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Summary

The paper focuses on the problem of formal synthesis of controllers for control-affine
nonlinear systems against complex properties. Our goal is to design a closed-
form control policy that guarantees the satisfaction of complex properties that
are expressed using (𝜔)-regular languages and equivalently recognized by Non-
deterministic Büchi Automata (NBA). We propose leveraging a funnel-based control
approach to provide a closed-form solution to the problem. Our approach decom-
poses the specification represented by NBA into a sequence of reachability problems
which we solve using a funnel-based control approach. Controllers associated with
each reachability problem are then combined to design a hybrid control policy en-
forcing the desired (𝜔)-regular property. We demonstrate the effectiveness of the
proposed results on room temperature control and mobile robot motion control case
studies.

KEYWORDS:
Formal controller synthesis, Omega-regular specifications, Funnel-based control

1 INTRODUCTION

The formal synthesis of controllers for dynamical systems against complex logic specifications has gained remarkable attention in
recent years. These specifications are usually expressed using temporal logic formulae1 or (in)finite strings over automata2. In the
literature, abstraction-based approaches3 are popular for solving such synthesis problems. However, since the abstraction-based
approaches usually require discretization of the state and input sets of physical systems, the synthesis problem becomes very
intractable for control systems with higher state-space dimensions. To address this scalability issue, state-space discretization-
free abstractions4,5 and compositional abstraction-based techniques6,7 have been proposed under suitable assumptions on the
system dynamics (e.g., Lipschitz continuity or incremental input-to-state stability).
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The discretization-free approaches based on control barrier functions (CBF) have shown a potential to solve the formal synthe-
sis problem for various classes of complex logic specifications. The results in8,9,10 search for parametric control barrier functions
to synthesize controllers to enforce specifications given by deterministic forms of Automata. However, there are several limita-
tions over the applicability of these results; for example, (i) the techniques rely on a parametric form of control barrier function
(such as polynomial) that will solve the problem, which is very difficult to determine for a given system and (ii) the techniques
rely on a numerical search of the unknown parameters by using sum-of-squares or counter-example guided inductive synthe-
sis approaches which are computationally heavy and most of the time suffer from numerical errors. There are a few works that
use another version of the control barrier function methodology for temporal-logic motion planning11,12, and which rely on the
online computation of the controller using optimization tools. Nevertheless, all these approaches do not provide closed-form
controllers and rely on, very often numerically intractable and without feasibility guarantees, computational techniques.

To address these issues, this work proposes the use of a funnel-based control approach13 to provide a closed-form hybrid
control policy that enforces complex specifications recognized by (omega)-regular languages2 (or equivalently provided by non-
deterministic Büchi automata (NBA)14). There have been few attempts to utilize funnel-based control approaches for enforcing
a class of complex specifications. For example, the authors in15,16 provide results enforcing a fragment of signal temporal logic
specifications, and the work in17 presents results enforcing a metric interval temporal logic for cooperative manipulation by
discretizing state-space. However, to the best of our knowledge, this is the first paper to provide closed-form solutions enforcing
specifications that are recognized by (𝜔)-regular languages. In particular, first, we provide funnel-based closed-form controllers
that solve simple reachability problems for control-affine nonlinear systems. Then, we decompose given specifications as a
sequence of reachability problems generated with the help of NBA recognizing the given (𝜔)-regular property. Finally, we
combine the obtained controllers corresponding to each reachability task to design a hybrid control policy that enforces the
given (𝜔)-regular property.

In the following, we summarize the key contributions of this work.

• Unlike the abstraction-based approaches3,4, reachable set computations-based approaches18, and the CBF-based
discretization-free approaches8,9, we provide a closed-form solution that does not require any numerical computations to
design a controller enforcing complex logic specifications.

• The proposed result can handle a general class of complex specifications that are recognized by (𝜔)-regular languages
(which is capable of capturing the full class of linear temporal logic (LTL) specifications).

• The results in8,9 work only with deterministic forms of automata and need to compute the complement of automata
representing original specifications. In contrast, the proposed results work directly with NBA that recognizes 𝜔-regular
languages.
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The remainder of this paper is structured as follows. In section 2, we introduce system dynamics and the complex specifications
given by the 𝜔-regular property. Then, we formally define the problem considered in this paper. Section 3 provides a result on
solving a reachability specification by utilizing a funnel-based control approach. In Section 4, we discuss the design of a closed-
form hybrid control policy by utilizing the results obtained in Section 3 to enforce the 𝜔-regular property. Section 5 demonstrates
the effectiveness of the results on two case studies: (𝑖) temperature control in a room and (𝑖𝑖) mobile robot motion control under
complex tasks. Finally, Section 6 concludes the paper.

2 PRELIMINARIES AND PROBLEM STATEMENT

2.1 Notations

The symbols ℕ, ℕ0, ℤ, ℝ, ℝ+, and ℝ+
0 denote the set of natural, nonnegative integer, integer, real, positive real, and nonnegative

real numbers, respectively. We use ℝ𝑛×𝑚 to denote a vector space of real matrices with 𝑛 rows and 𝑚 columns. We use ‖ ⋅ ‖

to represent the Euclidean norm. For 𝑎, 𝑏 ∈ ℝ and 𝑎 < 𝑏, we use (𝑎, 𝑏) to represent open interval in ℝ. For 𝑎, 𝑏 ∈ ℕ and
𝑎 ≤ 𝑏, we use [𝑎; 𝑏] to denote close interval in ℕ. We use 𝐼𝑛 and 0𝑛×𝑚 to denote identity matrix in ℝ𝑛×𝑛 and zero matrix in
ℝ𝑛×𝑚, respectively. A diagonal matrix in ℝ𝑛×𝑛 with diagonal entries 𝑑1,… , 𝑑𝑛 is denoted by 𝑑𝑖𝑎𝑔{𝑑1,… , 𝑑𝑛}. Given a matrix
𝑀 ∈ ℝ𝑛×𝑚, 𝑀𝑇 represents transpose of matrix 𝑀 . Given a matrix 𝑃 ∈ ℝ𝑛×𝑛, Tr(𝑃 ) represents trace of matrix 𝑃 . Given a set
𝐴, we use |𝐴| to represent the cardinality of the set 𝐴. 𝑥𝑖, 𝑖 ∈ [1; 𝑛] denotes 𝑖-th element of vector 𝑥 ∈ ℝ𝑛. Consider 𝑁 sets 𝐴𝑖,
𝑖 ∈ {1,… , 𝑁}, the Cartesian product of the sets is given by 𝐴 =

