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1 | INTRODUCTION

The formal synthesis of controllers for dynamical systems against complex logic specifications has gained remarkable attention in
recent years. These specifications are usually expressed using temporal logic formulae'! or (in)finite strings over automata. In the
literature, abstraction-based approaches® are popular for solving such synthesis problems. However, since the abstraction-based
approaches usually require discretization of the state and input sets of physical systems, the synthesis problem becomes very
intractable for control systems with higher state-space dimensions. To address this scalability issue, state-space discretization-
free abstractions*2 and compositional abstraction-based techniques®” have been proposed under suitable assumptions on the

system dynamics (e.g., Lipschitz continuity or incremental input-to-state stability).
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The discretization-free approaches based on control barrier functions (CBF) have shown a potential to solve the formal synthe-

sis problem for various classes of complex logic specifications. The results in8°!0

search for parametric control barrier functions
to synthesize controllers to enforce specifications given by deterministic forms of Automata. However, there are several limita-
tions over the applicability of these results; for example, (i) the techniques rely on a parametric form of control barrier function
(such as polynomial) that will solve the problem, which is very difficult to determine for a given system and (ii) the techniques
rely on a numerical search of the unknown parameters by using sum-of-squares or counter-example guided inductive synthe-
sis approaches which are computationally heavy and most of the time suffer from numerical errors. There are a few works that

use another version of the control barrier function methodology for temporal-logic motion planning 12

, and which rely on the
online computation of the controller using optimization tools. Nevertheless, all these approaches do not provide closed-form
controllers and rely on, very often numerically intractable and without feasibility guarantees, computational techniques.

To address these issues, this work proposes the use of a funnel-based control approach'¥ to provide a closed-form hybrid
control policy that enforces complex specifications recognized by (omega)-regular languages? (or equivalently provided by non-
deterministic Biichi automata (NBA)1#). There have been few attempts to utilize funnel-based control approaches for enforcing

a class of complex specifications. For example, the authors in'1>10

provide results enforcing a fragment of signal temporal logic
specifications, and the work inZ presents results enforcing a metric interval temporal logic for cooperative manipulation by
discretizing state-space. However, to the best of our knowledge, this is the first paper to provide closed-form solutions enforcing
specifications that are recognized by (w)-regular languages. In particular, first, we provide funnel-based closed-form controllers
that solve simple reachability problems for control-affine nonlinear systems. Then, we decompose given specifications as a
sequence of reachability problems generated with the help of NBA recognizing the given (w)-regular property. Finally, we
combine the obtained controllers corresponding to each reachability task to design a hybrid control policy that enforces the
given (w)-regular property.

In the following, we summarize the key contributions of this work.

e Unlike the abstraction-based approaches®™, reachable set computations-based approaches'®, and the CBF-based
discretization-free approaches®?, we provide a closed-form solution that does not require any numerical computations to

design a controller enforcing complex logic specifications.

e The proposed result can handle a general class of complex specifications that are recognized by (w)-regular languages

(which is capable of capturing the full class of linear temporal logic (LTL) specifications).

e The results in® work only with deterministic forms of automata and need to compute the complement of automata
representing original specifications. In contrast, the proposed results work directly with NBA that recognizes w-regular

languages.
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The remainder of this paper is structured as follows. In section[2] we introduce system dynamics and the complex specifications
given by the w-regular property. Then, we formally define the problem considered in this paper. Section [3provides a result on
solving a reachability specification by utilizing a funnel-based control approach. In Section[d] we discuss the design of a closed-
form hybrid control policy by utilizing the results obtained in Section[3|to enforce the w-regular property. Section[5|demonstrates
the effectiveness of the results on two case studies: (i) temperature control in a room and (ii) mobile robot motion control under

complex tasks. Finally, Section [6]concludes the paper.

