1

2

Clustering to characterize extreme marine conditions
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Key Points:

e A generalizable method for characterizing ocean extremes was developed and ap-
plied to an Eastern Boundary Current environment.

« Climate indices are predictive of extreme conditions for the Northeastern Pacific
continental margin.

¢ Multiple stressor extremes are rare, but are increasing in some regions, with most
of involving compound extremes of oxygen and acidity.
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Abstract

Anthropogenic COs emissions lead to ocean warming, deoxygenation and acidification.
Superimposed on the long-term trends are episodic extremes of temperature, oxygen, and
acidity. Here we present an innovative method for assessing single and multiple stres-

sor extremes using a high-resolution regional model of the Northeastern Pacific Ocean.
We use an unsupervised clustering approach to identify regions with similar habitat char-
acteristics near the seafloor, define extreme thresholds seasonally using a fixed baseline
(1996-2020) within each cluster, and quantify the fraction of ocean waters that exceed
these thresholds for both single and compound stressors. Compound extremes (most com-
monly of Oz and acidification) are rare but show an increasing trend in some clusters.
Potential predictability of occurrence of extremes is demonstrated by correlation with
basin-scale climate variability.

Plain Language Summary

The ocean is becoming warmer, losing oxygen and acidifying as a result of COs emis-
sions. Superimposed on the mean changes are episodic extremes that can have detrimen-
tal impacts on ecosystems. To better understand the nature of extreme conditions on
the continental margin, we use a statistical approach to characterize these extremes in
the recent past (1996-2019).

We introduce a method for characterizing extremes that uses machine learning to
divide the data into regions with relatively consistent environmental conditions (tem-
perature, oxygen, acidity), and define the extremes based on the historical statistics of
variability of each of these fields. For the Northeast Pacific continental margin, a sub-
stantial number of single stressor extremes occur annually. However, coincident extremes
of more than one stressor are rare. Local extremes are related to large scale climate vari-
ability such as the North Pacific Gyre Oscillation. Long term trends are weak but de-
tectable in some cases.

1 Introduction

Global warming, ocean deoxygenation, and acidification are inextricably linked. The
ocean has taken up about 30% of anthropogenic carbon emissions and about 90% of the
excess heat (Portner et al., 2019) which warms and acidifies the ocean and leads to de-
oxygenation through changes in solubility, stratification, ventilation, and respiration (Keeling
et al., 2010; Breitburg et al., 2018). Ocean climate is changing rapidly and episodic ex-
tremes can drive changes in ecosystems decades before the mean state reaches that ex-
treme.

Extremes of temperature, oxygen and acidity are projected to increase in the fu-
ture (Kwiatkowski et al., 2020; Gruber et al., 2021). When these three stressors occur
concurrently or consecutively they can have synergistic effects (Gruber, 2011) that im-
pact organisms in ways that exceed the effects of a single stressor in isolation Portner
et al. (2005). For example, increasing temperature can make species more sensitive to
ocean acidification (Portner & Farrell, 2008), and oxygen and acidification can impact
the thermal tolerances for some species (Portner, 2010). Some species will shift their dis-
tributions in response to these stressors (Thompson et al., 2023), while others will be un-
able to.

Episodic occurrences of anomalously warm ocean temperatures, known as marine
heatwaves (MHW) have been associated with oxygen and acidification anomalies as sol-
ubility declines and stratification increases (Mogen et al., 2022). An analysis of satel-
lite derived sea surface temperatures from the recent past (1982-2016) indicates that ma-
rine heatwaves (MHW) are increasing in duration and intensity. Earth system models
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project increasing frequency, breadth, intensity and duration of MHWSs (Frolicher et al.,
2018). A doubling of impacts on species is anticipated by the 2050s (Cheung & Frolicher,
2020).

