loading page

Histological characterization of the human scapholunate ligament
  • +4
  • Miguel Alaminos,
  • Jesús Chato-Astrain,
  • Olga Roda,
  • Víctor Carriel,
  • Fidel Hita Contreras,
  • Indalecio Sánchez-Montesinos,
  • Pedro Hernández-Cortés
Miguel Alaminos
Universidad de Granada Facultad de Medicina

Corresponding Author:malaminos@ugr.es

Author Profile
Jesús Chato-Astrain
Universidad de Granada Facultad de Medicina
Author Profile
Olga Roda
Universidad de Granada Facultad de Medicina
Author Profile
Víctor Carriel
Universidad de Granada Facultad de Medicina
Author Profile
Fidel Hita Contreras
Universidad de Jaen
Author Profile
Indalecio Sánchez-Montesinos
Universidad de Granada Facultad de Medicina
Author Profile
Pedro Hernández-Cortés
Instituto de Investigacion Biosanitaria de Granada
Author Profile

Abstract

The scapholunate interosseous ligament (SLIL) plays a fundamental role in stabilizing the wrist bones, and its disruption is a frequent cause of wrist arthrosis and disfunction. Traditionally, this structure is considered to be a variety of fibrocartilaginous tissue and consists of three regions: dorsal, membranous and palmar. Despite its functional relevance, the exact composition of the human SLIL is not well understood. In the present work, we have analyzed the human SLIL and control tissues from the human hand using an array of histological, histochemical and immunohistochemical methods to characterize each region of this structure. Results reveal that the SLIL is heterogeneous, and each region can be subdivided in two zones that are histologically different to the other zones. Analysis of collagen and elastic fibers, collagens types I, III and IV, proteoglycans, glycoproteins and versican confirmed that the different regions can be subdivided in two zones that have their own structure and composition. The first part of the dorsal region (zone D1) resembles the control tendons and ligaments, whereas the rest of the SLIL are more similar to the control articular cartilage, especially the first part of the membranous region (zone M1). Cells showing a chondrocyte-like phenotype as determined by S100 were more abundant in M1, whereas the zone containing more CD73-positive stem cells was D2. These results confirm the heterogeneity of the human SLIL and could contribute to explain why certain zones of this structure are more prone to structural damage and why other zones have specific regeneration potential.
12 Jan 2023Submitted to Microscopy Research and Technique
13 Jan 2023Submission Checks Completed
13 Jan 2023Assigned to Editor
22 Jan 2023Review(s) Completed, Editorial Evaluation Pending
03 Feb 2023Reviewer(s) Assigned
20 Mar 2023Editorial Decision: Revise Major
01 Jun 20231st Revision Received
05 Jun 2023Assigned to Editor
05 Jun 2023Submission Checks Completed
05 Jun 2023Review(s) Completed, Editorial Evaluation Pending
13 Jul 2023Reviewer(s) Assigned
03 Sep 2023Editorial Decision: Revise Minor
13 Sep 20232nd Revision Received
13 Sep 2023Assigned to Editor
13 Sep 2023Submission Checks Completed
13 Sep 2023Review(s) Completed, Editorial Evaluation Pending
14 Sep 2023Editorial Decision: Accept