∏

𝑖∈{1,…,𝑁} 𝐴𝑖 ∶= {(𝑎1,… , 𝑎𝑁 )|𝑎𝑖 ∈ 𝐴𝑖, 𝑖 ∈ {1,… , 𝑁}}.
Consider a set 𝑋𝑎 ⊂ ℝ𝑛, its projection on 𝑖th dimension, where 𝑖 ∈ [1; 𝑛], is given by an interval [𝑋𝑎𝑖, 𝑋𝑎𝑖] ⊂ ℝ, where
𝑋𝑎𝑖 ∶= min{𝑥𝑖 ∈ ℝ ∣ [𝑥1, 𝑥2,… , 𝑥𝑛] ∈ 𝑋𝑎} and 𝑋𝑎𝑖 ∶= max{𝑥𝑖 ∈ ℝ ∣ [𝑥1, 𝑥2,… , 𝑥𝑛] ∈ 𝑋𝑎}; and 𝐼𝑛𝑡(𝑋𝑎) represents the
interior of set 𝑋𝑎. We denote the empty set by ∅. Given a set 𝑆, the notation |𝑆| denotes the cardinality of 𝑆; 𝑆∗ and 𝑆𝜔 denote
the set of all finite and infinite strings over 𝑆, respectively. Given sets 𝑈 and 𝑆 ⊂ 𝑈 , the complement of 𝑆 with respect to 𝑈 is
defined as 𝑈∖𝑆 = {𝑥 ∶ 𝑥 ∈ 𝑈, 𝑥 ∉ 𝑆}.

2.2 System Description

In this work, we consider control-affine systems  given by ordinary differential equations of the form

 ∶ 𝑥̇ = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, (2.1)

where 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡),… , 𝑥𝑛(𝑡)]𝑇 ∈ 𝑋 ⊆ ℝ𝑛 and 𝑢(𝑡) ∈ ℝ𝑚 are state and input vectors, respectively. We assume that
𝑔(𝑥(𝑡))𝑔(𝑥(𝑡))𝑇 is positive definite for all 𝑥(𝑡) ∈ 𝑋. We use 𝑥𝑥0𝑢 to denote a trajectory of  starting from initial state 𝑥0 ∈ 𝑋

under a control signal 𝑢.
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2.3 Class of Specifications

The main goal in this work is to synthesize controllers for systems (2.1) ensuring the satisfaction of 𝜔-regular properties2.
Such specifications can be expressed by 𝜔-automata that can recognize infinite words, such as non-deterministic Büchi au-
tomata14, deterministic Rabin automata19, deterministic Streett automata20, parity automata or Muller automata21. While the
above-mentioned automata have different acceptance conditions, they have the same expressive power and all of them recog-
nize 𝜔-regular languages. Here, we use non-deterministic Büchi automata (NBA) to describe 𝜔-regular properties, which are
formally defined next.

Definition 1. A non-deterministic Büchi automaton (NBA) is a tuple  = (𝑄,𝑄0,Σ, 𝛿, 𝐹 ), where 𝑄 is a finite set of states,
𝑄0 ⊆ 𝑄 is a set of initial states, Σ is a finite set of alphabets, 𝛿 ∶ 𝑄 × Σ → 2𝑄 is a transition function, and 𝐹 ⊆ 𝑄 is a set of
accepting states.

We use notation 𝑞
𝜎
←→ 𝑞′ to denote transition (𝑞, 𝜎, 𝑞′) ∈ 𝛿 in an NBA . Consider an infinite state-run 𝗊 = (𝑞0, 𝑞1,…) ∈ 𝑄𝜔,

an infinite word (a.k.a. trace) 𝜎 = (𝜎0, 𝜎1,…) ∈ Σ𝜔 such that 𝑞0 ∈ 𝑄0, 𝑞𝑖
𝜎𝑖
←→ 𝑞𝑖+1 for all 𝑖 ∈ ℕ0, and let 𝖨𝗇𝖿 (𝗊) be the set of

states that occur infinitely many times in 𝗊. An infinite word 𝜎 = (𝜎0, 𝜎1,…) ∈ Σ𝜔 is accepted by NBA  if there exists an
infinite state run 𝗊 corresponding to 𝜎 such that 𝖨𝗇𝖿 (𝗊)∩𝐹 ≠ ∅. The set of words accepted by  is called the accepting language
of  and is denoted by ().

We consider specifications expressed by accepting languages of NBA  when input symbols are defined over a set of atomic
propositions Π as the alphabet, i.e., Σ = 2Π. We should highlight that the full class of linear temporal logic (LTL) properties
can be represented using NBA and the conversion can be done by the existing tools such as SPOT22 and LTL2BA23.

Remark 1. The approach proposed in this work can also be used for 𝜔-regular languages represented using deterministic Streett
automata and regular languages represented by (non)deterministic finite automata24. From a temporal logic perspective, the full
class of LTL can be represented by deterministic Streett automata (one can use tool ltl2dstar25 for conversions) and LTL over
finite traces (LTL𝑓 )26 can be represented using deterministic finite automata (one can utilize toolbox MONA27 for conversions).

2.4 Satisfaction of Specification by Systems 

A given system  in (2.1) is connected to the specification given by the accepting language of an NBA  defined over the set
of atomic propositions Π, with the help of a labeling function 𝐿 ∶ 𝑋 → Π as described in the next definition which is adapted
from28, Definition 2.
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Definition 2. For a system  in (2.1) and a labeling function 𝐿 ∶ 𝑋 → Π, an infinite sequence 𝜎(𝑥𝑥0𝑢) = (𝜎0, 𝜎1,…) ∈ Π𝜔 is
an infinite trace of the trajectory 𝑥𝑥0𝑢 of  if there exists an associated timing sequence 𝑡0, 𝑡1,… such that 𝑡0 = 0, 𝑡𝑟 → ∞ as
𝑟 → ∞, and for all 𝑗 ∈ ℕ, 𝑡𝑗 ∈ ℝ+

0 , and the following conditions hold

• 𝑡𝑗 < 𝑡𝑗+1;

• 𝑥𝑥0𝑢(𝑡𝑗) ∈ 𝐿−1(𝜎𝑗);

• If 𝜎𝑗 ≠ 𝜎𝑗+1, then for some 𝑡′𝑗 ∈ [𝑡𝑗 , 𝑡𝑗+1], 𝑥𝑥0𝑢(𝑡) ∈ 𝐿−1(𝜎𝑗) for all 𝑡 ∈ (𝑡𝑗 , 𝑡′𝑗); 𝑥𝑥0𝑢(𝑡) ∈ 𝐿−1(𝜎𝑗+1) for all 𝑡 ∈ (𝑡′𝑗 , 𝑡𝑗+1);
and either 𝑥𝑥0𝑢(𝑡′𝑗) ∈ 𝐿−1(𝜎𝑗) or 𝑥𝑥0𝑢(𝑡′𝑗) ∈ 𝐿−1(𝜎𝑗+1).

