerance A. Pathology of atrial fibrillation in man. Br
Hear [Internet]. 1972 [cited 2022 Nov 28];34:520–5. Available
from: http://heart.bmj.com/
16. Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A.
Histological Substrate of Atrial Biopsies in Patients With Lone Atrial
Fibrillation. Circulation [Internet]. 1997 Aug 19 [cited 2022 Nov
28];96(4):1180–4. Available from:
https://www.ahajournals.org/doi/abs/10.1161/01.cir.96.4.1180
17. Oakes RS, Badger TJ, Kholmovski EG, Akoum N, Burgon NS, Fish EN, et
al. Detection and Quantification of Left Atrial Structural Remodeling
Using Delayed Enhancement MRI in Patients with Atrial Fibrillation.
Circulation [Internet]. 2009 Apr 4 [cited 2022 Nov
28];119(13):1758. Available from: /pmc/articles/PMC2725019/
18. Rolf S, Kircher S, Arya A, Eitel C, Sommer P, Richter S, et al.
Tailored atrial substrate modification based on low-voltage areas in
catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol.
2014 Oct;7(5):825–33.
19. Cutler MJ, Johnson J, Abozguia K, Rowan S, Lewis W, Costantini O, et
al. Impact of Voltage Mapping to Guide Whether to Perform Ablation of
the Posterior Wall in Patients With Persistent Atrial Fibrillation. J
Cardiovasc Electrophysiol. 2016 Jan;27(1):13–21.
20. Cutler MJ, Sattayaprasert P, Pivato E, Jabri A, AlMahameed ST, Ziv
O. Low voltage-guided ablation of posterior wall improves 5-year
arrhythmia-free survival in persistent atrial fibrillation. J Cardiovasc
Electrophysiol [Internet]. 2022 [cited 2022 Nov 28]; Available
from: https://pubmed.ncbi.nlm.nih.gov/35332610/
21. Jadidi AS, Lehrmann H, Keyl C, Sorrel J, Markstein V, Minners J, et
al. Ablation of Persistent Atrial Fibrillation Targeting Low-Voltage
Areas With Selective Activation Characteristics. Circ Arrhythm
Electrophysiol [Internet]. 2016 Mar 1 [cited 2022 Nov 28];9(3).
Available from: https://pubmed.ncbi.nlm.nih.gov/26966286/
22. Yagishita A, Gimbel JR, De Oliveira S, Manyam H, Sparano D, Cakulev
I, et al. Long-Term Outcome of Left Atrial Voltage-Guided Substrate
Ablation During Atrial Fibrillation: A Novel Adjunctive Ablation
Strategy. J Cardiovasc Electrophysiol [Internet]. 2017 Feb 1
[cited 2022 Nov 28];28(2):147–55. Available from:
https://pubmed.ncbi.nlm.nih.gov/27862561/
23. Yang G, Yang B, Wei Y, Zhang F, Ju W, Chen H, et al. Catheter
Ablation of Nonparoxysmal Atrial Fibrillation Using
Electrophysiologically Guided Substrate Modification During Sinus Rhythm
After Pulmonary Vein Isolation. Circ Arrhythm Electrophysiol
[Internet]. 2016 Feb 1 [cited 2022 Nov 28];9(2). Available from:
https://pubmed.ncbi.nlm.nih.gov/26857907/
24. Wang XH, Li Z, Mao JL, He B. A novel individualized substrate
modification approach for the treatment of long-standing persistent
atrial fibrillation: preliminary results. Int J Cardiol [Internet].
2014 Jul 15 [cited 2022 Nov 28];175(1):162–8. Available from:
https://pubmed.ncbi.nlm.nih.gov/24874911/
25. Kircher S, Arya A, Altmann D, Rolf S, Bollmann A, Sommer P, et al.
Individually tailored vs. standardized substrate modification during
radiofrequency catheter ablation for atrial fibrillation: a randomized
study. Europace [Internet]. 2018 Nov 1 [cited 2022 Nov
28];20(11):1766–75. Available from:
https://pubmed.ncbi.nlm.nih.gov/29177475/
26. Huo Y, Gaspar T, Schönbauer R, Wójcik M, Fiedler L, Roithinger FX,
et al. Low-Voltage Myocardium-Guided Ablation Trial of Persistent Atrial
Fibrillation. NEJM Evid [Internet]. 2022 Oct 19 [cited 2022 Nov
28];1(11). Available from:
https://evidence.nejm.org/doi/full/10.1056/EVIDoa2200141
27. Yang B, Jiang C, Lin Y, Yang G, Chu H, Cai H, et al. STABLE-SR
(Electrophysiological Substrate Ablation in the Left Atrium During Sinus
Rhythm) for the Treatment of Nonparoxysmal Atrial Fibrillation: A
Prospective, Multicenter Randomized Clinical Trial. Circ Arrhythm
Electrophysiol [Internet]. 2017 Jan 8 [cited 2022 Nov
28];10(11). Available from: https://pubmed.ncbi.nlm.nih.gov/29141843/
28. Kumagai K, Toyama H, Zhang B. Effects of additional ablation of
low-voltage areas after Box isolation for persistent atrial
fibrillation. J arrhythmia [Internet]. 2019 Apr 1 [cited 2022 Nov
28];35(2):197–204. Available from:
https://pubmed.ncbi.nlm.nih.gov/31007783/
29. Masuda M, Asai M, Iida O, Okamoto S, Ishihara T, Nanto K, et al.
Additional Low-Voltage-Area Ablation in Patients With Paroxysmal Atrial
Fibrillation: Results of the Randomized Controlled VOLCANO Trial. J Am
Heart Assoc [Internet]. 2020 Jul 7 [cited 2022 Nov 28];9(13).
Available from: https://pubmed.ncbi.nlm.nih.gov/32578466/
30. Kanda T, Masuda M, Asai M, Iida O, Okamoto S, Ishihara T, et al.
Impact of left atrial low-voltage areas during initial ablation
procedures on very late recurrence of atrial fibrillation. J Cardiovasc
Electrophysiol [Internet]. 2022 Aug 1 [cited 2022 Nov
28];33(8):1697–704. Available from:
https://pubmed.ncbi.nlm.nih.gov/35748348/
31. Blandino A, Bianchi F, Grossi S, Biondi-Zoccai G, Conte MR, Gaido L,
et al. Left Atrial Substrate Modification Targeting Low-Voltage Areas
for Catheter Ablation of Atrial Fibrillation: A Systematic Review and
Meta-Analysis. Pacing Clin Electrophysiol [Internet]. 2017 Feb 1
[cited 2022 Nov 28];40(2):199–212. Available from:
https://pubmed.ncbi.nlm.nih.gov/28054377/
32. Junarta J, Siddiqui MU, Riley JM, Dikdan SJ, Patel A, Frisch DR.
Low-voltage area substrate modification for atrial fibrillation
ablation: a systematic review and meta-analysis of clinical trials.
Europace [Internet]. 2022 Oct 13 [cited 2022 Nov
28];24(10):1585–98. Available from:
https://pubmed.ncbi.nlm.nih.gov/35696286/
33. Aimé-Sempé C, Folliguet T, Rücker-Martin C, Krajewska M, Krajewski
S, Heimburger M, et al. Myocardial cell death in fibrillating and
dilated human right atria. J Am Coll Cardiol [Internet]. 1999 Nov 1
[cited 2022 Nov 28];34(5):1577–86. Available from:
https://pubmed.ncbi.nlm.nih.gov/10551709/
34. Boldt A, Wetzel U, Lauschke J, Weigl J, Gummert J, Hindricks G, et
al. Fibrosis in left atrial tissue of patients with atrial fibrillation
with and without underlying mitral valve disease. Heart [Internet].