2 | PRELIMINARIES AND PROBLEM STATEMENT

2.1 | Notations

The symbols N, Ny, Z, R, R*, and Rg denote the set of natural, nonnegative integer, integer, real, positive real, and nonnegative
real numbers, respectively. We use R"™ to denote a vector space of real matrices with n rows and m columns. We use || - ||
to represent the Euclidean norm. For a,b € R and a < b, we use (a, b) to represent open interval in R. For a,b € N and
a < b, we use [a; b] to denote close interval in N. We use I, and 0,,,, to denote identity matrix in R™" and zero matrix in
R™™ respectively. A diagonal matrix in R™" with diagonal entries d|, ..., d, is denoted by diag{d,, ..., d,}. Given a matrix
M € R™m MT represents transpose of matrix M. Given a matrix P € R™", Tr(P) represents trace of matrix P. Given a set
A, we use | A| to represent the cardinality of the set A. x;, i € [1; n] denotes i-th element of vector x € R". Consider N sets A,
i € {1,..., N}, the Cartesian product of the sets is given by A = Hie{l,...,N} A; = {(ay,...,ap)|a; € A;i € {1,...,N}}.
Consider a set X, C R”, its projection on ith dimension, where i € [I;n], is given by an interval [L i,fai] C R, where
X, =min{x; € R | [x},x,,...,x,] € X,} and Xai '=max{x; € R | [x,X,,...,x,] € X,}; and Int(X,) represents the
interior of set X ,. We denote the empty set by @. Given a set S, the notation |.S| denotes the cardinality of .S; $* and S denote

the set of all finite and infinite strings over .S, respectively. Given sets U and .S C U, the complement of .S’ with respect to U is

definedas U\S = {x : x € U,x ¢ S}.

2.2 | System Description
In this work, we consider control-affine systems S given by ordinary differential equations of the form
S:x=f(x)+gx)u, 2.1

where x(t) = [x,(t), x,(?), ... ,xn(t)]T € X C R" and u(r) € R™ are state and input vectors, respectively. We assume that
g(x(®)g(x(1))T is positive definite for all x(f) € X. We use Xyyu 1O denote a trajectory of S starting from initial state x, € X

under a control signal u.
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2.3 | Class of Specifications

The main goal in this work is to synthesize controllers for systems ensuring the satisfaction of w-regular properties?.
Such specifications can be expressed by w-automata that can recognize infinite words, such as non-deterministic Biichi au-
tomata® deterministic Rabin automata?, deterministic Streett automata’, parity automata or Muller automatal. While the
above-mentioned automata have different acceptance conditions, they have the same expressive power and all of them recog-
nize w-regular languages. Here, we use non-deterministic Biichi automata (NBA) to describe w-regular properties, which are

formally defined next.

Definition 1. A non-deterministic Biichi automaton (NBA) is a tuple A = (Q, Q,, %, 6, FF), where Q is a finite set of states,
0O, € O is a set of initial states, X is a finite set of alphabets, 6 : O X X — 29 is a transition function, and F C Q is a set of

accepting states.

We use notation ¢ 2 4 ¢ to denote transition (¢, o, ¢') € 6 in an NBA A. Consider an infinite state-run q = (¢, ¢, -..) € O,
an infinite word (a.k.a. trace) o = (0, 0y,...) € Z such that g, € Q,, g; iA g;,, for all i € N, and let Inf(q) be the set of
states that occur infinitely many times in q. An infinite word ¢ = (6, 0, ...) € X is accepted by NBA A if there exists an
infinite state run q corresponding to ¢ such that Inf(q) N F # . The set of words accepted by A is called the accepting language
of A and is denoted by L(A).

We consider specifications expressed by accepting languages of NBA .4 when input symbols are defined over a set of atomic
propositions IT as the alphabet, i.e., ¥ = 2. We should highlight that the full class of linear temporal logic (LTL) properties

can be represented using NBA and the conversion can be done by the existing tools such as SPOT?2 and LTL2BA=3.