Next, we define the satisfaction of specification given by the language of an NBA .

Definition 3. Consider a system  in (2.1), a specification given by the accepting language of an NBA , and 𝜎(𝑥𝑥0𝑢) (i.e., an
infinite trace of trajectory 𝑥𝑥0𝑢) as in Definition 2. We say that the trajectory of  starting from initial state 𝑥0 ∈ 𝑋 under input
signal 𝑢 satisfies specification given by , denoted by 𝜎(𝑥𝑥0𝑢) ⊧ , if 𝜎(𝑥𝑥0𝑢) ∈ ().

2.5 Problem Definition

The main controller synthesis problem considered in this work is formally defined next.

Problem 1. Consider a system  in (2.1), a specification given by the accepting language of an NBA  = (𝑄,𝑄0,Π, 𝛿, 𝐹 ) over
a set of atomic propositions Π = {𝑝0, 𝑝1,… , 𝑝𝑀}, and a labeling function 𝐿 ∶ 𝑋 → Π. We aim at computing a closed-form
hybrid controller 𝑢 such that 𝜎(𝑥𝑥0𝑢) ⊧  for all 𝑥0 ∈ 𝐿−1(𝑝𝑖) and some 𝑖 ∈ [1;𝑀] (i.e., we will have different controllers based
on different starting regions associated with each initial atomic propositions).

To solve the aforementioned problem, we first utilize a funnel-based control approach which is discussed in the next section
to solve reachability specification.

3 REACHABILITY USING FUNNEL-BASED CONTROL

In this section, we propose the use of a funnel-based control approach13 to solve the reachability problem, which will later serve
as a key element to solve Problem 1. Consider a funnel representing time-varying bounds for the trajectory 𝑥𝑖, 𝑖 ∈ [1; 𝑛] given
as follows

−𝑐𝑖𝜌𝑖(𝑡) < 𝑥𝑖(𝑡) − 𝜂𝑖 < 𝑑𝑖𝜌𝑖(𝑡) (3.1)
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for all 𝑡 ∈ ℝ+
0 , where 𝜌𝑖 ∶ ℝ+

0 → ℝ+, 𝑖 ∈ [1; 𝑛] are positive, smooth, and strictly decreasing funnel functions, 𝑐𝑖, 𝑑𝑖 ∈ ℝ+
0 and

𝜂𝑖 ∈ ℝ are some constants. In this work, we consider the following form of funnel function

𝜌𝑖(𝑡) = 𝜌𝑖0𝖾
−𝜖𝑖𝑡 + 𝜌𝑖∞, (3.2)

where 𝜌𝑖0, 𝜌𝑖∞, 𝜖𝑖 ∈ ℝ+ are positive constants and 𝜌𝑖∞ = lim𝑡→∞ 𝜌𝑖(𝑡). Now, by normalizing 𝑥𝑖(𝑡) − 𝜂𝑖 with respect to the
performance function 𝜌𝑖(𝑡), we define the modulating error as 𝑥̂𝑖(𝑡) ∶= 𝑥𝑖(𝑡)−𝜂𝑖

𝜌𝑖(𝑡)
and the corresponding performance region ̂𝑖 ∶=

{𝑥̂𝑖 ∣ 𝑥̂𝑖 ∈ (−𝑐𝑖, 𝑑𝑖)}. Then, the modulated error is transformed through a transformation function 𝑇𝑖 ∶ ̂𝑖 → ℝ such that
𝑇𝑖(0) = 0 and is chosen as

𝑇𝑖(𝑥̂𝑖) = ln
(𝑑𝑖(𝑐𝑖 + 𝑥̂𝑖)
𝑐𝑖(𝑑𝑖 − 𝑥̂𝑖)

)

. (3.3)

The transformed error is then defined as 𝜉𝑖(𝑥𝑖(𝑡), 𝜌𝑖(𝑡)) ∶= 𝑇𝑖(𝑥̂𝑖). It can be verified that if the transformed error is bounded, then
the modulated error 𝑥̂𝑖 is constrained within the region ̂𝑖. This also implies that 𝑥𝑖(𝑡) − 𝜂𝑖 evolves within the bounds given in
(3.1). Differentiating 𝜉𝑖 with respect to time, we obtain transformed error dynamics for 𝑖th dimension as

𝜉̇𝑖 = 𝜙𝑖(𝑥̂𝑖, 𝑡)[𝑥̇𝑖 + 𝛼𝑖(𝑡)(𝑥𝑖 − 𝜂𝑖)], (3.4)

where 𝜙𝑖(𝑥̂𝑖, 𝑡) ∶=
1

𝜌𝑖(𝑡)
𝜕𝑇𝑖(𝑥̂𝑖)
𝜕𝑥̂𝑖

> 0 for all 𝑥̂𝑖 ∈ (−𝑐𝑖, 𝑑𝑖) and 𝛼𝑖(𝑡) ∶= − 𝜌̇𝑖(𝑡)
𝜌𝑖(𝑡)

> 0 for all 𝑡 ∈ ℝ+
0 are the normalized Jacobian of the

transformation function 𝑇𝑖 and the normalized derivative of the performance function 𝜌𝑖, respectively. Now, by stacking all the
transformed error dynamics, one gets

𝜉̇ = Φ𝑡(𝑥̇ + 𝛼𝑡(𝑥 − 𝜂)), (3.5)

where 𝜉 = [𝜉1,… , 𝜉𝑛]𝑇 , Φ𝑡 = 𝑑𝑖𝑎𝑔{𝜙1(𝑥̂1, 𝑡),… , 𝜙𝑛(𝑥̂𝑛, 𝑡)}, 𝛼𝑡 = 𝑑𝑖𝑎𝑔{𝛼1(𝑡),…, 𝛼𝑛(𝑡)}, and 𝜂 = [𝜂1,… , 𝜂𝑛]. In the next
theorem, we provide the result for enforcing reachability specification by utilizing the funnel approach.