2004 Apr 1 [cited 2022 Nov 28];90(4):400–5. Available from:
https://heart.bmj.com/content/90/4/400
35. Xu J, Cui G, Esmailian F, Plunkett M, Marelli D, Ardehali A, et al.
Atrial extracellular matrix remodeling and the maintenance of atrial
fibrillation. Circulation [Internet]. 2004 Jan 27 [cited 2022 Nov
28];109(3):363–8. Available from:
https://pubmed.ncbi.nlm.nih.gov/14732752/
36. Mariscalco G, Engström KG, Ferrarese S, Cozzi G, Bruno VD, Sessa F,
et al. Relationship between atrial histopathology and atrial
fibrillation after coronary bypass surgery. J Thorac Cardiovasc Surg
[Internet]. 2006 Jun [cited 2022 Nov 28];131(6):1364–72.
Available from: https://pubmed.ncbi.nlm.nih.gov/16733171/
37. Nakai T, Chandy J, Nakai K, Bellows WH, Flachsbart K, Lee RJ, et al.
Histologic assessment of right atrial appendage myocardium in patients
with atrial fibrillation after coronary artery bypass graft surgery.
Cardiology [Internet]. 2007 Aug [cited 2022 Nov
28];108(2):90–6. Available from:
https://pubmed.ncbi.nlm.nih.gov/17008797/
38. Kostin S, Klein G, Szalay Z, Hein S, Bauer EP, Schaper J. Structural
correlate of atrial fibrillation in human patients. Cardiovasc Res
[Internet]. 2002 [cited 2022 Nov 28];54(2):361–79. Available
from: https://pubmed.ncbi.nlm.nih.gov/12062341/
39. Luo MH, Li YS, Yang KP. Fibrosis of collagen I and remodeling of
connexin 43 in atrial myocardium of patients with atrial fibrillation.
Cardiology [Internet]. 2007 May [cited 2022 Nov
28];107(4):248–53. Available from:
https://pubmed.ncbi.nlm.nih.gov/16953110/
40. Poelzing S, Rosenbaum DS. Altered connexin43 expression produces
arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol
[Internet]. 2004 Oct [cited 2022 Nov 28];287(4). Available from:
https://pubmed.ncbi.nlm.nih.gov/15205174/
41. Louault C, Benamer N, Faivre JF, Potreau D, Bescond J. Implication
of connexins 40 and 43 in functional coupling between mouse cardiac
fibroblasts in primary culture. Biochim Biophys Acta [Internet].
2008 Oct [cited 2022 Nov 28];1778(10):2097–104. Available from:
https://pubmed.ncbi.nlm.nih.gov/18482576/
42. Miragoli M, Gaudesius G, Rohr S. Electrotonic modulation of cardiac
impulse conduction by myofibroblasts. Circ Res [Internet]. 2006 Mar
[cited 2022 Nov 28];98(6):801–10. Available from:
https://pubmed.ncbi.nlm.nih.gov/16484613/
43. Kamkin A, Kiseleva I, Wagner KD, Pylaev A, Leiterer KP, Theres H, et
al. A possible role for atrial fibroblasts in postinfarction
bradycardia. Am J Physiol Heart Circ Physiol [Internet]. 2002
[cited 2022 Nov 28];282(3). Available from:
https://pubmed.ncbi.nlm.nih.gov/11834477/
44. Nguyen TP, Xie Y, Garfinkel A, Qu Z, Weiss JN. Arrhythmogenic
consequences of myofibroblast–myocyte coupling. Cardiovasc Res
[Internet]. 2012 Feb 1 [cited 2022 Nov 28];93(2):242–51.
Available from:
https://academic.oup.com/cardiovascres/article/93/2/242/300891
45. Zlochiver S, Muñoz V, Vikstrom KL, Taffet SM, Berenfeld O, Jalife J.
Electrotonic myofibroblast-to-myocyte coupling increases propensity to
reentrant arrhythmias in two-dimensional cardiac monolayers. Biophys J
[Internet]. 2008 Nov 1 [cited 2022 Nov 28];95(9):4469–80.
Available from: https://pubmed.ncbi.nlm.nih.gov/18658226/
46. King JH, Huang CLH, Fraser JA. Determinants of myocardial conduction
velocity: implications for arrhythmogenesis. Front Physiol
[Internet]. 2013 [cited 2022 Nov 28];4. Available from:
https://pubmed.ncbi.nlm.nih.gov/23825462/
47. Gaudesius G, Miragoli M, Thomas SP, Rohr S. Coupling of cardiac
electrical activity over extended distances by fibroblasts of cardiac
origin. Circ Res [Internet]. 2003 Sep 5 [cited 2022 Nov
28];93(5):421–8. Available from:
https://pubmed.ncbi.nlm.nih.gov/12893743/
48. Quinn TA, Camelliti P, Rog-Zielinska EA, Siedlecka U, Poggioli T,
O’Toole ET, et al. Electrotonic coupling of excitable and nonexcitable
cells in the heart revealed by optogenetics. Proc Natl Acad Sci U S A
[Internet]. 2016 Dec 20 [cited 2022 Nov 28];113(51):14852–7.
Available from: https://pubmed.ncbi.nlm.nih.gov/27930302/
49. Rubart M, Tao W, Lu XL, Conway SJ, Reuter SP, Lin SF, et al.
Electrical coupling between ventricular myocytes and myofibroblasts in
the infarcted mouse heart. Cardiovasc Res [Internet]. 2018 Mar 1
[cited 2022 Nov 28];114(3):389–400. Available from:
https://pubmed.ncbi.nlm.nih.gov/29016731/
50. Fareh S, Villemaire C, Nattel S. Importance of refractoriness
heterogeneity in the enhanced vulnerability to atrial fibrillation
induction caused by tachycardia-induced atrial electrical remodeling.
Circulation [Internet]. 1998 Nov 17 [cited 2022 Nov
29];98(20):2202–9. Available from:
https://pubmed.ncbi.nlm.nih.gov/9815876/
51. Miragoli M, Salvarani N, Rohr S. Myofibroblasts induce ectopic
activity in cardiac tissue. Circ Res [Internet]. 2007 Oct [cited
2022 Nov 29];101(8):755–8. Available from:
https://pubmed.ncbi.nlm.nih.gov/17872460/
52. Xie Y, Garfinkel A, Camelliti P, Kohl P, Weiss JN, Qu Z. Effects of
fibroblast-myocyte coupling on cardiac conduction and vulnerability to
reentry: A computational study. Hear Rhythm [Internet]. 2009 Nov
[cited 2022 Nov 29];6(11):1641–9. Available from:
https://pubmed.ncbi.nlm.nih.gov/19879544/
53. Li D, Fareh S, Leung TK, Nattel S. Promotion of atrial fibrillation
by heart failure in dogs: atrial remodeling of a different sort.
Circulation [Internet]. 1999 Jul 6 [cited 2022 Nov
29];100(1):87–95. Available from:
https://pubmed.ncbi.nlm.nih.gov/10393686/
54. Filgueiras-Rama D, Price NF, Martins RP, Yamazaki M, Avula UMR, Kaur
K, et al. Long-term frequency gradients during persistent atrial
fibrillation in sheep are associated with stable sources in the left
atrium. Circ Arrhythm Electrophysiol [Internet]. 2012 Dec [cited
2022 Nov 29];5(6):1160–7. Available from:
https://pubmed.ncbi.nlm.nih.gov/23051840/
55. Everett IV TH, Li H, Mangrum JM, McRury ID, Mitchell MA, Redick JA,
et al. Electrical, morphological, and ultrastructural remodeling and
reverse remodeling in a canine model of chronic atrial fibrillation.
Circulation [Internet]. 2000 Sep 19 [cited 2022 Nov
29];102(12):1454–60. Available from:
https://pubmed.ncbi.nlm.nih.gov/10993867/
56. Van Der Velden HMW, Ausma J, Rook MB, Hellemons AJCGM, Van Veen
TAAB, Allessie MA, et al. Gap junctional remodeling in relation to
stabilization of atrial fibrillation in the goat. Cardiovasc Res
[Internet]. 2000 Jun [cited 2022 Nov 29];46(3):476–86.