Remark 1. The approach proposed in this work can also be used for w-regular languages represented using deterministic Streett
automata and regular languages represented by (non)deterministic finite automata#. From a temporal logic perspective, the full
class of LTL can be represented by deterministic Streett automata (one can use tool Itl2dstar?> for conversions) and LTL over

finite traces (LTL f)26 can be represented using deterministic finite automata (one can utilize toolbox MONAZ for conversions).

2.4 | Satisfaction of Specification by Systems S

A given system S in (2.T)) is connected to the specification given by the accepting language of an NBA A defined over the set

of atomic propositions I, with the help of a labeling function L : X — II as described in the next definition which is adapted

from' 28| Definition 2
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Definition 2. For a system S in 2.1) and a labeling function L : X — TI, an infinite sequence o(x, ,) = (6, 0y, ...) € [ is
an infinite trace of the trajectory x, , of S if there exists an associated timing sequence #,,, ... such that 7y = 0, 7, — oo as

r— oo, and forall j €N, t; € Rg, and the following conditions hold

° tj < tj+1;

e x, ()€ L™Y(o));

e If 5; # 0, then for some t; € 11,1, x,, (1) € L‘l(aj) forallt € (tj,t;); Xy () € L‘1(0j+1) forall € (t;.,tjﬂ);
and either x, ,(t}) € L™Y(o;) or X u() € L™ (641)

Next, we define the satisfaction of specification given by the language of an NBA A.

Definition 3. Consider a system S in (2.I), a specification given by the accepting language of an NBA A, and o(xy,,) (i.e., an
infinite trace of trajectory x, ,) as in Deﬁnition@ We say that the trajectory of S starting from initial state x, € X under input

signal u satisfies specification given by A, denoted by o(x, ,) F A, if o(x,,) € L(A).

2.5 | Problem Definition
The main controller synthesis problem considered in this work is formally defined next.

Problem 1. Consider a system S in (2.1)), a specification given by the accepting language of an NBA A = (Q, Q,, 11, 6, F) over
a set of atomic propositions IT = {p,. p;, ..., pys}, and a labeling function L : X — II. We aim at computing a closed-form
hybrid controller u such that a(xxOu) F Aforall x, € L~!(p,) and some i € [1; M] (i.e., we will have different controllers based

on different starting regions associated with each initial atomic propositions).

To solve the aforementioned problem, we first utilize a funnel-based control approach which is discussed in the next section

to solve reachability specification.

3 | REACHABILITY USING FUNNEL-BASED CONTROL

In this section, we propose the use of a funnel-based control approach'? to solve the reachability problem, which will later serve
as a key element to solve Problem[I] Consider a funnel representing time-varying bounds for the trajectory x;,i € [1;n] given

as follows

—¢;pi(1) < x;(8) —m; < d;pi (1) (3.1
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forall t € [R{ar, where p; : Rg — R*, i € [1; n] are positive, smooth, and strictly decreasing funnel functions, ¢;, d; € IRS and

n; € R are some constants. In this work, we consider the following form of funnel function

pi() = Pioe_s't + Pico (3.2)

where p,g, pi00» €; € R* are positive constants and p;, = lim,_, p;(f). Now, by normalizing x,(f) — 5, with respect to the

performance function p;(t), we define the modulating error as x;(f) := % and the corresponding performance region ﬁi 1=

{%, | %, € (=c,.d,)}. Then, the modulated error is transformed through a transformation function T, : D, — R such that

T;(0) = 0 and is chosen as

T.(%) =

1 1

| <di(ci + f‘i)) 3.3)

n({———|. .
¢(d; — %)

The transformed error is then defined as &;(x,(¥), p;(t)) := T;(%;). It can be verified that if the transformed error is bounded, then

the modulated error %, is constrained within the region D,. This also implies that x,(r) — #, evolves within the bounds given in

(3.I). Differentiating & with respect to time, we obtain transformed error dynamics for ith dimension as

& = iR, DX, + a(O(x; — )], (3:4)

where ¢,(%;,1) 1= ﬁ% > O forall X; € (—c¢;,d;) and ;(?) := —Z—Eg > 0 for all # € R are the normalized Jacobian of the

transformation function 7; and the normalized derivative of the performance function p;, respectively. Now, by stacking all the

transformed error dynamics, one gets
£ =®,(x +a,(x — ), (3.5)

where & = [£,...,&,]T, ®, = diag{$,(%,,0),..., 9,0}, @, = diag{a,(?),..., a,(1)}, and n = [n,,...,n,]. In the next

theorem, we provide the result for enforcing reachability specification by utilizing the funnel approach.