Theorem 1. Consider system  in (2.1), any arbitrary sets 𝑋𝑎, 𝑋𝑏 ⊂ 𝑋, Ξ𝑖 ∶= [𝑋𝑎𝑖, 𝑋𝑎𝑖] ∩ [𝑋𝑏𝑖, 𝑋𝑏𝑖], 𝑋𝑖 ∶= min{𝑋𝑎𝑖, 𝑋𝑏𝑖},
𝑋𝑖 ∶= max{𝑋𝑎𝑖, 𝑋𝑏𝑖}, an arbitrarily chosen state 𝜂 = [𝜂1, 𝜂2,… , 𝜂𝑛]𝑇 ∈ 𝐼𝑛𝑡(𝑋𝑏) satisfying

𝜂𝑖 ∈

⎧

⎪

⎨

⎪

⎩

Ξ𝑖 if Ξ𝑖 ≠ ∅

[𝑋𝑏𝑖, 𝑋𝑏𝑖] if Ξ𝑖 = ∅,

𝑖 ∈ [1; 𝑛], and funnel function (3.1) with 𝜖𝑖 ∈ ℝ+,

𝜌𝑖0 =

⎧

⎪

⎨

⎪

⎩

max{|𝜂𝑖 −𝑋𝑎𝑖|, |𝜂𝑖 −𝑋𝑎𝑖|} if Ξ𝑖 ≠ ∅

max{|𝜂𝑖 −𝑋𝑖|, |𝜂𝑖 −𝑋𝑖|} if Ξ𝑖 = ∅,
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constants 𝑐𝑖, 𝑑𝑖 as follows:

𝑐𝑖 =
|𝜂𝑖 −𝑋𝑎𝑖|

𝜌𝑖0
, 𝑑𝑖 = 1, if Ξ𝑖 ≠ ∅ and |𝜂𝑖 −𝑋𝑎𝑖| ≤ |𝜂𝑖 −𝑋𝑎𝑖|

𝑐𝑖 = 1, 𝑑𝑖 =
|𝜂𝑖 −𝑋𝑎𝑖|

𝜌𝑖0
, if Ξ𝑖 ≠ ∅ and |𝜂𝑖 −𝑋𝑎𝑖| > |𝜂𝑖 −𝑋𝑎𝑖|

𝑐𝑖 =
|𝜂𝑖 −𝑋𝑖|

𝜌𝑖0
, 𝑑𝑖 = 1, if Ξ𝑖 = ∅ and |𝜂𝑖 −𝑋𝑖| ≤ |𝜂𝑖 −𝑋𝑖|

𝑐𝑖 = 1, 𝑑𝑖 =
|𝜂𝑖 −𝑋𝑖|

𝜌𝑖0
, if Ξ𝑖 = ∅ and |𝜂𝑖 −𝑋𝑖| > |𝜂𝑖 −𝑋𝑖|,

and 𝜌𝑖∞ is such that ∏

𝑖∈[1;𝑛]
𝜂𝑖 + [−𝑐𝑖𝜌𝑖∞, 𝑑𝑖𝜌𝑖∞] ⊂ 𝑋𝑏.

Then under time-varying control law:

𝑢(𝑥, 𝜌) = −𝑔(𝑥)𝑇 (𝑔(𝑥)𝑔(𝑥)𝑇 )−1(𝑓 (𝑥) + 𝜉(𝑥, 𝜌) + 𝜖(𝑥 − 𝜂)), (3.6)

where
𝜉(𝑥,𝜌)= [𝜉1(𝑥1,𝜌1),… , 𝜉𝑛(𝑥𝑛,𝜌𝑛)]𝑇∶=

[

ln
(𝑑1

(

𝑐1+
𝑥1−𝜂1
𝜌1

)

𝑐1
(

𝑑1−
𝑥1−𝜂1
𝜌1

)

)

,… , ln
(𝑑𝑛

(

𝑐𝑛+
𝑥𝑛−𝜂𝑛
𝜌𝑛

)

𝑐𝑛
(

𝑑𝑛−
𝑥𝑛−𝜂𝑛
𝜌𝑛

)

)

]𝑇

is a transformation error in (3.3) as discussed in
Section 3 and 𝜖 ∶= max𝑖∈[1;𝑛] 𝜖𝑖, one can ensure that ∃𝑡 ∈ ℝ+

0 such that 𝑥𝑥0𝑢(𝑡) ∩ 𝑋𝑏 ≠ ∅ for all 𝑥0 ∈ 𝑋𝑎. In other words, the
trajectory starting for any initial point in 𝑋𝑎 will reach 𝑋𝑏 in a finite time under the control law (3.6).

Proof. Consider Lyapunov like function 𝑉 = 1
2
𝜉𝑇 𝜉 and

𝑉̇ = 𝜉𝑇Φ𝑡(𝑓 (𝑥) + 𝑔(𝑥)𝑢 + 𝛼𝑡(𝑥 − 𝜂))

= 𝜉𝑇Φ𝑡(𝑓 (𝑥) − 𝑔(𝑥)𝑔(𝑥)𝑇 (𝑔(𝑥)𝑔(𝑥)𝑇 )−1(𝑓 (𝑥) + 𝜉 + 𝜖(𝑥 − 𝜂)) + 𝛼𝑡(𝑥 − 𝜂)).

By following the facts that Φ𝑡 and 𝛼𝑡 are positive definite matrices, 𝛼𝑡 < 𝜖 ∶= max𝑖∈[1;𝑛] 𝜖𝑖 and 𝜉𝑇 (𝑥−𝜂) ≥ 0 (this is due to 𝜉𝑖(𝑥̂𝑖)

is strictly increasing and 𝜉𝑖(0) = 0), one obtains 𝑉̇ ≤ −𝜉𝑇Φ𝑡𝜉. This implies that 𝜉(𝑡) is bounded for all 𝑡 ∈ ℝ+
0 and hence we

guarantee (3.1) that is −𝑐𝑖𝜌𝑖(𝑡) + 𝜂𝑖 < 𝑥𝑖(𝑡) < 𝑑𝑖𝜌𝑖(𝑡) + 𝜂𝑖. From the choice of 𝜂 ∈ 𝐼𝑛𝑡(𝑋𝑏) and constants 𝜌𝑖0, 𝜌𝑖∞, 𝑐𝑖, 𝑑𝑖, 𝜂𝑖 for all
𝑖 ∈ [1; 𝑛], one can readily ensure that 𝑋𝑎 ⊆

∏

𝑖∈[1;𝑛]
[−𝑐𝑖𝜌𝑖(0}) + 𝜂𝑖,−𝑑𝑖𝜌𝑖(0) + 𝜂𝑖] and as lim

𝑡→∞

∏

𝑖∈[1;𝑛]
[−𝑐𝑖𝜌𝑖(𝑡) + 𝜂𝑖,−𝑑𝑖𝜌𝑖(𝑡) + 𝜂𝑖] =

∏

𝑖∈[1;𝑛]
𝜂𝑖 + [−𝑐𝑖𝜌𝑖∞, 𝑑𝑖𝜌𝑖∞] ⊂ 𝑋𝑏. This implies that there exist 𝑡 ∈ ℝ+

0 such that 𝑥𝑥0𝑢(𝑡) ∩𝑋𝑏 ≠ ∅ for all 𝑥0 ∈ 𝑋𝑎.