Marine heatwaves threaten marine life in the North Pacific and are associated with
increasing occurrences of harmful algal blooms (Cavole et al., 2016), declines in the nu-
tritional value of key forage fish (von Biela et al., 2019), reduction in stocks of commer-
cially important fish (Cheung & Frolicher, 2020), mass mortality events, and loss of ecosys-
tem services (Smale et al., 2019). The eastern North Pacific is one of the most produc-
tive regions in the world ocean (Cushing, 1971) and may be particularly vulnerable to
biogeochemical extremes due to upwelling of waters that are low in oxygen and highly
corrosive (primarily due to the age of the water). Corrosive (24 < 1) and hypoxic (Oy <
60 mmol m~3) water is projected to encroach on the Northeast Pacific continental mar-
gin by 2046-2065 (Holdsworth et al., 2021).

Previous studies have divided the shelf by defining bioregions using physical ocean
variables and expert knowledge of the prevailing circulation (Zacharias et al., 1998). Rubidge
et al. (2016) used machine learning to assimilate biological and environmental data to
define ecoregions. They showed that the resulting ecological units represent more dis-
tinct species assemblages than the classifications based on expert knowledge. Cluster-
ing with machine learning reduces the need for personal interpretation or judgment by
defining ecoregions using the data themselves.

This paper introduces a novel method for characterizing individual and compound
extremes of temperature, oxygen, and acidification. The approach uses a clustering tech-
nique to establish subregions with similar environmental conditions and defines ‘extreme’
thresholds for upwelling and downwelling seasons using a fixed baseline. Assuming that
extremes in these unique environmental spaces are influenced by similar processes helps
disentangle the mechanistic drivers for this vast and complex region of the shelf. We use
the method to analyze output from a high-resolution ocean biogeochemistry model of
the Northeast Pacific from 1996 to 2019, restricting our analysis to the benthic layer of
the Canadian coastal region, which contains unique ecosystems like glass sponge reefs
and economically important shellfish and rockfish habitats. We then examine the occur-
rence of extreme conditions for both single and compound stressors.

Section 2 describes the regional model and the clustering technique; Section 3 dis-
cusses the spatial distribution of extreme thresholds and their evolution over time; Sec-
tion 4 discusses these results in the broader context of extremes on continental margins
and the utility of these findings to ecosystem management; lastly, Section 5 provides an
overall summary of the paper and key results.

2 Methodology
2.1 Northeastern Pacific Ocean Model

The Northeastern Pacific (NEP) model domain spans the Canadian Pacific Ocean
east of 140°W and north of 45°N (Figure 1 ab, Figure S1). The horizontal resolution is
nominally 1/36° latitude and longitude which gives a variable grid spacing between 1.5
and 2.25km. The model includes the ocean biogeochemistry module known as the Cana-
dian Ocean Ecosystem model (CanOE) (Christian et al., 2022).

The regional ocean model, NEP36-CanOE, is an updated version of the one used
in Holdsworth et al. (2021). We added a module for benthic remineralization and phy-
toplankton and zooplankton parameters (Figure S2) were adjusted to make the commu-
nity more representative of the Northeastern Pacific continental margin. More details
of the model configuration and development can be found in Text S1.
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Figure 1. Maps of the (a) Shallows and (c) Canyons clusters with (e) density as a function
of depth. Spatially averaged time-series of the daily averaged (b) dissolved oxygen, (d) aragonite
saturation state, and f) potential temperature for each cluster. Geographic locations are labelled

on Figure S1.
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The model was forced with hourly atmospheric forcing from the ERA5 reanalysis
(Hersbach et al., 2018); the metpy package was used to convert dew point and pressure
to specific humidity (May et al., 2021). At the open boundaries we used the Coperni-
cus Global 1/12° Oceanic and Sea Ice (GLORYS12) Reanalysis (Lellouche et al., 2021)
for the physical variables, we used the Global Ocean Data Analysis Project version 2 (GLO-
DAP) (Key et al., 2015; Lauvset et al., 2016) for dissolved inorganic carbon (DIC) and
Total Alkalinity (TAlk), and World Ocean Atlas 2018 for nitrate plus nitrite (NOg3) and
dissolved oxygen (O2) (Garcia et al., 2019a, 2019b).