Theorem 1. Consider system S in (2.1)), any arbitrary sets X,, X, C X, E; := [Kai’yﬂi] N [Kbi,fb[], X, :=min{X X, },

X, = max{}

1

fbi }, an arbitrarily chosen state n = [, 7, ..., n,]T € Int(X,) satisfying

ai’

5 fE #0

n; € _
(X, Xp] ifE; =0,

i € [1;n], and funnel function (3.1) with ¢; € R*,
max{|n, = X | 1n, = X, |} if &, # 0

Pio = _
max{|r/i _K,‘l’ |r’1 _Xil} le‘i =%,
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constants c;, d; as follows:

I’/I"_Kai| - -_—
¢g=——-—,d; =1, ifE #@and |n, — X | < |n, — X4l
Pio
i = X ail o -
¢ =1,d = —=, ifE, #@and |n,— X | > |n, — X,
Pio
|’7i_é,«| - -
¢ =——,d, =1, if 5, =@and |, — X,| < |n, — X
Pio
ln; — Xl pg. ¥
ci=1,d,-=p—, if 5, =@and |n, — X,| > |n, — X,
i0

and p;, issuch that [ # + [—¢;pic0 diPico] C Xp-
i€[1;n]

Then under time-varying control law:
u(x, p) = —g(x)" (g()g()") ™' (f (x) + &Cx, p) +E(x = ), (3.6)

where

di\¢ I d, (e, + 2
£ =6 (5100, s i) 5= lln (H) 1n(((d—_;

Section and € := max;,, €;, one can ensure that 3t € IRg such that x, (1) N X, # @ for all x, € X,. In other words, the

T
>] is a transformation error in (3:3) as discussed in

trajectory starting for any initial point in X, will reach X, in a finite time under the control law (3.6).

Proof. Consider Lyapunov like function V' = %fo and

V = EM0,(f(x) + g(x)u + a,(x = 1))

=&T0,(f(x) — g(0)g() (g()g(x)) ™ (f(x) + & + €(x = m) + a,(x = ).

By following the facts that ®, and a, are positive definite matrices, a, < € := max,,,,; ¢; and &' (x —#) > 0 (this is due to &(%,)
is strictly increasing and &,(0) = 0), one obtains V' < —&7®,&. This implies that £(7) is bounded for all t € [RO+ and hence we
guarantee (3.1)) that is —c,p;(t) + #; < x,(t) < d,p;(t) + ;. From the choice of € I'nt(X,) and constants p,y, p;c., ¢;, d;, #; for all
i € [1;n], one can readily ensure that X, C iel{:ln][—cipi(O}) +#;,—d;p;(0) + ;] and as Ilir?o ie]{:ln][—cipi(t) +n;,—d;p,t) + 1] =

1[_1[ ];1[ + [—C;Pieo» d:Pico] C X, This implies tl;at there exist € IR0+ such that x, (1) N X, # Q) for all x, € X,. O
ie[Ln

Remark 2. It is worth emphasizing that the sets X, and X, considered in Theorem [I]are arbitrary sets. The projection intervals

of those arbitrary sets on the ith dimensions are used to design the corresponding funnel parameters.
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4 | EXTENSION TO COMPLEX SPECIFICATIONS

In this section, we first provide an approach to decompose specifications given by the language of an NBA into a sequence of

reachability tasks. Then by utilizing the result of Theorem[I] we provide a construction of hybrid control policy solving Problem

[

4.1 | Sequential Reachability Decomposition

Consider an NBA A = (Q, Q,,1I1, 6, F) corresponding to an w-regular language expressing the properties of interest for the
system S.