Available from: https://pubmed.ncbi.nlm.nih.gov/10912458/
57. Wetzel U, Boldt A, Lauschke J, Weigl J, Schirdewahn P, Dorszewski A,
et al. Expression of connexins 40 and 43 in human left atrium in atrial
fibrillation of different aetiologies. Heart [Internet]. 2005 Feb
[cited 2022 Nov 29];91(2):166–70. Available from:
https://pubmed.ncbi.nlm.nih.gov/15657225/
58. Platonov PG, Mitrofanova LB, Orshanskaya V, Ho SY. Structural
abnormalities in atrial walls are associated with presence and
persistency of atrial fibrillation but not with age. J Am Coll Cardiol
[Internet]. 2011 Nov 15 [cited 2022 Nov 29];58(21):2225–32.
Available from: https://pubmed.ncbi.nlm.nih.gov/22078429/
59. Corradi D, Callegari S, Manotti L, Ferrara D, Goldoni M, Alinovi R,
et al. Persistent lone atrial fibrillation: clinicopathologic study of
19 cases. Hear Rhythm [Internet]. 2014 [cited 2022 Nov
29];11(7):1250–8. Available from:
https://pubmed.ncbi.nlm.nih.gov/24560692/
60. Hanna N, Cardin S, Leung TK, Nattel S. Differences in atrial versus
ventricular remodeling in dogs with ventricular tachypacing-induced
congestive heart failure. Cardiovasc Res [Internet]. 2004 Aug 1
[cited 2022 Nov 29];63(2):236–44. Available from:
https://pubmed.ncbi.nlm.nih.gov/15249181/
61. de Boer RA, De Keulenaer G, Bauersachs J, Brutsaert D, Cleland JG,
Diez J, et al. Towards better definition, quantification and treatment
of fibrosis in heart failure. A scientific roadmap by the Committee of
Translational Research of the Heart Failure Association (HFA) of the
European Society of Cardiology. Eur J Heart Fail [Internet]. 2019
Mar 1 [cited 2022 Nov 29];21(3):272–85. Available from:
https://onlinelibrary.wiley.com/doi/full/10.1002/ejhf.1406
62. Krul SPJ, Berger WR, Smit NW, Van Amersfoorth SCM, Driessen AHG, Van
Boven WJ, et al. Atrial fibrosis and conduction slowing in the left
atrial appendage of patients undergoing thoracoscopic surgical pulmonary
vein isolation for atrial fibrillation. Circ Arrhythm Electrophysiol
[Internet]. 2015 Apr 20 [cited 2022 Nov 29];8(2):288–95.
Available from: https://pubmed.ncbi.nlm.nih.gov/25673630/
63. Chen S, Zhang L, Bryant RM, Vincent GM, Flippin M, Lee JC, et al.
KCNQ1 mutations in patients with a family history of lethal cardiac
arrhythmias and sudden death. Clin Genet [Internet]. 2003 Apr 1
[cited 2022 Nov 29];63(4):273–82. Available from:
https://pubmed.ncbi.nlm.nih.gov/12702160/
64. Hong K, Bjerregaard P, Gussak I, Brugada R. Short QT syndrome and
atrial fibrillation caused by mutation in KCNH2. J Cardiovasc
Electrophysiol [Internet]. 2005 Apr [cited 2022 Nov
29];16(4):394–6. Available from:
https://pubmed.ncbi.nlm.nih.gov/15828882/
65. Mann SA, Otway R, Guo G, Soka M, Karlsdotter L, Trivedi G, et al.
Epistatic effects of potassium channel variation on cardiac
repolarization and atrial fibrillation risk. J Am Coll Cardiol
[Internet]. 2012 Mar 13 [cited 2022 Nov 29];59(11):1017–25.
Available from: https://pubmed.ncbi.nlm.nih.gov/22402074/
66. Olesen MS, Yuan L, Liang B, Hols AG, Nielsen N, Nielsen JB, et al.
High prevalence of long QT syndrome-associated SCN5A variants in
patients with early-onset lone atrial fibrillation. Circ Cardiovasc
Genet [Internet]. 2012 Aug [cited 2022 Nov 29];5(4):450–9.
Available from: https://pubmed.ncbi.nlm.nih.gov/22685113/
67. Watanabe H, Darbar D, Kaiser DW, Jiramongkolchai K, Chopra S,
Donahue BS, et al. Mutations in sodium channel β1- and β2-subunits
associated with atrial fibrillation. Circ Arrhythm Electrophysiol
[Internet]. 2009 Jun [cited 2022 Nov 29];2(3):268–75. Available
from: https://pubmed.ncbi.nlm.nih.gov/19808477/
68. Daoud EG, Bogun F, Goyal R, Harvey M, Ching Man K, Adam Strickberger
S, et al. Effect of atrial fibrillation on atrial refractoriness in
humans. Circulation [Internet]. 1996 [cited 2022 Nov
29];94(7):1600–6. Available from:
https://pubmed.ncbi.nlm.nih.gov/8840850/
69. Kumagai K, Akimitsu S, Kawahira K, Kawanami F, Yamanouchi Y, Hiroki
T, et al. Electrophysiological properties in chronic lone atrial
fibrillation. Circulation [Internet]. 1991 [cited 2022 Nov
29];84(4):1662–8. Available from:
https://pubmed.ncbi.nlm.nih.gov/1914105/
70. Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kühlkamp V. Ionic
mechanisms of electrical remodeling in human atrial fibrillation.
Cardiovasc Res [Internet]. 1999 Oct [cited 2022 Nov
29];44(1):121–31. Available from:
https://pubmed.ncbi.nlm.nih.gov/10615396/
71. Boutjdir M, Le Heuzey JY, Lavergne T, Chauvaud S, Guize L,
Carpentier A, et al. Inhomogeneity of cellular refractoriness in human
atrium: factor of arrhythmia? Pacing Clin Electrophysiol [Internet].
1986 [cited 2022 Nov 29];9(6):1095–100. Available from:
https://pubmed.ncbi.nlm.nih.gov/2432515/
72. Van Wagoner DR, Pond AL, McCarthy PM, Trimmer JS, Nerbonne JM.
Outward K+ current densities and Kv1.5 expression are reduced in chronic
human atrial fibrillation. Circ Res [Internet]. 1997 [cited 2022
Nov 29];80(6):772–81. Available from:
https://pubmed.ncbi.nlm.nih.gov/9168779/
73. Brundel BJJM, Van Gelder IC, Henning RH, Tuinenburg AE, Deelman LE,
Tieleman RG, et al. Gene expression of proteins influencing the calcium
homeostasis in patients with persistent and paroxysmal atrial
fibrillation. Cardiovasc Res [Internet]. 1999 May [cited 2022 Nov
29];42(2):443–54. Available from:
https://pubmed.ncbi.nlm.nih.gov/10533580/
74. Lai LP, Su MJ, Lin JL, Lin FY, Tsai CH, Chen YS, et al.
Down-regulation of L-type calcium channel and sarcoplasmic reticular
Ca(2+)-ATPase mRNA in human atrial fibrillation without significant
change in the mRNA of ryanodine receptor, calsequestrin and
phospholamban: an insight into the mechanism of atrial electrical
remodeling. J Am Coll Cardiol [Internet]. 1999 Apr [cited 2022 Nov
29];33(5):1231–7. Available from:
https://pubmed.ncbi.nlm.nih.gov/10193721/
75. Dobrev D, Friedrich A, Voigt N, Jost N, Wettwer E, Christ T, et al.
The G protein-gated potassium current I(K,ACh) is constitutively active
in patients with chronic atrial fibrillation. Circulation
[Internet]. 2005 Dec [cited 2022 Nov 29];112(24):3697–706.
Available from: https://pubmed.ncbi.nlm.nih.gov/16330682/
76. Courtemanche M, Ramirez RJ, Nattel S. Ionic mechanisms underlying
human atrial action potential properties: insights from a mathematical
model. Am J Physiol [Internet]. 1998 [cited 2022 Nov 29];275(1).