Remark 2. It is worth emphasizing that the sets 𝑋𝑎 and 𝑋𝑏 considered in Theorem 1 are arbitrary sets. The projection intervals
of those arbitrary sets on the 𝑖th dimensions are used to design the corresponding funnel parameters.
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4 EXTENSION TO COMPLEX SPECIFICATIONS

In this section, we first provide an approach to decompose specifications given by the language of an NBA into a sequence of
reachability tasks. Then by utilizing the result of Theorem 1, we provide a construction of hybrid control policy solving Problem
1.

4.1 Sequential Reachability Decomposition

Consider an NBA  = (𝑄,𝑄0,Π, 𝛿, 𝐹 ) corresponding to an 𝜔-regular language expressing the properties of interest for the
system  .

For a given accepting state-run 𝗊 of , we denote the corresponding infinite words by 𝜎(𝗊) ⊆ Π𝜔. We also use a similar
notation to denote finite words corresponding to finite state runs (i.e., 𝜎(𝗊) ∈ Π𝑛 for 𝗊 ∈ 𝑄𝑛+1, 𝑛 ∈ ℕ). It is known that there
exists a word 𝜎 ∈ Π𝜔 accepted by  if there exists a state run of  of the form 𝗊 = (𝑞𝑟0, 𝑞

𝑟
1,… , 𝑞𝑟𝗆𝑟

, (𝑞𝑠0, 𝑞
𝑠
1,… , 𝑞𝑠𝗆𝑠

)𝜔) ∈ 𝑄𝜔,
where 𝗆𝑟,𝗆𝑠 ∈ ℕ, 𝑞𝑟0 ∈ 𝑄0 and 𝑞𝑠0 ∈ 𝐹 . Let 𝗊 be a finite state run fragment of an accepting run 𝗊 constructed by considering
infinite sequence (𝑞𝑠0, 𝑞

𝑠
1,… , 𝑞𝑠𝗆𝑠

) only once and is given by 𝗊 = (𝑞𝑟0, 𝑞
𝑟
1,… , 𝑞𝑟𝗆𝑟

, 𝑞𝑠0, 𝑞
𝑠
1,… , 𝑞𝑠𝗆𝑠

, 𝑞𝑠0, 𝑞
𝑠
1) ∈ 𝑄∗.

Let  be the set of all such finite state-run fragments excluding self-loops,

∶={𝗊 = (𝑞𝑟0, 𝑞
𝑟
1,… , 𝑞𝑟𝗆𝑟

, 𝑞𝑠0, 𝑞
𝑠
1,… , 𝑞𝑠𝗆𝑠

, 𝑞𝑠0, 𝑞
𝑠
1) ∣𝑞

𝑟
0 ∈ 𝑄0, 𝑞

𝑠
0 ∈ 𝐹 , 𝑞𝑟𝑖 ≠ 𝑞𝑟𝑖+1,∀𝑖 < 𝗆𝑟, and 𝑞𝑠𝑗 ≠ 𝑞𝑠𝑗+1,∀𝑗<𝗆𝑠}. (4.1)

Computation of  can be done algorithmically by viewing  as a directed graph  = ( , ) with vertices  = 𝑄 and edges
 ⊆  ×  such that (𝑞, 𝑞′) ∈  if and only if 𝑞′ ≠ 𝑞 and there exist 𝑝 ∈ Π such that 𝑞 𝑝

←→ 𝑞′. We call a finite sequence of
states (𝑞0, 𝑞1,… , 𝑞𝑛̃) ∈ 𝑄𝑛̃, 𝑛̃ ∈ ℕ, satisfying (𝑞𝑖, 𝑞𝑖+1) ∈  , for all 𝑖 ∈ [0,… , 𝑛̃ − 1] a path in the graph . For any (𝑞, 𝑞′) ∈  ,
we denote the atomic proposition associated with the edge (𝑞, 𝑞′) by 𝜎(𝑞, 𝑞′). Now, one can easily compute  using variants of
depth-first search algorithm29 over . For each 𝑝 ∈ Π, we define a set 𝑝 as

𝑝 ∶= {𝗊 = (𝑞𝑟0, 𝑞
𝑟
1,… , 𝑞𝑟𝗆𝑟

, 𝑞𝑠0, 𝑞
𝑠
1,… , 𝑞𝑠𝗆𝑠

, 𝑞𝑠0, 𝑞
𝑠
1) ∈  ∣ 𝜎(𝑞𝑟0, 𝑞

𝑟
1) = 𝑝}. (4.2)

The above notation with superscript 𝑝 makes partitions of set  according to the initial atomic proposition of finite state-
run fragments in (4.1). In particular, it will help in defining hybrid controllers corresponding to each initial state set 𝐿−1(𝑝𝑖),
𝑖 ∈ {1, 2,… ,𝑀}. Decomposition into sequential reachability is performed as follows. For any 𝗊 = (𝑞0, 𝑞1,… , 𝑞𝗆𝑟+𝗆𝑠+3) ∈ 𝑝,
we define 𝑝(𝗊) as a set of all state runs of length 3 (referred to as triplets),

𝑝(𝗊) ∶= {
(

𝑞𝑖, 𝑞𝑖+1, 𝑞𝑖+2,
)

∣ 0 ≤ 𝑖 ≤ 𝗆𝑟 +𝗆𝑠 + 1}. (4.3)

For a better understanding, the decomposition into sequential reachability is demonstrated below with the following example.
Example 1. Consider an NBA  as shown in Figure 1, where 𝑄 = {𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6}, 𝑄0 = {𝑞0}, Π = {𝑝0, 𝑝1, 𝑝2, 𝑝3},
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⏉

Figure 1 NBA  used in Example 1.

and 𝐹 = {𝑞3}.
The set of accepting state runs is {(𝑞0, 𝑞∗1 , 𝑞∗2 , (𝑞3, 𝑞∗5 , 𝑞∗6 )𝜔), (𝑞0, 𝑞∗1 , 𝑞∗4 , (𝑞3, 𝑞∗5 , 𝑞∗6 )𝜔), (𝑞0, 𝑞∗4 , (𝑞3, 𝑞∗5 , 𝑞∗6 )𝜔), (𝑞0, (𝑞3, 𝑞∗5 , 𝑞∗6 )𝜔)}. The
set of finite state-run fragments  in (4.1) is obtained as follow:

 = {(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5), (𝑞0, 𝑞1, 𝑞4, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5), (𝑞0, 𝑞4, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5), (𝑞0, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5)}.

The sets 𝑝 for 𝑝 ∈ Π are as follows:

𝑝0 = {(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5), (𝑞0, 𝑞1, 𝑞4, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5)},𝑝1 = {((𝑞0, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5)},

𝑝2 = {(𝑞0, 𝑞4, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5)},𝑝3 = {(𝑞0, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5)}.