The model’s grid spacing is insufficient to resolve locations very near to the shore
as well as the narrow straits and channels along the coast. Therefore, we apply a mask
to remove the 2 grid cells next to the coast and any channels less than 25 km wide which
effectively removes the Salish Sea from our analysis (Figure S1).

The hindcast simulation was extensively evaluated using all of the available ship-
sampled data (Department of Fisheries and Oceans Canada (DFO), 2022) (Figure S3),
Monthly Isopycnal / Mixed-layer Ocean Climatology (MIMOC) (Schmidtko et al., 2013)
(Figure S4), and tide gauge observations from 65 stations (Figure S5). More details of
the evaluation can be found in supplementary Text S1. The model distributions are sim-
ilar to those of the ship-sampled observations (Figure S3). We computed several met-
rics including the Kling-Gupta Efficiency (KGE) and its components (the Pearson cor-
relation 7, the variability ratio «, and the bias ratio 8) (Kling et al., 2012; Jackson et
al., 2019) as well as the signed root mean squared error (RMSE). All of the variables rel-
evant to our analysis were strongly correlated with the observations and perform well
compared to the mean observed benchmark (KGE < 0.75) (Table S2). To assess the ca-
pability of the simulation to represent extreme conditions, we computed the 10*" and
the 90" percentile from these distributions. Extreme values for T, S, DIC, TAlk and hy-
poxia have a relatively low bias (Table S2). Therefore, the simulation is expected to re-
alistically represent extreme marine conditions for each of the three stressors.

2.2 Clustering methodology

The benthic Northeast Pacific is a heterogenous environment; spatial distribution
of physical and biogeochemical properties is affected by topography and the large-scale
circulation. Thus, a single definition for an extreme is not necessarily appropriate; what
is a ‘typical’ value for one sub-region might be considered ‘extreme’ for another. Addi-
tionally, defining specific biomes using expert knowledge is challenging due to the com-
plex circulation and the size of the study region. Instead, we use a clustering approach
that provides a data driven estimate of regions where the three stressors respond sim-
ilarly to changes in upwelling/downwelling, biogeochemistry, and circulation.

Clustering is a method used in machine learning to group similar data points to-
gether based on certain selected features or input variables. Since we are interested in
characterizing T, [O2], and acidification extremes, the selected features are calculated
climatologies of T, apparent oxygen utilization (AOU), and aragonite saturation state,

Q4 for all bottom depths less than 1000 m in the model. AOU is used instead of [Os]

to eliminate the effect of solubility on oxygen concentration (which potentially overem-
phasizes T in defining a cluster). While ocean acidification can be considered a ‘multi-

ple driver’ because multiple inorganic carbon parameters are changing (Hurd et al., 2019),
we include only 4 as a variable with important biotic impacts. Each of these is scaled

to have zero mean and unit standard deviation. A K-means clustering algorithm (Pedregosa
et al., 2011) is then applied to these data to find six distinct clusters whose members have
similar relationships among the three variables (Table S3 and Figure S6). Two choices

that were made for this study are the number of clusters and the temporal resolution

of the data. More details on how these choices were made are given in Text S2.
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Visual examination of the clusters (Figure S6) shows that two (d, a) of the six are
well-defined regions representing shallow shoals and submarine canyons, respectively (Fig-
ure 1 a, ¢) and referred to as Shallows and Canyons hereafter. We selected these two clus-
ters for detailed analysis, based on their contrasting characteristics, and their ecologi-
cal relevance; the Canyons and Shallows clusters both contain bioregions with high bio-
diversity (c.f. the Troughs and Dogfish Bank units in Rubidge et al. (2016) Figure 3).
However, other clusters may also be of ecological interest, for example, cluster ‘e’ high-
lights regions of high species richness for groundfish (c.f. Figure 8 of Thompson et al.
(2022)).