Available from: https://pubmed.ncbi.nlm.nih.gov/9688927/
77. Wettwer E, Hála O, Christ T, Heubach JF, Dobrev D, Knaut M, et al.
Role of IKur in controlling action potential shape and contractility in
the human atrium: influence of chronic atrial fibrillation. Circulation
[Internet]. 2004 Oct 19 [cited 2022 Nov 29];110(16):2299–306.
Available from: https://pubmed.ncbi.nlm.nih.gov/15477405/
78. Verma A, Wazni OM, Marrouche NF, Martin DO, Kilicaslan F, Minor S,
et al. Pre-existent left atrial scarring in patients undergoing
pulmonary vein antrum isolation: an independent predictor of procedural
failure. J Am Coll Cardiol [Internet]. 2005 Jan 18 [cited 2022 Nov
29];45(2):285–92. Available from:
https://pubmed.ncbi.nlm.nih.gov/15653029/
79. Kumagai K, Minami K, Kutsuzawa D, Oshima S. Evaluation of the
characteristics of rotational activation at high-dominant frequency and
complex fractionated atrial electrogram sites during atrial
fibrillation. J arrhythmia [Internet]. 2017 Feb 1 [cited 2022 Nov
29];33(1):49–55. Available from:
https://pubmed.ncbi.nlm.nih.gov/28217229/
80. Ahmed-Jushuf F, Murgatroyd F, Dhillon P, Scott PA. The impact of the
presence of left atrial low voltage areas on outcomes from pulmonary
vein isolation. J arrhythmia [Internet]. 2019 Apr 1 [cited 2022
Nov 28];35(2):205–14. Available from:
https://pubmed.ncbi.nlm.nih.gov/31007784/
81. Masuda M, Fujita M, Iida O, Okamoto S, Ishihara T, Nanto K, et al.
Left atrial low-voltage areas predict atrial fibrillation recurrence
after catheter ablation in patients with paroxysmal atrial fibrillation.
Int J Cardiol [Internet]. 2018 Apr 15 [cited 2022 Nov
29];257:97–101. Available from:
https://pubmed.ncbi.nlm.nih.gov/29506746/
82. Wang X hua, Li Z, Mao J liang, Zang M hua, Pu J. Low voltage areas
in paroxysmal atrial fibrillation: The prevalence, risk factors and
impact on the effectiveness of catheter ablation. Int J Cardiol
[Internet]. 2018 Oct 15 [cited 2022 Nov 29];269:139–44.
Available from: https://pubmed.ncbi.nlm.nih.gov/30060968/
83. Sanders P, Berenfeld O, Hocini M, Jaïs P, Vaidyanathan R, Hsu LF, et
al. Spectral analysis identifies sites of high-frequency activity
maintaining atrial fibrillation in humans. Circulation [Internet].
2005 Aug 9 [cited 2022 Nov 29];112(6):789–97. Available from:
https://pubmed.ncbi.nlm.nih.gov/16061740/
84. Honarbakhsh S, Schilling RJ, Orini M, Providencia R, Keating E,
Finlay M, et al. Structural remodeling and conduction velocity dynamics
in the human left atrium: Relationship with reentrant mechanisms
sustaining atrial fibrillation. Hear Rhythm [Internet]. 2019 Jan 1
[cited 2022 Nov 29];16(1):18–25. Available from:
https://pubmed.ncbi.nlm.nih.gov/30026014/
85. Miyamoto K, Tsuchiya T, Narita S, Yamaguchi T, Nagamoto Y, Ando SI,
et al. Bipolar electrogram amplitudes in the left atrium are related to
local conduction velocity in patients with atrial fibrillation. Europace
[Internet]. 2009 Dec [cited 2022 Nov 29];11(12):1597–605.
Available from: https://pubmed.ncbi.nlm.nih.gov/19910315/
86. Ghoraani B, Dalvi R, Gizurarson S, Das M, Ha A, Suszko A, et al.
Localized rotational activation in the left atrium during human atrial
fibrillation: relationship to complex fractionated atrial electrograms
and low-voltage zones. Hear Rhythm [Internet]. 2013 Dec [cited
2022 Nov 29];10(12):1830–8. Available from:
https://pubmed.ncbi.nlm.nih.gov/24016695/
87. Kawai S, Mukai Y, Inoue S, Yakabe D, Nagaoka K, Sakamoto K, et al.
Non-Pulmonary Vein Triggers of Atrial Fibrillation Are Likely to Arise
from Low-Voltage Areas in the Left Atrium. Sci Rep [Internet]. 2019
Dec 1 [cited 2022 Nov 29];9(1). Available from:
https://pubmed.ncbi.nlm.nih.gov/31439861/
88. Yagishita A, De Oliveira S, Cakulev I, Gimbel JR, Sparano D, Manyam
H, et al. Correlation of Left Atrial Voltage Distribution Between Sinus
Rhythm and Atrial Fibrillation: Identifying Structural Remodeling by 3-D
Electroanatomic Mapping Irrespective of the Rhythm. J Cardiovasc
Electrophysiol [Internet]. 2016 [cited 2022 Nov
29];27(8):905–12. Available from:
https://pubmed.ncbi.nlm.nih.gov/27135965/
89. Huang D, Li J bo, Zghaib T, Gucuk Ipek E, Balouch M, Spragg DD, et
al. The Extent of Left Atrial Low-Voltage Areas Included in Pulmonary
Vein Isolation Is Associated With Freedom from Recurrent Atrial
Arrhythmia. Can J Cardiol [Internet]. 2018 Jan 1 [cited 2022 Nov
29];34(1):73–9. Available from:
https://pubmed.ncbi.nlm.nih.gov/29275886/
90. Ammar-Busch S, Buiatti A, Tatzber A, Reents T, Bourier F, Semmler V,
et al. Predictors of low voltage areas in persistent atrial
fibrillation: is it really a matter of time? J Interv Card
Electrophysiol [Internet]. 2020 Apr 1 [cited 2022 Nov
29];57(3):345–52. Available from:
https://pubmed.ncbi.nlm.nih.gov/30374659/
91. Nery PB, Al Dawood W, Nair GM, Redpath CJ, Sadek MM, Chen L, et al.
Characterization of Low-Voltage Areas in Patients With Atrial
Fibrillation: Insights From High-Density Intracardiac Mapping. Can J
Cardiol [Internet]. 2018 Aug 1 [cited 2022 Nov
29];34(8):1033–40. Available from:
https://pubmed.ncbi.nlm.nih.gov/30056843/
92. Zhou W, Wang L, Zhou B, Wu L. Catheter ablation of paroxysmal atrial
fibrillation using high-density mapping-guided substrate modification.
Pacing Clin Electrophysiol [Internet]. 2018 Dec 1 [cited 2022 Nov
28];41(12):1630–4. Available from:
https://pubmed.ncbi.nlm.nih.gov/30353561/
93. Charitos EI, Pürerfellner H, Glotzer T V., Ziegler PD. Clinical
classifications of atrial fibrillation poorly reflect its temporal
persistence: insights from 1,195 patients continuously monitored with
implantable devices. J Am Coll Cardiol [Internet]. 2014 Jul 1
[cited 2022 Nov 29];63(25 Pt A):2840–8. Available from:
https://pubmed.ncbi.nlm.nih.gov/24814497/
94. Charitos EI, Ziegler PD, Stierle U, Robinson DR, Graf B, Sievers HH,
et al. Atrial fibrillation burden estimates derived from intermittent
rhythm monitoring are unreliable estimates of the true atrial
fibrillation burden. Pacing Clin Electrophysiol [Internet]. 2014 Sep
1 [cited 2022 Nov 29];37(9):1210–8. Available from:
https://pubmed.ncbi.nlm.nih.gov/24665972/
95. Hwang M, Kim J, Lim B, Song JS, Joung B, Shim EB, et al. Multiple
factors influence the morphology of the bipolar electrogram: An in
silico modeling study. PLoS Comput Biol [Internet]. 2019 [cited
2022 Nov 29];15(4). Available from:
https://pubmed.ncbi.nlm.nih.gov/30951529/
96. Mori H, Kato R, Ikeda Y, Goto K, Tanaka S, Asano S, et al. The
influence of the electrodes spacing of a mapping catheter on the atrial
voltage substrate map. J Cardiol [Internet]. 2018 Nov 1 [cited
2022 Nov 29];72(5):434–42. Available from:
https://pubmed.ncbi.nlm.nih.gov/29859827/
97. Beheshti M, Magtibay K, Massé S, Porta-Sanchez A, Haldar S,
Bhaskaran A, et al. Determinants of atrial bipolar voltage: Inter
electrode distance and wavefront angle. Comput Biol Med [Internet].