The sets 𝑝(𝗊) for 𝗊 ∈ 𝑝 are as follows:
𝑝0(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5) = {(𝑞0, 𝑞1, 𝑞2),(𝑞1, 𝑞2, 𝑞3),(𝑞2, 𝑞3, 𝑞5),(𝑞3, 𝑞5, 𝑞6), (𝑞5, 𝑞6, 𝑞3),(𝑞6, 𝑞3, 𝑞5)},
𝑝0(𝑞0, 𝑞1, 𝑞4, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5) = {(𝑞0, 𝑞1, 𝑞4),(𝑞1, 𝑞4, 𝑞3), (𝑞4, 𝑞3, 𝑞5),(𝑞3, 𝑞5, 𝑞6),(𝑞5, 𝑞6, 𝑞3),(𝑞6, 𝑞3, 𝑞5)},
𝑝2(𝑞0, 𝑞4, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5) = {(𝑞0, 𝑞4, 𝑞3), (𝑞4, 𝑞3, 𝑞5),(𝑞3, 𝑞5, 𝑞6),(𝑞5, 𝑞6, 𝑞3),(𝑞6, 𝑞3, 𝑞5)},
𝑝1(𝑞0, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5) = 𝑝3(𝑞0, 𝑞3, 𝑞5, 𝑞6, 𝑞3, 𝑞5) = {(𝑞0, 𝑞3, 𝑞5), (𝑞3, 𝑞5, 𝑞6), (𝑞5, 𝑞6, 𝑞3), (𝑞6, 𝑞3, 𝑞5)}.

4.2 Hybrid Control Policy

Each triplet 𝜈 = (𝑞, 𝑞′, 𝑞′′) ∈ 𝑝(𝗊), 𝑝 ∈ Π can be viewed as reach while avoid specification. In particular, the system trajectory
should reach region 𝐿−1(𝜎(𝑞′, 𝑞′′)) while avoiding region 𝑋⧵𝐿−1(𝜎(𝑞′, 𝑞′)) starting from some initial region 𝐿−1(𝜎(𝑞, 𝑞′)). Next,
we raise an Assumption 1 on the locations of these sets under which we can use the proposed approach to solve Problem 1.
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Assumption 1. We assume that there exist an accepting state-run 𝗊 such that for all 𝜈 = (𝑞, 𝑞′, 𝑞′′) ∈ 𝑝(𝗊), 𝑝 ∈ Π, either of
the following hold:

• 𝑋 ⧵ 𝐿−1(𝜎(𝑞′, 𝑞′)) = 𝐿−1(𝜎(𝑞′, 𝑞′′)) or

• 𝑋 ⧵ 𝐿−1(𝜎(𝑞′, 𝑞′)) ∩
∏

𝑖∈[1;𝑛]
[−𝑐𝑖𝜌𝑖(0) + 𝜂𝑖,−𝑑𝑖𝜌𝑖(0) + 𝜂𝑖] = ∅,

where 𝜌𝑖(0), 𝑐𝑖, 𝑑𝑖, and 𝜂𝑖 are as defined in Theorem 1 with 𝑋𝑎 = 𝐿−1(𝜎(𝑞, 𝑞′)) and 𝑋𝑏 = 𝐿−1(𝜎(𝑞′, 𝑞′′)).

Remark 3. Assumption 1 says that either the avoid region should be the complement of the reach region or the intersection of
the avoid region with the region given by the funnel should be empty. In general, NBA have more than one accepting state-run,
so the possibility of having an accepting state-run that does not satisfy Assumption 1 is much smaller. Even in the unlikely case
that there is no accepting state-run satisfying the above assumption, one can introduce dummy atomic propositions that ensure
that the assumption is satisfied with the newly constructed NBA without affecting the original specification. One can readily
observe it for the 2-dimensional case. However, providing a generalized and automated algorithm is challenging and will be
considered as a future research direction. Another advantage of Assumption 1 is to filter out practically infeasible accepting
state runs (for example, those that do not have continuity). For better understanding, consider the temperature control case study
(given in Subsection 5.1) where a triplet (𝑞1, 𝑞3, 𝑞1) in Figure 3 is associated with a reachability task defined as "reach 𝐿−1(𝑝2)

from 𝐿−1(𝑝1) without entering any other region". Then one can readily see from Figure 4 that the task is not feasible.

Next, we provide a Lemma that correlates a particular segment in specification automata NBA  (referred to as triplet) with
the result of Theorem 1.

Lemma 1. For a triplet 𝜈 = (𝑞, 𝑞′, 𝑞′′) ∈ 𝑝(𝗊), where 𝗊 ∈ 𝑝 for some 𝑝 ∈ Π satisfying Assumption 1, if we use control
policy 𝑢𝜈(𝑥, 𝜌𝜈) as in (3.6) in Theorem 1 with 𝑋𝑎 = 𝐿−1(𝜎(𝑞, 𝑞′)) and 𝑋𝑏 = 𝐿−1(𝜎(𝑞′, 𝑞′′)), then there exist 𝑡 ∈ ℝ+

0 such that
the trajectory 𝜉𝑥0𝑢𝜈 of  starting from any initial state 𝑥0 ∈ 𝑋𝑎 under policy 𝑢𝜈 satisfies 𝑥𝑥0𝑢𝜈 ∩𝑋𝑏 ≠ ∅.

Proof. The proof follows similar to that of Theorem 1.

Given an NBA  = (𝑄,𝑄0,Π, 𝛿, 𝐹 ) expressing the properties of interest, an accepting run 𝗊, and corresponding finite state-
run fragment 𝗊 satisfying Assumption 1, next we define a finite state transition system which provides a switching mechanism
for a hybrid control policy. The switching mechanism is given by a finite state transition system 𝔖 = (𝑄𝑠, 𝑄0𝑠,Π, 𝛿𝑠), where
𝑄0𝑠 = 𝑄0, 𝑄𝑠 = 𝑄0𝑠 ∪ 𝑝(𝗊), and transition relation (𝑞𝑠, 𝜎, 𝑞′𝑠) ∈ 𝛿𝑠 (also denoted by 𝑞𝑠

𝜎
←→𝔖 𝑞′𝑠) is defined as:

• for all 𝑞𝑠 = 𝑞0 ∈ 𝑄0𝑠,

– 𝑞0
𝜎(𝑞0,𝑞′)
←→𝔖 (𝑞0, 𝑞′, 𝑞′′), where 𝑞0

𝜎(𝑞0,𝑞′)
←→ 𝑞′;
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Figure 2 Switching mechanism given by state transition system
• for all 𝑞𝑠 = (𝑞, 𝑞′, 𝑞′′) ∈ 𝑄𝑠 ⧵𝑄0𝑠,

– (𝑞, 𝑞′, 𝑞′′)
𝜎(𝑞′,𝑞′′)
←→𝔖 (𝑞′, 𝑞′′, 𝑞′′′), such that 𝑞, 𝑞′, 𝑞′′, 𝑞′′′ ∈ 𝑄, 𝑞′𝜎(𝑞

′,𝑞′′)
←→ 𝑞′′, 𝑞′′𝜎(𝑞

′′,𝑞′′′)
←→ 𝑞′′′.

