Active faults release part of the elastic strain energy stored in the crust via aseismic slip, either through slow slip events (SSEs) or steady slowly creep. However, spatial and temporal interactions between these different styles of aseismic slip have yet to be quantified especially at depth. Along the central section of the North Anatolian Fault, we apply a Multichannel Singular Spectrum Analysis (MSSA) on GNSS time series of ground motion to detect a Mw 4.8 shallow SSE (2-5 km depth) lasting for 26-28 days, in agreement with local creepmeter observations. Our observations confirm the recurrence of SSEs next to a steadily creeping section of the fault. Finally, we discuss how steady creep and SSEs interact spatially and temporally along the fault segment.