For a given accepting state-run q of A, we denote the corresponding infinite words by o(q) C II®. We also use a similar
notation to denote finite words corresponding to finite state runs (i.e., 6(q) € II" for g € Q"*!,n € N). It is known that there
exists a word o € II” accepted by A if there exists a state run of A of the form q = (q;. ¢, .. ,qr’nr, (95475 - ,qfns)‘") € 0°,
where m,,m; € N, g) € O, and q; € F. Let q be a finite state run fragment of an accepting run q constructed by considering
infinite sequence (qg, qf, ,qrsnx) only once and is given by q = (q(’), q{, ,qr’nr, qg, qf, ,qfns, q(s), qf) € Q0.

Let R be the set of all such finite state-run fragments excluding self-loops,
R :={q=1(qp 4] ,q’mr,qg,q‘f, ,q%j,qé,q‘f)lq(’) € Q. q, € F.q #q,,Vi <m,,and qj. + q;+1,Vj<ms}. “4.D

Computation of R can be done algorithmically by viewing .4 as a directed graph G = (V, £) with vertices ¥V = Q and edges
£ C YV x V such that (q,¢") € € if and only if ¢ # ¢ and there exist p € II such that ¢ —p>A q'. We call a finite sequence of
states (qy, gy, ---»q;) € Q" /i € N, satisfying (g;, g;,,) € &, for all i € [0, ..., 74 — 1] a path in the graph G. For any (¢,¢’) € &,
we denote the atomic proposition associated with the edge (g, ¢") by o(q, ¢'). Now, one can easily compute R using variants of

depth-first search algorithm 2 over G. For each p € T1, we define a set R? as
RP i={d=(4pq}s -+ 4y + 40 41> -+ > A - 40 9)) € R | 0(qp, 47) = p}. 4.2)

The above notation with superscript p makes partitions of set R according to the initial atomic proposition of finite state-
run fragments in (@I). In particular, it will help in defining hybrid controllers corresponding to each initial state set L~!(p,),
i €{1,2,..., M}. Decomposition into sequential reachability is performed as follows. For any q = (¢, ¢;, --- » Grm,+m, ) ERP,

we define PP(q) as a set of all state runs of length 3 (referred to as triplets),
PP(Q) :={(qi,qi+1,qi+2,) |0<i<m,+m;+1}. 4.3)

For a better understanding, the decomposition into sequential reachability is demonstrated below with the following example.

Example 1. Consider an NBA A as shown in Figure where O = {qy,4;, 9. 43- 94, 95. 496} Qo = {40} I1 = {py, P1- P2, D3},
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P2 _'pl T

Figure 1 NBA A used in Example 1.

and F = {g;}.

The set of accepting state runs is {(qy, 47, 43 (43, 45, 4.)”), (4o, 47 » 4> (43, 45 4 )”)> (do» 4 (43 455 45))s (4o (a3, 45, 4 )”) ). The

set of finite state-run fragments R in @.I)) is obtained as follow:

R = {(499- 91> 92> 43+ 45+ 46> 43+ 45)> (4> 41> 44 43 G55 6> 93 5)> (- 44 3 G5 96 43 95)5 (G- G35 G55 96> G35 G5) }-

The sets R? for p € II are as follows:

Rpo = {(409 q17 ‘h, 43, 45, %, q?,s qS)s (q()s ql’ 44, 43’ 45’ Q67 513, 45)},Rpl = {((510’ ‘I3, 45, %, ‘13, qs)},

RPZ = {(‘107 q4’ q3a q59 Q69 ‘13’ qS)}’Rp3 = {(q()’ q3s 515, 46»‘13» qS)}

The sets PP(q) for g € R? are as follows:

PP (qy, 41 92+ 935 455 96> 93+ 95) = {(do> 91> 42):(41+ 425 43)(42, 43, G5)5(43 G55 G6)- (G55 9> 43)-(d6> G35 G5) }»
PP(qy, 415 9as 935 955 96> 93+ 95) = {(do> 91> 94):(q15 445 43) (Qus G35 45)-(43, G55 96)5(d55 6> 43)(d6» G35 G5) }»
PP(do, 945 93+ 95 96> 93 95) = 1(do> 94> 43)> (445 935 45)-(435 455 46):(d55 6> 43)-(d6> 93+ 95) )

PP (qy, q3- G5» 96» 930 95) = PP (qg» 935 G55 G- 430 95) = {(Q0» 93- 95)- (435 G55 G6)> (455 46> 43)» (A6 435 G5) } -

4.2 | Hybrid Control Policy

Each triplet v = (q, ¢, ¢"") € P?(q), p € I can be viewed as reach while avoid specification. In particular, the system trajectory
should reach region L~ (c(q’, ¢"")) while avoiding region X \ L™'(c(¢’, ¢’)) starting from some initial region L~'(c(q, q')). Next,

we raise an Assumption[T]on the locations of these sets under which we can use the proposed approach to solve Problem|T}
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Assumption 1. We assume that there exist an accepting state-run q such that for all v = (¢, q’, q¢") € P?(q), p € II, either of

the following hold:
o X\ L' (a(¢q",q") = L' (a(d".¢")) or

o X\ L' (@ a0 I [=¢;p,(0) +n;,~d;p;(0) + ;1 = B,

i€[1;n]

where p;(0), ¢;, d;, and #; are as defined in Theoremwith X,=L"Yo(q,q")) and X, = L™'(6(¢’, q")).

Remark 3. Assumption [I] says that either the avoid region should be the complement of the reach region or the intersection of
the avoid region with the region given by the funnel should be empty. In general, NBA have more than one accepting state-run,
so the possibility of having an accepting state-run that does not satisfy Assumption[I]is much smaller. Even in the unlikely case
that there is no accepting state-run satisfying the above assumption, one can introduce dummy atomic propositions that ensure
that the assumption is satisfied with the newly constructed NBA without affecting the original specification. One can readily
observe it for the 2-dimensional case. However, providing a generalized and automated algorithm is challenging and will be
considered as a future research direction. Another advantage of Assumption [T]is to filter out practically infeasible accepting
state runs (for example, those that do not have continuity). For better understanding, consider the temperature control case study
(given in Subsection where a triplet (q;, g3, ¢,) in Figure is associated with a reachability task defined as "reach L™!(p,)

from L~!(p,) without entering any other region". Then one can readily see from Figure 4| that the task is not feasible.

Next, we provide a Lemma that correlates a particular segment in specification automata NBA A (referred to as triplet) with

the result of Theorem[I]

Lemma 1. For a triplet v = (q,4’,q"") € P?(q), where ¢ € R? for some p € II satisfying Assumption |1} if we use control
policy u,(x, p,) as in in Theoremwith X, = L '(o(g,¢")) and X, = L' (c(q',q")), then there exist t € [R{ar such that

the trajectory &, , of S starting from any initial state x, € X, under policy u, satisfies x, , N X, # @.
Proof. The proof follows similar to that of Theorem I} O

Given an NBA A = (Q, Q,, 11, 6, F) expressing the properties of interest, an accepting run q, and corresponding finite state-
run fragment q satisfying Assumption next we define a finite state transition system which provides a switching mechanism
for a hybrid control policy. The switching mechanism is given by a finite state transition system & = (Q,, Qy,.IL, §,), where

Qp; = Q. O, = Q, U PP(q), and transition relation (¢,, 5, ¢’) € &, (also denoted by g, —C;@ q.) is defined as:

e forall g, = gy € Q,,

o(qy.q") o(qo.4")
-qy—¢ (90.4',4"), where gy — 4 q';
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P2
(94,93, 95)

(q3,95,96)

@
—

Figure 2 Switching mechanism given by state transition system

(90,94, 93)
—p1

P1

o forall g, =(q.4',4") € O, \ Qy,.