The hybrid controller defined over the augmented state-space 𝑋 ×𝑄𝑠 that is a candidate for solving Problem 1 is given by

ũ(𝑥(𝑡), 𝑞𝑠) ∶= 𝑢𝑞′𝑠(𝑥(𝑡), 𝜌𝑞′𝑠(𝑡 − 𝑡𝑞𝑠), ∀(𝑞𝑠, 𝐿(𝑥), 𝑞′𝑠) ∈ 𝛿𝑠, ∀𝑡 ∈ ℝ+
0 , (4.4)

where 𝑡𝑞𝑠 ∈ ℝ+
0 is the time instance defined as 𝑡𝑞𝑠 ∶= min{𝑡 ∈ ℝ+

0 ∣ 𝑥𝑥0ũ(𝑡) ∈ 𝜎(𝑞′, 𝑞′′) for 𝑞𝑠 = (𝑞, 𝑞′, 𝑞′′)}. The next theorem
shows that under the proposed hybrid controller in (4.4), one can ensure the satisfaction of the specification given by the language
of an NBA.

Theorem 2. Consider a system  (2.1) and an NBA  representing a specification with a finite state-run fragment 𝗊 ∈ 𝑝 for
some 𝑝 ∈ Π corresponding to the accepting run 𝗊 satisfying Assumption 1. Then the state trajectory 𝑥𝑥0𝐮̃ of  starting from any
initial state 𝑥0 ∈ 𝐿−1(𝑝) under the hybrid controller 𝐮̃ satisfies the language of NBA , i.e., 𝜎(𝑥𝑥𝑜𝐮̃) ⊧ .

Proof. Consider 𝑝 ∈ Π and an accepting state run 𝗊=(𝑞𝑟0, 𝑞
𝑟
1,… , 𝑞𝑟𝗆𝑟

, (𝑞𝑠0, 𝑞
𝑠
1,…, 𝑞𝑠𝗆𝑠

)𝜔) ∈ 𝑄𝜔 in  with 𝜎(𝑞𝑟0, 𝑞
𝑟
1) = 𝑝. Let the

corresponding finite state-run be q ∈ 𝑝 as defined in Subsection 4.1 satisfying Assumption 1. If we utilize controller (4.4)
that provides a switching strategy among the reachability control laws 𝑢𝜈(𝑥) among 𝜈 = (𝑞, 𝑞′, 𝑞′′) ∈ 𝑝(q) as given in Lemma
1, one can conclude 𝜎(𝗊) ∈ (). By utilizing the definition of labeling function 𝐿, this implies that the state run 𝑥𝑥0,𝐮̃ of 
starting from any initial state 𝑥0 ∈ 𝐿−1(𝑝) under policy 𝐮̃ given in (4.4) satisfies 𝜎(𝑥𝑥0𝐮̃) ∈ (). This concludes the proof.

5 CASE STUDIES

In this section, we consider two case studies to demonstrate the effectiveness of our results.
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Figure 3 An NBA representing specification for the room temperature control example

Figure 4 A trajectory of the system (5.1) under hybrid control policy (4.4). The black dotted lines show funnels in which the
trajectory is evolving.
5.1 Temperature control of a room

We consider the evolution of a room temperature given by

𝑇̇ = 𝛼𝑒(𝑇𝑒 − 𝑇 ) + 𝛼𝐻 (𝑇ℎ − 𝑇 )𝑢, (5.1)

where 𝑇 (𝑡) denotes the temperature of the room, 𝑢(𝑡) represents control input, 𝑇ℎ = 55◦𝐶 is the heater temperature, 𝑇𝑒 = 15◦𝐶

is the ambient temperature, and 𝛼𝑒 = 8 × 10−3 and 𝛼𝐻 = 3.6 × 10−3 are heat exchange coefficients. All the parameters are
adopted from5.
The state set of the system is 𝑋 = [10, 30]. We consider regions of interest 𝑋0 = [10, 15], 𝑋1 = [18, 20], 𝑋2 = [25, 30], and
𝑋3 = 𝑋 ⧵(𝑋0∪𝑋1∪𝑋2). The set of atomic propositions is given by Π = {𝑝0, 𝑝1, 𝑝2, 𝑝3} with labeling function 𝐿(𝑥𝑖) = 𝑝𝑖 for all
𝑥𝑖 ∈ 𝑋𝑖, 𝑖 ∈ {0, 1, 2, 3}. The objective is to compute a hybrid control policy ensuring the satisfaction of the specification given
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by LTL formula 𝜑 = 𝑝0∧(□◊𝑝1∧□◊𝑝2) or equivalently by the accepting language of the NBA  in Figure 3. Note that □ and
◊ are temporal operators in LTL specification representing always and eventually operators, see24 for more details. From Figure
3, one can readily identify that there are four possible structures of accepting state runs: (𝑞0, 𝑞∗1 , (𝑞3, 𝑞∗1 )𝜔), (𝑞0, 𝑞∗2 , 𝑞∗1 (𝑞3, 𝑞∗1 )𝜔),
(𝑞0, 𝑞∗1 , (𝑞3, 𝑞

∗
2 , 𝑞

∗
1 )

𝜔), and (𝑞0, 𝑞∗2 , 𝑞
∗
1 , (𝑞3, 𝑞2 ∗, 𝑞

∗
1 )

𝜔) with corresponding sets

𝑝0 = {(𝑞0, 𝑞1, 𝑞3, 𝑞1, 𝑞3, 𝑞1), (𝑞0, 𝑞2, 𝑞1, 𝑞3, 𝑞1, 𝑞3, 𝑞1), (𝑞0, 𝑞1, 𝑞3, 𝑞2, 𝑞1, 𝑞3, 𝑞2), (𝑞0, 𝑞2, 𝑞1, 𝑞3, 𝑞2, 𝑞1, 𝑞3, 𝑞2)},

𝑝1 = 𝑝2 = 𝑝3 = ∅,𝑝0(𝑞0, 𝑞1, 𝑞3, 𝑞1, 𝑞3, 𝑞1) = {(𝑞0, 𝑞1, 𝑞3), (𝑞1, 𝑞3, 𝑞1), (𝑞3, 𝑞1, 𝑞3), (𝑞1, 𝑞3, 𝑞1)},