2018 Nov 1 [cited 2022 Nov 29];102:449–57. Available from:
https://pubmed.ncbi.nlm.nih.gov/30316448/
98. Stinnett-Donnelly JM, Thompson N, Habel N, Petrov-Kondratov V,
Correa De Sa DD, Bates JHT, et al. Effects of electrode size and spacing
on the resolution of intracardiac electrograms. Coron Artery Dis
[Internet]. 2012 Mar [cited 2022 Nov 29];23(2):126–32.
Available from: https://pubmed.ncbi.nlm.nih.gov/22258280/
99. Kumar S, Chan M, Lee J, Wong MCG, Yudi M, Morton JB, et al.
Catheter-tissue contact force determines atrial electrogram
characteristics before and lesion efficacy after antral pulmonary vein
isolation in humans. J Cardiovasc Electrophysiol [Internet]. 2014
Feb [cited 2022 Nov 29];25(2):122–9. Available from:
https://pubmed.ncbi.nlm.nih.gov/24102727/
100. Sasaki N, Okumura Y, Watanabe I, Sonoda K, Kogawa R, Takahashi K,
et al. Relations between contact force, bipolar voltage amplitude, and
mapping point distance from the left atrial surfaces of 3D ultrasound-
and merged 3D CT-derived images: Implication for atrial fibrillation
mapping and ablation. Hear Rhythm [Internet]. 2015 Jan 1 [cited
2022 Nov 29];12(1):36–43. Available from:
https://pubmed.ncbi.nlm.nih.gov/25218838/
101. Marcus GM, Yang Y, Varosy PD, Ordovas K, Tseng ZH, Badhwar N, et
al. Regional Left Atrial Voltage in Patients with Atrial Fibrillation.
Heart Rhythm [Internet]. 2007 Feb [cited 2022 Nov 29];4(2):138.
Available from: /pmc/articles/PMC1868443/
102. Huemer M, Qaiyumi D, Attanasio P, Parwani A, Pieske B, Blaschke F,
et al. Does the extent of left atrial arrhythmogenic substrate depend on
the electroanatomical mapping technique: impact of pulmonary vein
mapping catheter vs. ablation catheter. Europace [Internet]. 2017
Aug 1 [cited 2022 Nov 29];19(8):1293–301. Available from:
https://pubmed.ncbi.nlm.nih.gov/27738066/
103. Liang JJ, Elafros MA, Muser D, Pathak RK, Santangeli P, Supple GE,
et al. Comparison of Left Atrial Bipolar Voltage and Scar Using
Multielectrode Fast Automated Mapping versus Point-by-Point Contact
Electroanatomic Mapping in Patients With Atrial Fibrillation Undergoing
Repeat Ablation. J Cardiovasc Electrophysiol [Internet]. 2017 Mar 1
[cited 2022 Nov 29];28(3):280–8. Available from:
https://pubmed.ncbi.nlm.nih.gov/27997060/
104. Anter E, Tschabrunn CM, Josephson ME. High-resolution mapping of
scar-related atrial arrhythmias using smaller electrodes with closer
interelectrode spacing. Circ Arrhythm Electrophysiol [Internet].
2015 Jun 4 [cited 2022 Nov 29];8(3):537–45. Available from:
https://pubmed.ncbi.nlm.nih.gov/25792508/
105. Zghaib T, Keramati A, Chrispin J, Huang D, Balouch MA, Ciuffo L, et
al. Multimodal Examination of Atrial Fibrillation Substrate: Correlation
of Left Atrial Bipolar Voltage Using Multi-Electrode Fast Automated
Mapping, Point-by-Point Mapping, and Magnetic Resonance Image Intensity
Ratio. JACC Clin Electrophysiol [Internet]. 2018 Jan 1 [cited 2023
May 10];4(1):59–68. Available from:
https://pubmed.ncbi.nlm.nih.gov/29520376/
106. Masuda M, Asai M, Iida O, Okamoto S, Ishihara T, Nanto K, et al.
Comparison of electrogram waveforms between a multielectrode mapping
catheter and a linear ablation catheter. Pacing Clin Electrophysiol
[Internet]. 2019 May 1 [cited 2022 Nov 29];42(5):515–20.
Available from: https://pubmed.ncbi.nlm.nih.gov/30882916/
107. Jaïs P, Shah DC, Haïssaguerre M, Hocini M, Peng JT, Takahashi A, et
al. Mapping and Ablation of Left Atrial Flutters. Circulation
[Internet]. 2000 Jun 27 [cited 2022 Nov 29];101(25):2928–34.
Available from:
https://www.ahajournals.org/doi/abs/10.1161/01.cir.101.25.2928
108. Chang SL, Tai CT, Lin YJ, Wongcharoen W, Lo LW, Tuan TC, et al.
Biatrial Substrate Properties in Patients with Atrial Fibrillation. J
Cardiovasc Electrophysiol [Internet]. 2007 Nov 1 [cited 2022 Nov
29];18(11):1134–9. Available from:
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1540-8167.2007.00941.x
109. Sanders P, Morton JB, Davidson NC, Spence SJ, Vohra JK, Sparks PB,
et al. Electrical Remodeling of the Atria in Congestive Heart Failure.
Circulation [Internet]. 2003 Sep 23 [cited 2022 Nov
29];108(12):1461–8. Available from:
https://www.ahajournals.org/doi/abs/10.1161/01.CIR.0000090688.49283.67
110. Kapa S, Desjardins B, Callans DJ, Marchlinski FE, Dixit S. Contact
electroanatomic mapping derived voltage criteria for characterizing left
atrial scar in patients undergoing ablation for atrial fibrillation. J
Cardiovasc Electrophysiol [Internet]. 2014 Oct 1 [cited 2022 Nov
29];25(10):1044–52. Available from:
https://pubmed.ncbi.nlm.nih.gov/24832482/
111. Saghy L, Callans DJ, Garcia F, Lin D, Marchlinski FE, Riley M, et
al. Is there a relationship between complex fractionated atrial
electrograms recorded during atrial fibrillation and sinus rhythm
fractionation? Hear Rhythm [Internet]. 2012 Feb [cited 2022 Nov
29];9(2):181–8. Available from:
https://pubmed.ncbi.nlm.nih.gov/21946341/
112. Lin Y, Yang B, Garcia FC, Ju W, Zhang F, Chen H, et al. Comparison
of left atrial electrophysiologic abnormalities during sinus rhythm in
patients with different type of atrial fibrillation. J Interv Card
Electrophysiol [Internet]. 2014 Jan [cited 2022 Nov
29];39(1):57–67. Available from:
https://pubmed.ncbi.nlm.nih.gov/24113851/
113. Stiles MK, John B, Wong CX, Kuklik P, Brooks AG, Lau DH, et al.
Paroxysmal lone atrial fibrillation is associated with an abnormal
atrial substrate: characterizing the “second factor.” J Am Coll
Cardiol [Internet]. 2009 Apr 7 [cited 2022 Nov
29];53(14):1182–91. Available from:
https://pubmed.ncbi.nlm.nih.gov/19341858/
114. Kogawa R, Okumura Y, Watanabe I, Nagashima K, Takahashi K, Iso K,
et al. Left atrial remodeling: Regional differences between paroxysmal
and persistent atrial fibrillation. J arrhythmia [Internet]. 2017
Oct 1 [cited 2022 Nov 29];33(5):483–7. Available from:
https://pubmed.ncbi.nlm.nih.gov/29021854/
115. Teh AW, Kistler PM, Lee G, Medi C, Heck PM, Spence SJ, et al.
Electroanatomic remodeling of the left atrium in paroxysmal and
persistent atrial fibrillation patients without structural heart
disease. J Cardiovasc Electrophysiol [Internet]. 2012 Mar [cited
2022 Nov 29];23(3):232–8. Available from:
https://pubmed.ncbi.nlm.nih.gov/21955090/
116. Hall B, Jeevanantham V, Simon R, Filippone J, Vorobiof G, Daubert
J. Variation in left atrial transmural wall thickness at sites commonly
targeted for ablation of atrial fibrillation. J Interv Card
Electrophysiol [Internet]. 2006 Mar 15 [cited 2022 Nov
29];17(2):127–32. Available from:
https://pubmed.ncbi.nlm.nih.gov/17226084/
117. Ho SY, Sanchez-Quintana D, Cabrera JA, Anderson RH. Anatomy of the
left atrium: implications for radiofrequency ablation of atrial
fibrillation. J Cardiovasc Electrophysiol [Internet]. 1999 [cited
2022 Nov 29];10(11):1525–33. Available from:
https://pubmed.ncbi.nlm.nih.gov/10571372/
118. Schuessler RB, Kawamoto T, Hand DE, Mitsuno M, Bromberg BI, Cox JL,
et al. Simultaneous epicardial and endocardial activation sequence
mapping in the isolated canine right atrium. Circulation [Internet].
1993 Jul [cited 2022 Nov 29];88(1):250–63. Available from:
https://pubmed.ncbi.nlm.nih.gov/8319340/
119. Nakatani Y, Sakamoto T, Yamaguchi Y, Tsujino Y, Kataoka N, Kinugawa
K. Left atrial wall thickness is associated with the low-voltage area in
patients with paroxysmal atrial fibrillation. J Interv Card
Electrophysiol [Internet]. 2020 Sep 13 [cited 2022 Nov
29];58(3):315–21. Available from:
https://pubmed.ncbi.nlm.nih.gov/31410703/
120. Pashakhanloo F, Herzka DA, Ashikaga H, Mori S, Gai N, Bluemke DA,
et al. Myofiber Architecture of the Human Atria as Revealed by
Submillimeter Diffusion Tensor Imaging. Circ Arrhythm Electrophysiol
[Internet]. 2016 Apr 1 [cited 2022 Nov 29];9(4). Available from:
https://pubmed.ncbi.nlm.nih.gov/27071829/
121. Hunter RJ, Liu Y, Lu Y, Wang W, Schilling RJ. Left atrial wall
stress distribution and its relationship to electrophysiologic
remodeling in persistent atrial fibrillation. Circ Arrhythm
Electrophysiol [Internet]. 2012 Apr [cited 2022 Nov
29];5(2):351–60. Available from:
https://pubmed.ncbi.nlm.nih.gov/22294615/
122. Hori Y, Nakahara S, Tsukada N, Nakagawa A, Hayashi A, Komatsu T, et
al. The influence of the external structures in atrial fibrillation
patients: Relationship to focal low voltage areas in the left atrium.
Int J Cardiol [Internet]. 2015 Feb 15 [cited 2022 Nov
29];181:225–31. Available from:
https://pubmed.ncbi.nlm.nih.gov/25528317/
123. Nedios S, Sanatkhani S, Oladosu M, Seewöster T, Richter S, Arya A,
et al. Association of low-voltage areas with the regional wall
deformation and the left atrial shape in patients with atrial
fibrillation: A proof of concept study. Int J Cardiol Hear Vasc
[Internet]. 2021 Apr 1 [cited 2022 Nov 29];33. Available from:
https://pubmed.ncbi.nlm.nih.gov/33718586/
124. John B, Stiles MK, Kuklik P, Brooks AG, Chandy ST, Kalman JM, et
al. Reverse remodeling of the atria after treatment of chronic stretch
in humans: implications for the atrial fibrillation substrate. J Am Coll
Cardiol [Internet]. 2010 Mar 23 [cited 2022 Nov
29];55(12):1217–26. Available from:
https://pubmed.ncbi.nlm.nih.gov/20298929/
125. Gaborit N, Steenman M, Lamirault G, Le Meur N, Le Bouter S, Lande
G, et al. Human atrial ion channel and transporter subunit
gene-expression remodeling associated with valvular heart disease and
atrial fibrillation. Circulation [Internet]. 2005 Jul 26 [cited
2022 Nov 29];112(4):471–81. Available from:
https://pubmed.ncbi.nlm.nih.gov/16027256/
126. Ruknudin A, Sachs F, Bustamante JO. Stretch-activated ion channels
in tissue-cultured chick heart. Am J Physiol [Internet]. 1993
[cited 2022 Nov 29];264(3 Pt 2). Available from:
https://pubmed.ncbi.nlm.nih.gov/7681265/
127. Ndrepepa G, Schneider MAE, Karch MR, Weber S, Schreieck J, Zrenner
B, et al. Impact of atrial fibrillation on the voltage of bipolar
signals acquired from the left and right atria. Pacing Clin
Electrophysiol [Internet]. 2003 Apr 1 [cited 2022 Nov 29];26(4
Pt 1):862–9. Available from: https://pubmed.ncbi.nlm.nih.gov/12715847/
128. Bradfield JS, Huang W, Tung R, Buch E, Okhovat JP, Fujimura O, et
al. Tissue voltage discordance during tachycardia versus sinus rhythm:
implications for catheter ablation. Hear Rhythm [Internet]. 2013
[cited 2022 Nov 29];10(6):800–4. Available from:
https://pubmed.ncbi.nlm.nih.gov/23434619/
129. Rodríguez-Mañero M, Valderrábano M, Baluja A, Kreidieh O,
Martínez-Sande JL, García-Seara J, et al. Validating Left Atrial Low
Voltage Areas During Atrial Fibrillation and Atrial Flutter Using
Multielectrode Automated Electroanatomic Mapping. JACC Clin
Electrophysiol [Internet]. 2018 Dec 1 [cited 2022 Nov
29];4(12):1541–52. Available from:
https://pubmed.ncbi.nlm.nih.gov/30573117/
130. Masuda M, Fujita M, Iida O, Okamoto S, Ishihara T, Nanto K, et al.
Comparison of Left Atrial Voltage between Sinus Rhythm and Atrial
Fibrillation in Association with Electrogram Waveform. Pacing Clin
Electrophysiol [Internet]. 2017 May 1 [cited 2022 Nov
29];40(5):559–67. Available from:
https://pubmed.ncbi.nlm.nih.gov/28211132/
131. Chang CJ, Lin YJ, Higa S, Chang SL, Lo LW, Tuan TC, et al. The
disparities in the electrogram voltage measurement during atrial
fibrillation and sinus rhythm. J Cardiovasc Electrophysiol
[Internet]. 2010 [cited 2022 Nov 29];21(4):393–8. Available
from: https://pubmed.ncbi.nlm.nih.gov/19909388/
132. Sivagangabalan G, Pouliopoulos J, Huang K, Lu J, Barry MA,
Thiagalingam A, et al. Comparison of electroanatomic contact and
noncontact mapping of ventricular scar in a postinfarct ovine model with
intramural needle electrode recording and histological validation. Circ
Arrhythm Electrophysiol [Internet]. 2008 [cited 2022 Nov
29];1(5):363–9. Available from:
https://pubmed.ncbi.nlm.nih.gov/19808431/
133. Harrison JL, Jensen HK, Peel SA, Chiribiri A, Grondal AK, Bloch LO,
et al. Cardiac magnetic resonance and electroanatomical mapping of acute
and chronic atrial ablation injury: a histological validation study. Eur
Heart J [Internet]. 2014 Jun 7 [cited 2022 Nov
29];35(22):1486–95. Available from:
https://pubmed.ncbi.nlm.nih.gov/24419806/
134. Yamaguchi T, Otsubo T, Takahashi Y, Nakashima K, Fukui A, Hirota K,
et al. Atrial Structural Remodeling in Patients With Atrial Fibrillation
Is a Diffuse Fibrotic Process: Evidence From High-Density Voltage
Mapping and Atrial Biopsy. J Am Heart Assoc [Internet]. 2022 Mar 15
[cited 2022 Nov 29];11(6). Available from:
https://pubmed.ncbi.nlm.nih.gov/35261287/
135. Ramos KS, Pool L, van Schie MS, Wijdeveld LFJM, van der Does WFB,
Baks L, et al. Degree of Fibrosis in Human Atrial Tissue Is Not the
Hallmark Driving AF. Cells [Internet]. 2022 Feb 1 [cited 2022 Nov
29];11(3). Available from: https://pubmed.ncbi.nlm.nih.gov/35159236/
136. Hwang J, Park HS, Han S, Lee CH, Kim IC, Cho YK, et al. Ablation of
persistent atrial fibrillation based on high density voltage mapping and
complex fractionated atrial electrograms: A randomized controlled trial.