From the climatologies, we computed the center for each of the clusters (Table S3).
The Shallows cluster has relatively warm temperatures, low AOU (high oxygen), and arag-
onite supersaturation, while the Canyons cluster has low T, high AOU, and undersat-
uration (Table S3).

Due to the changes in circulation and life stages of the biota, we examine daily out-
put split into two seasons: an upwelling season (April to September) and a downwelling
season (October to March). The boundary between these seasons is the average date of
the spring and fall transitions (March 315t and October 12th) observed between 1991
and 2020 (Boldt et al., 2020).

2.3 Defining thresholds for extremes

To define a threshold for what is considered extreme, we rely on the statistics of
daily average T, [O3], and Q4. Here we use [O2] instead of AOU, because biotic impacts
are related to oxygen concentration.

We implement a relative threshold approach and define a fixed baseline for each
regime using the full 24 year time series from January 1996 to December 2019 (Gruber
et al., 2021). Because the distributions are asymmetric (complicating the definition of
thresholds based on variance), we choose a percentile-based approach to identify thresh-
olds. The thresholds are calculated from the cumulative density function (distributions
shown in Figure S7) for each cluster using the 10" percentile for Q4 and [O3], and the
90" percentile for T (Hobday et al., 2016; Gruber et al., 2021).

3 Results
3.1 Characterization of the clusters

The Shallows cluster (Figure 1a) includes the open waters east of Haida Gwaii and
some of the shallow banks in Queen Charlotte Sound. The Canyons cluster (Figure 1b)
includes the deep channels of Dixon Entrance north of Haida Gwaii, the troughs of Queen
Charlotte Sound and connected waters along the edge of the continental shelf.

The Shallows and Canyons have contrasting environmental conditions. Each clus-
ter displays a strong seasonal cycle (Figure 1 b-d-f); related to seasonal upwelling and
downwelling. Compared to the Canyons (263 m average depth), the Shallows (30 m av-
erage depth) exhibits a higher seasonal amplitude, particularly for temperature. While
this can be partly attributed to their average depth, some depths and isopycnals in the
Shallows overlap with the Canyons, which spans a wider range (Figure 1 e).

The thresholds that define extreme conditions during each season, calculated us-
ing the criteria for each variable described in section 2.3, are show in Table 1. For the
Canyons, an extreme value for Os is close to the widely used criterion for hypoxia that
may signify fisheries collapse (< 60 mmolm~3) (Vaquer-Sunyer & Duarte, 2008), and
is associated with aragonite undersaturation; for the Shallows, the oxygen threshold is
well above the ‘conservation limit’ of ~ 140 mmolm~3 and occurs in aragonite saturated



208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

and relatively warm waters. In the Shallows, extreme temperatures occur during the sum-
mer months when atmospheric temperature is greatest; in the Canyons, warm extreme
temperatures occur during downwelling (Table 1). Upwelling during summer brings rel-
atively cool, salty, low oxygen and nutrient rich water to the deep benthic regions of the
continental shelf; during winter, downwelling and mixing can propagate surface signals
downward.

Table 1. The thresholds relative to 1996-2019 (section 2.3) and maximum duration (days)
averaged over all of the grid cells within the cluster for extreme events of temperature (°C),
dissolved oxygen (mmolm™?) and aragonite saturation state for the Shallows (Figure 1a) and

Canyons (Figure 1c) clusters.

Upwelling Downwelling Upwelling Downwelling
Cluster  Threshold Threshold max duration max duration

T 0, Q4 T Oy Q4 T Oy Q4 T Oy Qu

Shallows 14.1 241 1.5 10.7 260 1.3 3.4 4.2 6.3 2.5 4.2 6.2

Canyons 6.4 59 0.6 71 69 06 6.7 63 54 7.7 7.0 56

3.2 Occurrence of extremes over time

In the Canyons, two time periods (1999-2003 and 2008-2013) have a large fraction
of waters (> 40%) with extreme values of [Oz] and Q4 (Figure 2 a, b). These time pe-
riods correspond to the positive phase of the North Pacific Gyre Oscillation (NPGO).
For temperature, the largest fraction of extreme waters (> 50%) occurs during down-
welling in 1998, and during upwelling in 2010, 2016 and 2019.

