loading page

Comparison of T1-weighted landmark placement and ROI transfer onto diffusion-weighted EPI sequences for targeted tractography tasks in the optic nerve
  • +10
  • Markus Janko,
  • Sascha D. Santaniello,
  • Carolin Brockmann,
  • Marcel Wolf,
  • Nils F. Grauhan,
  • Vanessa I. Schöffling,
  • Violeta Dimova,
  • Katharina Ponto,
  • Esther M. Hoffmann,
  • Wolfgang Kleinekofort,
  • Ahmed Othman,
  • Marc Brockmann,
  • Andrea Kronfeld
Markus Janko
Universitatsmedizin der Johannes Gutenberg-Universitat Mainz

Corresponding Author:mrksjanko@gmail.com

Author Profile
Sascha D. Santaniello
Universitatsmedizin der Johannes Gutenberg-Universitat Mainz
Author Profile
Carolin Brockmann
Universitatsmedizin der Johannes Gutenberg-Universitat Mainz
Author Profile
Marcel Wolf
Universitatsmedizin der Johannes Gutenberg-Universitat Mainz
Author Profile
Nils F. Grauhan
Universitatsmedizin der Johannes Gutenberg-Universitat Mainz
Author Profile
Vanessa I. Schöffling
Universitatsmedizin der Johannes Gutenberg-Universitat Mainz
Author Profile
Violeta Dimova
Universitatsmedizin der Johannes Gutenberg-Universitat Mainz
Author Profile
Katharina Ponto
Universitatsmedizin der Johannes Gutenberg-Universitat Mainz Augenklinik und Poliklinik
Author Profile
Esther M. Hoffmann
Universitatsmedizin der Johannes Gutenberg-Universitat Mainz Augenklinik und Poliklinik
Author Profile
Wolfgang Kleinekofort
Hochschule RheinMain Fachbereich Ingenieurwissenschaften
Author Profile
Ahmed Othman
Universitatsmedizin der Johannes Gutenberg-Universitat Mainz
Author Profile
Marc Brockmann
Universitatsmedizin der Johannes Gutenberg-Universitat Mainz
Author Profile
Andrea Kronfeld
Universitatsmedizin der Johannes Gutenberg-Universitat Mainz
Author Profile

Abstract

Diffusion-based tractography in the optic nerve requires sampling strategies assisted by anatomical landmark information (regions of interest, ROIs). We aimed to investigate the feasibility of expert-placed, high resolution T1-weighted ROI-data transfer onto lower spatial resolution diffusion-weighted images. Slab volumes from twenty volunteers were acquired and preprocessed including distortion bias correction and artifact reduction. Constrained spherical deconvolution was used to generate a directional diffusion information grid (FOD-model (fibre orientation distribution)). Three neuroradiologists marked landmarks on both diffusion imaging variants and structural datasets. Structural ROI information (volumetric interpolated breath-hold sequence (VIBE)) was respectively registered (linear with 6/12 degrees of freedom (DOF)) onto single-shot (ss-EPI) and readout-segmented (rs-EPI) volumes respectively. All eight ROI/FOD combinations were compared in a targeted tractography task of the optic nerve pathway. Inter-rater reliability for placed ROIs among experts was highest in VIBE images (lower confidence interval 0.84 to 0.97, mean 0.91) and lower in both ss-EPI (0.61 to 0.95, mean 0.79) and rs-EPI (0.59 to 0.86, mean 0.70). Tractography success rate was highest in VIBE-drawn ROIs registered (6-DOF) onto rs-EPI FOD (70.0% over 5%-threshold, capped to failed ratio 39/16) followed by both 12-DOF registered (67.5%; 41/16) and non-registered VIBE (67.5%; 40/23). On ss-EPI FOD, VIBE ROI-datasets obtained fewer streamlines overall with each at 55.0% above 5%-threshold and with lower capped to failed ratio (6-DOF: 35/36; 12-DOF: 34/34, non-registered 33/36). The combination of VIBE-placed ROIs (highest inter-rater reliability) with 6-DOF registration onto rs-EPI targets (best streamline selection performance) is most suitable for white matter template generation required in group-studies.
Submitted to European Journal of Neuroscience
24 Apr 2024Submission Checks Completed
24 Apr 2024Assigned to Editor
24 Apr 2024Review(s) Completed, Editorial Evaluation Pending
15 May 2024Editorial Decision: Revise Minor
04 Jul 20241st Revision Received
15 Jul 2024Submission Checks Completed
15 Jul 2024Assigned to Editor
15 Jul 2024Review(s) Completed, Editorial Evaluation Pending
15 Jul 2024Reviewer(s) Assigned
20 Jul 2024Editorial Decision: Accept