Ting Cui

and 3 more

Bacterial laccases exhibit relatively high optimal reaction temperatures and possess a broad substrate spectrum, thereby expanding the range of potential applications for laccase enzymes. This study aims to investigate the molecular evolution of bacterial laccases using computational simulation tools such as AlphaFold2, Metal3D, AutoDockVina, and Rosetta. We isolated a bacterium with laccase activities from fecal samples from a Hermann´s tortoise ( Testudo hermanni), identified it as Klebsiella michiganensis using 16S rRNA sequencing and nanopore genome sequencing, and then identified a sequence encoding a laccase with a predicted molecular weight of approximately 27.5 kDa. Expression of the corresponding, chemically synthesized DNA fragment resulted in the isolation of an active laccase. The enzyme showed considerable thermostability, retaining 21% of its activity after boiling for 30 min. Using state-of-the-art information technology and machine learning techniques, we conducted simulations on this sequence, predicted its copper-ion binding sites, and validated these predictions through site-directed mutagenesis and expression. Subsequently, we performed computer-aided evolution studies on this sequence and found that 90% of the results from simulations exhibited improved performance. In summary, this study not only revealed a novel laccase but also demonstrated an efficient approach for advancing research on the molecular evolution of bacterial laccases using cutting-edge machine learning, next-generation sequencing, traditional bioinformatics approaches, and laboratory techniques, providing an effective strategy for discovering and design new bacterial laccases.

Wolfgang Bäumer

and 6 more

Background: Lympho-epithelial Kazal-type-related inhibitor (LEKTI) is a serine protease inhibitor consisting of multiple domains. A loss of function mutation is described in Netherton patients that show severe symptoms of atopic lesions and itch. Objectives: LEKTI domain 6 (LD6) has shown strong serine protease-inhibitory action in in vitro assays and thus it was tested in vitro and in vivo for potential anti-inflammatory action in models of atopic skin disease. Methods: Human skin equivalents were treated with LD6 and an inflammatory reaction was challenged by kallikrein-related endopeptidase 5 (KLK5). Furthermore, LD6 was tested on dorsal root ganglia cells stimulated with KLK5, SLIGRL and histamine by calcium imaging. The effect of topically administered LD6 (0.4–0.8 %) in lipoderm was compared to a topical formulation of betamethasone-diproprionate (0.5 %) in a therapeutic setting on atopic dermatitis-like lesions in NC/Nga mice sensitized to house dust mite antigen. Endpoints were clinical scoring of the mice as well as determination of scratching behaviour. Results: KLK5 induced an upregulation of CXCL-8, CCL20 and IL-6 in skin equivalents. This upregulation was reduced by pre-incubation with LD6. KLK5 as well as histamine induced calcium influx in a population of neurons. LD6 significantly reduced the calcium response to both stimuli. When administered onto lesional skin of NC/Nga mice, both LD6 and betamethasone-dipropionate significantly reduced the inflammatory reaction. The effect on itch behaviour was less pronounced. Conclusions: Topical administration of LD6 might be new therapeutic option for treatment of lesional atopic skin.