In the shallows, up to 80% of waters experience extreme conditions for [Os] in 1998
during a very strong El Nino and in 2014 during the MHW. The most extreme condi-
tions for 24 occurred during the upwelling season of 2009 (Figure3).

For [O2] and T, the most extreme conditions tend to occur at the beginning of the
downwelling season when atmospheric temperatures are warmest. While this is partly
an artifact of having seasonally defined thresholds, it reflects the interannual variabil-
ity in the time series.

With the exception of an increase in {24 extremes in the Shallows (0.004 y~1) | nei-
ther cluster exhibits a linear trend in the percentage of extremes (Figures 2, 3, and Text
S3). For the Canyons, this may be because the upwelled waters are old and do not con-
tain a signature of recent anthropogenic climate change. In the shallows there may be
a trend associated with increasing surface air temperature, but this is damped somewhat
by mixing with subsurface waters. In any case, the timescale of the simulation conducted
is relatively short compared to the time scales of natural variability, so the anthropogenic
trend is not expected to be readily detectable (cf. Christian (2014); Cummins and Mas-
son (2014)).

Biota are sensitive to the length of time over which extreme conditions occur in ad-
dition to the spatial extent and magnitude. We computed the average duration and the
maximum duration of an extreme event over all of the grid cells in each cluster and then
average over all of the clusters (Table 1). The average length of an event is around 1.5 days.
While T and [O3] events have longer maximum duration in the Canyons, 24 events have
longer maximum duration in the Shallows.
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Figure 2. The fraction of waters in the Canyons that exceed the relative threshold (Table

1) for (a) dissolved oxygen, (b) aragonite saturation state, (c) potential temperature, and (d)

compound stressors. The North Pacific Gyre Oscillation (NPGO) is shown on the secondary
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thresholds for each season. The compound stressors shown in panel (d) are shown individually in
Figure S9.



manuscript submitted to Geophysical Research Letters

1.0
0.8
0.6
0.4

(O]

0.2
0.0

1.0
087 —— Upwelling
0.6 —— Downwelling

o AL Ll

1.0

Qa

0.8
0.6
0.4

o AL g A

1.0 02 and Qa

0.8 - [ O,and T

[ Qaand T

[ Tand O, and Q4

lll‘ll L4 H

1
fLQQD; m“Q% qp@ 09\6 %@,0

Time (years)

Fraction of Extreme Waters
T

0.6
0.4
0.2

0.0 |
o o

Figure 3. The fraction of waters in the Shallows that exceed the relative threshold (Table

1) for (a) dissolved oxygen, (b) aragonite saturation state, (c) potential temperature, and d)
compound stressors. Discontinuities at the spring and fall transition correspond to the different
thresholds for each season. The compound stressors shown in panel (d) are shown individually in
Figure S10.
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Compound extremes (i.e., the occurrence of extreme conditions in two or more stres-
sors at once) can have synergistic effects on marine organisms (Portner et al., 2005). The
Shallows frequently exhibited compound T and [Os] extremes during the downwelling
season (Figure 3d and Figure S10b). Yet, the only years for which all three stressors ex-
ceeded the thresholds in the Shallows for > 5% of waters were MHW years: 2014, the
year of the anomalous warming pattern referred to as The Blob, and 2019, referred to
as The Blob-2.0 (Amaya et al., 2020)(Figure 3d, Figure S10d). For the Canyons, com-
pound extremes are relatively rare (Figure 2d and Figure S9) with the exception of [Os]
and )4 which exhibit the same pattern of variability as the single stressor extremes. No-
tably, the two periods during which we have a substantial fraction of single and compound
extremes for Oy and Q4 in the Canyons (Figure 2 and Figure S9a) are periods during
which the NPGO is positive and is associated with enhanced upwelling in the Califor-
nia Current system (Di Lorenzo et al., 2008).