Medicine (Baltimore) [Internet]. 2021 Aug 6 [cited 2022 Nov
29];100(31):e26702. Available from:
https://pubmed.ncbi.nlm.nih.gov/34397805/
137. Jadidi A, Nothstein M, Chen J, Lehrmann H, Dössel O, Allgeier J, et
al. Specific Electrogram Characteristics Identify the Extra-Pulmonary
Vein Arrhythmogenic Sources of Persistent Atrial Fibrillation -
Characterization of the Arrhythmogenic Electrogram Patterns During
Atrial Fibrillation and Sinus Rhythm. Sci Rep [Internet]. 2020 Dec 1
[cited 2022 Nov 29];10(1). Available from:
https://pubmed.ncbi.nlm.nih.gov/32499483/
138. Malaczynska-Rajpold K, Jarman J, Shi R, Wright P, Wong T, Markides
V. Beyond pulmonary vein isolation for persistent atrial fibrillation:
sequential high-resolution mapping to guide ablation. J Interv Card
Electrophysiol [Internet]. 2022 Oct 1 [cited 2022 Nov
29];65(1):53–62. Available from:
https://pubmed.ncbi.nlm.nih.gov/35000099/
139. Shi R, Chen Z, Pope MTB, Zaman JAB, Debney M, Marinelli A, et al.
Individualized ablation strategy to treat persistent atrial
fibrillation: Core-to-boundary approach guided by charge-density
mapping. Hear Rhythm [Internet]. 2021 Jun 1 [cited 2022 Nov
29];18(6):862–70. Available from:
https://pubmed.ncbi.nlm.nih.gov/33610744/
140. Qureshi NA, Kim SJ, Cantwell CD, Afonso VX, Bai W, Ali RL, et al.
Voltage during atrial fibrillation is superior to voltage during sinus
rhythm in localizing areas of delayed enhancement on magnetic resonance
imaging: An assessment of the posterior left atrium in patients with
persistent atrial fibrillation. Hear Rhythm [Internet]. 2019 Sep 1
[cited 2022 Nov 29];16(9):1357–67. Available from:
https://pubmed.ncbi.nlm.nih.gov/31170484/
141. Deno DC, Balachandran R, Morgan D, Ahmad F, Masse S, Nanthakumar K.
Orientation-Independent Catheter-Based Characterization of Myocardial
Activation. IEEE Trans Biomed Eng [Internet]. 2017 May 1 [cited
2022 Nov 29];64(5):1067–177. Available from:
https://pubmed.ncbi.nlm.nih.gov/27411215/
142. Massé S, Magtibay K, Jackson N, Asta J, Kusha M, Zhang B, et al.
Resolving myocardial activation with novel omnipolar electrograms. Circ
Arrhythmia Electrophysiol [Internet]. 2016 Jul 1 [cited 2022 Nov
29];9(7). Available from: https://pubmed.ncbi.nlm.nih.gov/27406608/
143. Magtibay K, Massé S, Asta J, Kusha M, Lai PFH, Azam MA, et al.
Physiological Assessment of Ventricular Myocardial Voltage Using
Omnipolar Electrograms. J Am Heart Assoc [Internet]. 2017 Aug 1
[cited 2022 Nov 29];6(8). Available from:
https://pubmed.ncbi.nlm.nih.gov/28862942/
144. Haldar SK, Magtibay K, Porta-Sanchez A, Massé S, Mitsakakis N, Lai
PFH, et al. Resolving Bipolar Electrogram Voltages During Atrial
Fibrillation Using Omnipolar Mapping. Circ Arrhythm Electrophysiol
[Internet]. 2017 Sep 1 [cited 2022 Nov 29];10(9). Available
from: https://pubmed.ncbi.nlm.nih.gov/28887362/
145. Rillo M, Palamà Z, Punzi R, Vitanza S, Aloisio A, Polini S, et al.
A new interpretation of nonpulmonary vein substrates of the left atrium
in patients with atrial fibrillation. J arrhythmia [Internet]. 2021
Apr 1 [cited 2022 Nov 29];37(2):338–47. Available from:
https://pubmed.ncbi.nlm.nih.gov/33850575/
146. Marchlinski FE, Callans DJ, Gottlieb CD, Zado E. Linear ablation
lesions for control of unmappable ventricular tachycardia in patients
with ischemic and nonischemic cardiomyopathy. Circulation
[Internet]. 2000 Mar 21 [cited 2023 May 19];101(11):1288–96.
Available from: https://pubmed.ncbi.nlm.nih.gov/10725289/
147. Cassidy DM, Vassallo JA, Miller JM, Poll DS, Buxton AE, Marchlinski
FE, et al. Endocardial catheter mapping in patients in sinus rhythm:
relationship to underlying heart disease and ventricular arrhythmias.
Circulation [Internet]. 1986 [cited 2022 Nov 29];73(4):645–52.
Available from: https://pubmed.ncbi.nlm.nih.gov/3948367/
148. Vergara P, Trevisi N, Ricco A, Petracca F, Baratto F, Cireddu M, et
al. Late potentials abolition as an additional technique for reduction
of arrhythmia recurrence in scar related ventricular tachycardia
ablation. J Cardiovasc Electrophysiol [Internet]. 2012 Jun [cited
2022 Nov 29];23(6):621–7. Available from:
https://pubmed.ncbi.nlm.nih.gov/22486970/
149. Tschabrunn CM, Roujol S, Nezafat R, Faulkner-Jones B, Buxton AE,
Josephson ME, et al. A swine model of infarct-related reentrant
ventricular tachycardia: Electroanatomic, magnetic resonance, and
histopathological characterization. Hear Rhythm [Internet]. 2016 Jan
1 [cited 2022 Nov 29];13(1):262–73. Available from:
https://pubmed.ncbi.nlm.nih.gov/26226214/
150. Pogwizd SM, Hoyt RH, Saffitz JE, Corr PB, Cox JL, Cain ME.
Reentrant and focal mechanisms underlying ventricular tachycardia in the
human heart. Circulation [Internet]. 1992 [cited 2022 Nov
29];86(6):1872–87. Available from:
https://pubmed.ncbi.nlm.nih.gov/1451259/
151. Segal OR, Chow AWC, Peters NS, Davies DW. Mechanisms that initiate
ventricular tachycardia in the infarcted human heart. Hear Rhythm
[Internet]. 2010 Jan [cited 2022 Nov 29];7(1):57–64. Available
from: https://pubmed.ncbi.nlm.nih.gov/20129286/
152. Brunckhorst CB, Stevenson WG, Jackman WM, Kuck KH, Soejima K,
Nakagawa H, et al. Ventricular mapping during atrial and ventricular
pacing. Relationship of multipotential electrograms to ventricular
tachycardia reentry circuits after myocardial infarction. Eur Heart J
[Internet]. 2002 Jul [cited 2022 Nov 29];23(14):1131–8.