𝑝0(𝑞0, 𝑞2, 𝑞1, 𝑞3, 𝑞2, 𝑞1, 𝑞3, 𝑞2) = {(𝑞0, 𝑞2, 𝑞1), (𝑞2, 𝑞1, 𝑞3), (𝑞1, 𝑞3, 𝑞2), (𝑞3, 𝑞2, 𝑞1), (𝑞2, 𝑞1, 𝑞3), (𝑞1, 𝑞3, 𝑞2)},

𝑝0(𝑞0, 𝑞2, 𝑞1, 𝑞3, 𝑞1, 𝑞3, 𝑞1) = {(𝑞0, 𝑞2, 𝑞1), (𝑞2, 𝑞1, 𝑞3), (𝑞1, 𝑞3, 𝑞1), (𝑞3, 𝑞1, 𝑞3), (𝑞1, 𝑞3, 𝑞1)},

and 𝑝0(𝑞0, 𝑞1, 𝑞3, 𝑞2, 𝑞1, 𝑞3, 𝑞2) = {(𝑞0, 𝑞1, 𝑞3), (𝑞1, 𝑞3, 𝑞2), (𝑞3, 𝑞2, 𝑞1), (𝑞2, 𝑞1, 𝑞3), (𝑞1, 𝑞3, 𝑞2)}.

One can readily observe that (𝑞1, 𝑞3, 𝑞1) in 𝑝0(𝑞0, 𝑞2, 𝑞1, 𝑞3, 𝑞1, 𝑞3, 𝑞1) and
𝑝0(𝑞0, 𝑞1, 𝑞3, 𝑞1, 𝑞3, 𝑞1) does not satisfy Assumption 1. Therefore, we choose 𝑝0(𝑞0, 𝑞1, 𝑞3, 𝑞2, 𝑞1, 𝑞3, 𝑞2) to design a hybrid
controller in (4.4). Figure 4 shows a trajectory of the system (5.1) under a proposed hybrid control policy (4.4). The black dotted
lines show the funnel constructed to design the controller as discussed in Theorem 1. One can readily see that the trajectory is
evolving inside the bounds given by constructed funnel functions and hence satisfying the desired specification.

5.2 Mobile Robot Motion Control

For the second case study, we consider a three-wheeled omnidirectional mobile robot30 given by differential equations as
⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥̇1

𝑥̇2

𝑥̇3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos(𝑥3) − sin(𝑥3) 0

sin(𝑥3) cos(𝑥3) 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 −1 𝐿

cos 𝜋
6

sin 𝜋
6
𝐿

−cos 𝜋
6
sin 𝜋

6
𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵

−1

𝑅𝑢,

where two states 𝑥1 and 𝑥2 indicates robot’s position, and 𝑥3 indicates robot’s orientation with respect to the 𝑥1-axis.
𝑅 = 0.02 is the wheel radius, 𝐵 describes geometric constraints with 𝐿 = 0.2 (radius of the robot body), and 𝑢(𝑡) ∈

ℝ3 are control inputs. The state set of the system is 𝑋 = [0, 100] × [0, 100] × [0, 2𝜋]. We consider regions of inter-
est 𝑋0 = [40, 70] × [40, 70] × [0, 2𝜋], 𝑋1 = [10, 35] × [10, 35] × [0, 2𝜋], 𝑋2 = [10, 30] × [70, 90] × [0, 2𝜋], 𝑋3 =

[70, 90] × [10, 30] × [0, 2𝜋], and 𝑋4 = 𝑋 ⧵ (𝑋0 ∪ 𝑋1 ∪ 𝑋2 ∪ 𝑋3) (see Figure 6). The set of atomic propositions is given
by Π = {𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4} with labeling function 𝐿(𝑥𝑖) = 𝑝𝑖 for all 𝑥𝑖 ∈ 𝑋𝑖, 𝑖 ∈ {0, 1, 2, 3, 4}. The objective is to compute
a hybrid control policy ensuring the satisfaction of the specification given by LTL formula 𝜑 = □¬𝑝0 ∧ 𝑝3 ∧ □◊𝑝2 ∧ ◊𝑝1

or equivalently by the accepting language of the NBA  in Figure 5. From Figure 5, one can readily identify that there
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Figure 5 An NBA representing specification for the mobile robot example

Figure 6 Simulation under hybrid control policy (4.4)

are three possible structures of accepting state runs: (𝑞0, 𝑞∗1 , 𝑞𝜔2 ), (𝑞0, 𝑞∗1 (𝑞∗2 , 𝑞∗3 )𝜔), and (𝑞0, 𝑞∗1 , 𝑞
∗
2 , 𝑞

∗
3 , 𝑞

𝜔
2 ) with corresponding

sets 𝑝3 = {(𝑞0, 𝑞1, 𝑞2, 𝑞2), (𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞2, 𝑞3), (𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞2, 𝑞2)}, 𝑝0 = 𝑝1 = 𝑝2 = 𝑝4 = ∅; 𝑝3(𝑞0, 𝑞1, 𝑞2, 𝑞2) =

{(𝑞0, 𝑞1, 𝑞2), (𝑞1, 𝑞2, 𝑞2)}, 𝑝3(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞2, 𝑞3) = {(𝑞0, 𝑞1, 𝑞2), (𝑞1, 𝑞2, 𝑞3), (𝑞2, 𝑞3, 𝑞2), (𝑞3, 𝑞2, 𝑞3)},
𝑝3(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞2, 𝑞2) = {(𝑞0, 𝑞1, 𝑞2), (𝑞1, 𝑞2, 𝑞3), (𝑞2, 𝑞3, 𝑞2), (𝑞3, 𝑞2, 𝑞2)}. One can readily observe that (𝑞1, 𝑞2, 𝑞2) ∈

𝑝3(𝑞0, 𝑞1, 𝑞2, 𝑞2) do not satisfy the Assumption 1. Thus, we choose 𝑝3(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞2, 𝑞3) to design a hybrid controller in
(4.4). Figure 6 shows a trajectory of the systems (5.1) under a proposed hybrid control policy (4.4). One can readily see that the
trajectory is satisfying the specification given in Figure 5.
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6 CONCLUSION

In this paper, we proposed a discretization-free approach for the formal synthesis of controllers for control-affine systems to
enforce complex properties expressed by 𝜔-regular languages (or by the language of an NBA). The approach utilizes a funnel-
based control approach to provide a closed-form solution to solve the problem. As a future direction, we would like to extend
the approach to a more general class of nonlinear systems.
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