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1 Method

Baseflow curve based on limit concept

In general, the water balance can be written as:

as _ _ _
= =P-E,—Q (S1)

where S is water stored in underground, P is precipitation, E, is actual evaporation, Q is discharge

which can be partitioned into Q is baseflow and Qq is quick flow (Q = @, + Q).

The basic limit concept of the Budyko framework for estimating E, is:
E,/P - las E,/P — o for very dry conditions, and E, — E, as E,/P - 0 for very wet
conditions, where E,, is potential evaporation. The demand limit of E, is E, and the supply limit is P.

Fu (1981) proposed E, can be calculated with:

]1/a1

Bo1t2-[1+ Do (S2)

Assuming % ~ 0 on long term time scales and with the catchment retention defined as
CR=E,+ 0, (S3)
Equation S1 can be expressed as:
P=CR+Q, (S4)

The demand limit for CR is CR, = E,, + Qp, . The Ep and Qb p are the potential values for E and
Qu, respectively. According to Zhang et al. (2008), the limits concept of Budyko can also be applied
to CR such that: CR/P — 1 as CR,/P — o for very dry conditions, andCR — CR, as CRy,/P — 0
for very wet conditions. Then CR can be estimated as:

CR CRO CRO., 4,1/ 92

Z=1+ -1+ (ED=| (S5)
Combining Eq. S2, Eq. S3 and Eq. S5:

Q _ Qvp Epyai1t/a, — Ep+Qbpyaz1/a,

b= D24 14+ (D)4 — [14 (Z2R)%] a (S6)

Under very limited storage capacity conditions (for instance an impervious catchment),

no/limited water is stored in the subsurface such that the baseflow also approaches zero (i.e., Q, /P —

az/
0 if @y, /P — 0). Under that condition, Eq. S11 changesto 0 ~ [1 + (%)“1]1/% - [1 + (E?”) 2] “ .

This equation can only be satisfied if a; = a,. Thus Eqg. S11 can be written as:



Q Qbp, E. 1 Ep+Qp, 1
T= A 1+ D e - L+ ()] (S7)
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Figure S1. Performance of (a) Q and (b) Q. at catchment scale during the calibration (orange) and
validation (blue) periods.
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Figure S2. Global maps of (a) parameter « in the Budyko curve (Eq. 3) and BFC curve (Eg. 4), and (b)

parameter Qp,, in BFC curve estimated as the mean of 10 BRT models.
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Figure S3. Global map of the uncertainty of (a) parameter a, (b) parameter Qyp, (¢) runoff coefficient (RC=Q/P),
(d) baseflow coefficient (BFC=Qw/P), (e) runoff (Q), and (f) baseflow (Qp). These uncertainty values are equal
to the standard deviation of the 10 trained BRT models using the 10-fold cross-validation strategy.
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Figure S4. Comparison of the baseflow coefficient (Qu/P) from this study with estimates according to (a)

GSCD and (b) ERA5-Land.
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Figure S5. Comparison of the baseflow index (Qu/Q) as estimated in this study with (a) field observations and

(b) GSCD estimates.