Available from: https://pubmed.ncbi.nlm.nih.gov/12090752/
153. Porta-Sánchez A, Jackson N, Lukac P, Kristiansen SB, Nielsen JM,
Gizurarson S, et al. Multicenter Study of Ischemic Ventricular
Tachycardia Ablation With Decrement-Evoked Potential (DEEP) Mapping With
Extra Stimulus. JACC Clin Electrophysiol [Internet]. 2018 Mar 1
[cited 2022 Nov 29];4(3):307–15. Available from:
https://pubmed.ncbi.nlm.nih.gov/30089555/
154. Jackson N, Gizurarson S, Viswanathan K, King B, Massé S, Kusha M,
et al. Decrement Evoked Potential Mapping: Basis of a Mechanistic
Strategy for Ventricular Tachycardia Ablation. Circ Arrhythm
Electrophysiol. 2015 Dec;8(6):1433–42.
155. Srinivasan NT, Garcia J, Schilling RJ, Ahsan S, Babu GG, Ang R, et
al. Multicenter Study of Dynamic High-Density Functional Substrate
Mapping Improves Identification of Substrate Targets for Ischemic
Ventricular Tachycardia Ablation. JACC Clin Electrophysiol
[Internet]. 2020 Dec 1 [cited 2022 Nov 29];6(14):1783–93.
Available from: https://pubmed.ncbi.nlm.nih.gov/33357574/
156. Wong GR, Nalliah CJ, Lee G, Voskoboinik A, Prabhu S, Parameswaran
R, et al. Dynamic Atrial Substrate During High-Density Mapping of
Paroxysmal and Persistent AF: Implications for Substrate Ablation. JACC
Clin Electrophysiol [Internet]. 2019 Nov 1 [cited 2022 Nov
29];5(11):1265–77. Available from:
https://pubmed.ncbi.nlm.nih.gov/31753431/
157. Kim BS, Kim YH, Hwang GS, Pak HN, Lee SC, Shim WJ, et al. Action
potential duration restitution kinetics in human atrial fibrillation. J
Am Coll Cardiol [Internet]. 2002 Apr 17 [cited 2022 Nov
29];39(8):1329–36. Available from:
https://pubmed.ncbi.nlm.nih.gov/11955851/
158. Williams SE, Linton NWF, Harrison J, Chubb H, Whitaker J, Gill J,
et al. Intra-Atrial Conduction Delay Revealed by Multisite Incremental
Atrial Pacing is an Independent Marker of Remodeling in Human Atrial
Fibrillation. JACC Clin Electrophysiol [Internet]. 2017 Sep 1
[cited 2022 Nov 29];3(9):1006–17. Available from:
https://pubmed.ncbi.nlm.nih.gov/28966986/
159. Yamaji H, Higashiya S, Murakami T, Hina K, Kawamura H, Murakami M,
et al. Efficacy of an Adjunctive Electrophysiological Test-Guided Left
Atrial Posterior Wall Isolation in Persistent Atrial Fibrillation
Without a Left Atrial Low-Voltage Area. Circ Arrhythm Electrophysiol
[Internet]. 2020 Aug 1 [cited 2022 Nov 29];13(8):E008191.
Available from: https://pubmed.ncbi.nlm.nih.gov/32660260/
160. Giorgios T, Antonio F, Limite LR, Felicia L, Zweiker D, Cireddu M,
et al. Bi-atrial characterization of the electrical substrate in
patients with atrial fibrillation. Pacing Clin Electrophysiol
[Internet]. 2022 Jun 1 [cited 2022 Nov 29];45(6):752–60.
Available from: https://pubmed.ncbi.nlm.nih.gov/35403246/
161. Piorkowski c, Kronborg M, Hourdain J, Piorkowski J, Kirstein B,
Neudeck S, et al. Endo-/Epicardial Catheter Ablation of Atrial
Fibrillation: Feasibility, Outcome, and Insights Into Arrhythmia
Mechanisms. Circ Arrhythm Electrophysiol [Internet]. 2018 Apr
[cited 2022 Dec 6];11(2):151–7. Available from:
https://pubmed.ncbi.nlm.nih.gov/29439000/
162. Van Schie MS, Knops P, Zhang L, Van Schaagen FRN, Taverne YJHJ, De
Groot NMS. Detection of endo-epicardial atrial low-voltage areas using
unipolar and omnipolar voltage mapping. Front Physiol [Internet].
2022 Oct 6 [cited 2022 Dec 6];13. Available from:
https://pubmed.ncbi.nlm.nih.gov/36277177/
163. Kottkamp H, Berg J, Bender R, Rieger A, Schreiber D. Box Isolation
of Fibrotic Areas (BIFA): A Patient-Tailored Substrate Modification
Approach for Ablation of Atrial Fibrillation. J Cardiovasc
Electrophysiol [Internet]. 2016 Jan [cited 2022 Nov
28];27(1):22–30. Available from:
https://pubmed.ncbi.nlm.nih.gov/26511713/
164. Yamaguchi T, Tsuchiya T, Nakahara S, Fukui A, Nagamoto Y, Murotani
K, et al. Efficacy of Left Atrial Voltage-Based Catheter Ablation of
Persistent Atrial Fibrillation. J Cardiovasc Electrophysiol
[Internet]. 2016 Sep 1 [cited 2022 Nov 28];27(9):1055–63.
Available from: https://pubmed.ncbi.nlm.nih.gov/27235000/
165. Mohanty S, Mohanty P, Di Biase L, Trivedi C, Morris EH, Gianni C,
et al. Long-term follow-up of patients with paroxysmal atrial
fibrillation and severe left atrial scarring: comparison between
pulmonary vein antrum isolation only or pulmonary vein isolation
combined with either scar homogenization or trigger ablation. Europace
[Internet]. 2017 Nov 1 [cited 2022 Nov 28];19(11):1790–7.
Available from: https://pubmed.ncbi.nlm.nih.gov/28039211/
166. Schreiber D, Rieger A, Moser F, Kottkamp H. Catheter ablation of
atrial fibrillation with box isolation of fibrotic areas: Lessons on
fibrosis distribution and extent, clinical characteristics, and their
impact on long-term outcome. J Cardiovasc Electrophysiol [Internet].
2017 Sep 1 [cited 2022 Nov 28];28(9):971–83. Available from:
https://pubmed.ncbi.nlm.nih.gov/28635186/
167. Yamaguchi T, Tsuchiya T, Fukui A, Kawano Y, Otsubo T, Takahashi Y,
et al. Impact of the extent of low-voltage zone on outcomes after
voltage-based catheter ablation for persistent atrial fibrillation. J
Cardiol [Internet]. 2018 Nov 1 [cited 2022 Nov
28];72(5):427–33. Available from:
https://pubmed.ncbi.nlm.nih.gov/29807864/
168. Kumagai K, Minami K, Sugai Y, Sumiyoshi T, Komaru T. Effect of
ablation at high-dominant frequency sites overlapping with low-voltage
areas after pulmonary vein isolation of nonparoxysmal atrial
fibrillation. J Cardiovasc Electrophysiol [Internet]. 2019 Oct 1
[cited 2022 Nov 28];30(10):1850–9. Available from:
https://pubmed.ncbi.nlm.nih.gov/31361055/
169. Efremidis M, Vlachos K, Letsas KP, Bazoukis G, Martin R, Frontera
A, et al. Targeted ablation of specific electrogram patterns in
low-voltage areas after pulmonary vein antral isolation in persistent
atrial fibrillation: Termination to an organized rhythm reduces atrial
fibrillation recurrence. J Cardiovasc Electrophysiol [Internet].
2019 Jan 1 [cited 2022 Nov 28];30(1):47–57. Available from:
https://pubmed.ncbi.nlm.nih.gov/30288830/