The other four clusters show similar patterns of variability with very few triple ex-
tremes and, for most clusters, less than 5% of waters are extreme before 2014 (Figure
S11). Three of the clusters (‘b’, ‘d’, ‘¢’) exhibit a statistically significant (p< 0.05) trend
in triple extremes (Text S3). This result is consistent with Hauri et al. (2024) who char-
acterized extremes for the benthic regions of the shelf in the Gulf of Alaska; they found
a greater fraction of waters experiencing compound (24 / O2) extremes, but the method-
ologies are not directly comparable. They attributed the increase in extremes at the end
of the time series to the secular trends of anthropogenic warming and ocean acidifica-
tion. The secular trend likely explains the increase in triple extremes for these shallower
clusters where the maximum mixed layer depth (MLD) is near the ocean bottom (Text
S3).

4 Discussion

We introduced a method for characterizing extreme conditions in a regional ocean
model. For NEP36-CanOE, daily temporal resolution was sufficient to resolve the ex-
tremes (Text S2). While the model was highly correlated with available observations for
the relevant variables (section 2.1 and Text S1), it was limited by the fact that we used
climatologies for the rivers and did not include the effects of fluvial nutrients. We restricted
the environmental conditions used in the unsupervised clustering approach to indices of
warming, deoxygenation, and acidification. The two clusters selected for discussion are
of ecological importance because of their high biodiversity (Rubidge et al., 2016) and con-
trasting environmental conditions (Table 1). These contrasting characteristics allow us
to distinguish between different mechanistic drivers for marine extremes in the entire do-
main.

Thresholds defining extremes for each potential stressor were established separately
for the upwelling and downwelling seasons because they represent different oceanographic
regimes, and coincide with changes in the mean direction of flow of coastal currents (Thomson
& Krassovski, 2010). These seasons are relevant to benthic organisms that are adapted
to local conditions. Marine organisms may be in different life stages during these sea-
sons, with different tolerance levels depending on life stage (Stachura et al., 2014; Hob-
day et al., 2016). For example, consider two economically important species from the Shal-
lows and Canyons: Dungeness crab, which experience seasonal vulnerability as a result
of their complex life cycle (Berger et al., 2021), and rockfish, whose juvenile abundance
is linked to nearshore temperatures in February and March (Ainley et al., 1993; Laidig
et al., 2007) and for which coastal downwelling has been shown to influence recruitment
(Markel & Shurin, 2020).

The extreme thresholds (Table 1) in the Canyons cluster are closer to established
ecological thresholds (Vaquer-Sunyer & Duarte, 2008) which makes this cluster partic-
ularly vulnerable. However, ecosystem reorganizations may develop progressively rather

—10—
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than abruptly because different species have different tolerance levels (Portner et al., 2005).
Even if the statistical thresholds are not life threatening to a particular organism, they

can still have detrimental effects on growth and reproductive success if species are well
adapted to their environmental conditions.

Although compound extremes are rare, they are increasing for some clusters. The
Canadian northeastern Pacific region shares many ecosystem attributes and physical drivers
with other eastern boundary current upwelling systems with similar future projections
of warming, deoxygenation and increasing acidification (Bograd et al., 2023). Therefore,
recent and potential future increases in compound extremes have global relevance be-
cause they present a threat to the ecosystem services that these systems provide.

Compound extremes can be particularly detrimental to organisms because of their
synergistic effects (Portner, 2010) and further investigation into how these extremes could
affect organisms is warranted. Our definition of extremes occurring at the same time and
in the same grid cell is potentially too restrictive for mobile organisms. An approach which
considers the entire water column (Wong et al., 2024) may be more appropriate for or-
ganisms that can move vertically, or laterally to different depths on the seafloor.