i

o(q'.q") o(q'.q") o(q”.q"")
_(q’ ql’ qll) _)@ (ql’ qll’ qlll)’ SUCh that q’ ql’ qll’ qlll E Q’ q/ _)A qll’ q// _)A q

"

The hybrid controller defined over the augmented state-space X x Q, that is a candidate for solving Problem|]is given by
B(X(0), q,) = uy (X0, p, (t = 1,). V(g L(x).q)) € 5, V1 ERY, 4.4)

where t, € Rg is the time instance defined as 7, := min{t € IRSr | x, a0 € o(q’,q") for q, = (q,4',q")}. The next theorem
shows that under the proposed hybrid controller in (&4}, one can ensure the satisfaction of the specification given by the language

of an NBA.

Theorem 2. Consider a system S (2.1 and an NBA A representing a specification with a finite state-run fragment q € R? for
some p € II corresponding to the accepting run q satisfying Assumption E} Then the state trajectory x, g of S starting from any

initial state x, € L~!(p) under the hybrid controller 1 satisfies the language of NBA A, i.e., a(xxgﬁ) FA.

Proof. Consider p € II and an accepting state run q=(qg, ¢, - , qr’nr, (954> --- qrsns)‘”) € 0” in A with o(q;, q]) = p. Let the
corresponding finite state-run be ¢ € R? as defined in Subsection satisfying Assumption |1} If we utilize controller (#.4)
that provides a switching strategy among the reachability control laws u (x) among v = (g, ¢, ¢"") € PP(q) as given in Lemma
E, one can conclude o(q) € L(A). By utilizing the definition of labeling function L, this implies that the state run Xy i of

starting from any initial state x, € L~!(p) under policy & given in {.4) satisfies o(Xy,a) € L(A). This concludes the proof. [

S | CASE STUDIES

In this section, we consider two case studies to demonstrate the effectiveness of our results.
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Figure 4 A trajectory of the system (3.1I)) under hybrid control policy (.4). The black dotted lines show funnels in which the
trajectory is evolving.

5.1 | Temperature control of a room

We consider the evolution of a room temperature given by
T=a,T,—T)+ay(T,—T)u, (5.1

where T'(f) denotes the temperature of the room, u(f) represents control input, T), = 55°C is the heater temperature, 7, = 15°C
is the ambient temperature, and @, = 8 X 107 and a;; = 3.6 X 107> are heat exchange coefficients. All the parameters are
adopted from".

The state set of the system is X = [10, 30]. We consider regions of interest X, = [10, 15], X, = [18,20], X, = [25,30], and
X; = X\ (XyUX,UX,). The set of atomic propositions is given by IT = {p,, p,, p,, p; } with labeling function L(x;) = p, for all

x; € X;,i € {0,1,2,3}. The objective is to compute a hybrid control policy ensuring the satisfaction of the specification given
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by LTL formula ¢ = py A(CIOp; ACIOP,) or equivalently by the accepting language of the NBA A in Figure Note that [] and
{) are temporal operators in LTL specification representing always and eventually operators, see* for more details. From Figure
@ one can readily identify that there are four possible structures of accepting state runs: (qo. 47, (43, 47)) (4. 45 4} (q3. 47))

(40- 97> (43 45, 47)°), and (4o, 45, 47+ (g5 G5 *, q})”) with corresponding sets

R = {(40: 41> 93 915 93 41)s (o> 42> 41+ G35 41> G35 41> (4o 41 G35 925 41> 93> 2)5 (do» 425 41 G35 925 G- 435 92D }»

Rt =RP2 =R =0, P40, 415 93, 13- 91) = {(do» 41 93), (a1 43, 41)- (43 415 43)- (41 g3, 4},

PP (4o 42515 93> 42> 415 93 92) = (o> 425 91)» (@25 15 93)- (415 93 02)- (435 42> 41)s (425 41> 43)5 (41> G35 G2) }»