The upwelling and downwelling seasons impact the Shallows and Canyons differ-
ently, which can be partly attributed to their relative depths (Figure 1). The Canyons
are strongly influenced by upwelling waters that are relatively cold and low in oxygen
with a low €4, and only weakly influenced by surface T changes. The Shallows expe-
rience much more temperature variability in response to the seasonally changing atmo-
sphere and are only weakly influenced by upwelled waters. Consequently, the Canyons
experience more frequent compound extremes in 24 and [O2], while the shallows expe-
rience more frequent compound extremes in [Oz] and T (Figs. S9 and S10).

We hypothesize that much of the interannual variability in the percentage of wa-
ters that exceed the thresholds (Figs. 2 and 3) can be explained by the strength and length
of seasonal upwelling/downwelling in the Canyons, and direct forcing by the atmosphere
in the Shallows. There are many factors that contribute to the relative influence of each
of these processes on extreme conditions for the cluster and season including the tim-
ing of the spring and fall transitions, mixing and stratification of the water column, changes
in the California Undercurrent, and coastally trapped waves (Thomson & Krassovski,
2010; Engida et al., 2016; Mogen et al., 2022; Franco et al., 2023; Amaya et al., 2023).
Because the clusters are stratified by depth, the relative contribution of upwelling from
below and atmospheric forcing from above is influenced by the average depth of the clus-
ter relative to the MLD (Text S3, Table S3).

Correlations between the single stressor extremes and the NPGO, Multivariate ENSO
Index (MEI), Pacific Decadal Oscillation (PDO) and Bakun upwelling index provide ev-
idence that changes in upwelling and downwelling and large scale atmospheric forcing
drive the variability in extremes (Figure S13 and Text S4). While the only local indi-
cator that we examined was the Bakun index, the correlations (Figure S13) support the
conclusion that large scale indicators (NPGO, PDO and MEI) are more predictive of ecosys-
tem change along the continental margin than local indicators (Hallett et al., 2004; Li
et al., 2013; Mackas et al., 2013).

5 Conclusions

Characterizing the occurrence of extremes in the recent past when they occur in
isolation, or in combination is a step towards understanding the risks that they pose to
local ecosystems and fisheries. This study presented a simple approach for statistically
characterizing extreme marine conditions of high temperature, low oxygen, and high acid-
ification. We applied it to a numerical model of the Northeastern Pacific continental mar-
gin, but it can be adapted to other regions and time periods. We used unsupervised clus-
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343 tering to isolate regions with similar environmental conditions and defined the extremes
344 using a relative threshold with a fixed baseline (1996-2020) (Hobday et al., 2016; Gru-
345 ber et al., 2021).

346 The analysis of extremes in the Northeastern Pacific demonstrated that the strength
47 of seasonal upwelling/downwelling and direct forcing by the atmosphere strongly influ-

348 ence extreme conditions. Large scale processes (like the NPGO) may be more predic-

349 tive of extreme conditions of [O3] and €4 than local indicators like the Bakun index and
350 further investigation of these relationships is needed. While a substantial number of sin-
351 gle stressor extremes occur annually, compound extremes are rare. Most of the multi-

352 ple stressor extremes involve coincident Oy and €24 extremes, with a greater number in

353 the Canyons than the Shallows. Multiple stressor extremes are increasing for clusters where
354 the mixed layer extends to near the ocean bottom. Under future climate change, com-

355 pound extremes may become more common, with detrimental effects on ecologically and
356 commercially important species.

357 6 Open Research

358 The open source code that the ocean model is based on here https://www.nemo

359 -ocean.eu/ The observational data used to evaluate the model is available online in-

360 cluding the ship-sampled data (Department of Fisheries and Oceans Canada (DFO), 2022),
361 tide gauge data (NRCan, 2022) and mixed layer depths (NOAA Pacific Marine Environ-

362 mental Laboratory, 2021). The model data needed for the analysis can be found here https:
363 doi.org/10.5281/zenodo. 13138494 (Holdsworth et al., 2024a). The python notebooks

364 used for the analysis of the data is found on Github here https://github.com/ashao/

365 NEP36_cluster_analysis (Holdsworth et al., 2024b) and will be added to a zenodo repos-

366 itory for permanent storage if this manuscript is published.
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