PP(qys 4259159359193 91) = 1 (G0 92> 01)- (925 915 93)- (41> 93> 41)- (G35 15 43)5 (415 435 41) ) »

and P*°(qy, 41, 43, 42- 415 43, 42) = {(4o- 41> 93). (41 43, 92). (435 G2, 41)- (425 41, 43). (415 03, 42) }-
One can readily observe that (q;, g5, q;) in P?(qy, g,, 4, 43, 4, 93 4;) and
PPo(qy, q,. 43, 91 93> 9;) does not satisfy Assumption (I} Therefore, we choose P*(qy, q;, 43, 45, 4;- 43- 4») to design a hybrid
controller in (#.4). Figure[d]shows a trajectory of the system (5.1)) under a proposed hybrid control policy (#.4). The black dotted

lines show the funnel constructed to design the controller as discussed in Theorem [T} One can readily see that the trajectory is

evolving inside the bounds given by constructed funnel functions and hence satisfying the desired specification.

5.2 | Mobile Robot Motion Control

For the second case study, we consider a three-wheeled omnidirectional mobile robot=" given by differential equations as

—1

X cos(x3) —sin(x;) 0 0 -1 L
%, | = [ sin(x;) cos(x;) 0 cos% sin% L| Ru,
. 4 . V4
X3 0 0 Lf| —cos & sinz L
B

where two states x; and x, indicates robot’s position, and x; indicates robot’s orientation with respect to the x;-axis.
R = 0.02 is the wheel radius, B describes geometric constraints with L = 0.2 (radius of the robot body), and u(¢) €
R> are control inputs. The state set of the system is X = [0,100] x [0, 100] x [0,27]. We consider regions of inter-
est X, = [40,70] x [40,70] x [0,2z], X, = [10,35] x [10,35] x [0,2x], X, = [10,30] x [70,90] x [0,27], X5 =
[70,90] x [10,30] % [0,2x], and X, = X \ (X, U X, U X, U X3) (see Figure @) The set of atomic propositions is given
by Il = {py, p;. P2, P3. P4} With labeling function L(x;) = p, for all x; € X;,i € {0,1,2,3,4}. The objective is to compute
a hybrid control policy ensuring the satisfaction of the specification given by LTL formula ¢ = [J-p, A p3 A 0P, A Opy

or equivalently by the accepting language of the NBA A in Figure 5| From Figure 5} one can readily identify that there
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Figure 6 Simulation under hybrid control policy (#.4)

are three possible structures of accepting state runs: (qo,q;‘, q‘z"), (g9, qi“(q;, q;‘)“’), and (qy, q;‘, q;‘, q;‘, qg") with corresponding
sets RPs = {(do, 41> 92> 92)> (0> 915 92> 43> 425 43)> (o> 91> 2> G35 G- 42) ), RPY = RP = RP2 = RP = @ PP(qy, 45 G2, 9p) =
{(90- 91> 92)> (@15 92> 92D} PP (45 915 92> G35 925 43) = {(G05 91> 92)5 (415 @2 43)5 (925 93> 42)- (G35 42> G3) } s

P4y, 41592 93- 92> 92) = {40591 92)- (415 925 43): (42, 435 42)s (43,42, q2)}. One can readily observe that (q,,4¢,,9,) €
PP (g, 41,92, q») do not satisfy the Assumption [1} Thus, we choose P (q,, q;, 45, 43, g2, q3) to design a hybrid controller in
(@4). Figure[6]shows a trajectory of the systems (5.1]) under a proposed hybrid control policy (#.4). One can readily see that the

trajectory is satisfying the specification given in Figure[3]
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6 | CONCLUSION

In this paper, we proposed a discretization-free approach for the formal synthesis of controllers for control-affine systems to
enforce complex properties expressed by w-regular languages (or by the language of an NBA). The approach utilizes a funnel-
based control approach to provide a closed-form solution to solve the problem. As a future direction, we would like to extend

the approach to a more general class of nonlinear systems.
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