REFFERENCES
Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., & Wood,
M. J. (2011). Delivery of siRNA to the mouse brain by systemic injection
of targeted exosomes. Nat Biotechnol , 29 (4), 341-345.
https://doi.org/10.1038/nbt.1807
Badimon, L., Padro, T., Arderiu, G., Vilahur, G., Borrell-Pages, M., &
Suades, R. (2022). Extracellular vesicles in atherothrombosis: From
biomarkers and precision medicine to therapeutic targets. Immunol
Rev , 312 (1), 6-19. https://doi.org/10.1111/imr.13127
Baglio, S. R., Rooijers, K., Koppers-Lalic, D., Verweij, F. J., Perez
Lanzon, M., Zini, N., . . . Pegtel, D. M. (2015). Human bone marrow- and
adipose-mesenchymal stem cells secrete exosomes enriched in distinctive
miRNA and tRNA species. Stem Cell Res Ther , 6 (1), 127.
https://doi.org/10.1186/s13287-015-0116-z
Balbi, C., Piccoli, M., Barile, L., Papait, A., Armirotti, A., Principi,
E., . . . Bollini, S. (2017). First Characterization of Human Amniotic
Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool
Endowed with Regenerative Potential. Stem Cells Transl Med ,6 (5), 1340-1355. https://doi.org/10.1002/sctm.16-0297
Brown, M. A., Wallace, C. S., Anamelechi, C. C., Clermont, E., Reichert,
W. M., & Truskey, G. A. (2007). The use of mild trypsinization
conditions in the detachment of endothelial cells to promote subsequent
endothelialization on synthetic surfaces. Biomaterials ,28 (27), 3928-3935.
https://doi.org/10.1016/j.biomaterials.2007.05.009
Bruno, S., Grange, C., Collino, F., Deregibus, M. C., Cantaluppi, V.,
Biancone, L., . . . Camussi, G. (2012). Microvesicles derived from
mesenchymal stem cells enhance survival in a lethal model of acute
kidney injury. PLoS One , 7 (3), e33115.
https://doi.org/10.1371/journal.pone.0033115
Camussi, G., Deregibus, M. C., & Cantaluppi, V. (2013). Role of
stem-cell-derived microvesicles in the paracrine action of stem cells.Biochem Soc Trans , 41 (1), 283-287.
https://doi.org/10.1042/BST20120192
Carmelo, J. G., Fernandes-Platzgummer, A., Diogo, M. M., da Silva, C.
L., & Cabral, J. M. (2015). A xeno-free microcarrier-based stirred
culture system for the scalable expansion of human mesenchymal
stem/stromal cells isolated from bone marrow and adipose tissue.Biotechnol J , 10 (8), 1235-1247.
https://doi.org/10.1002/biot.201400586
Castilho, L. R., & Medronho, R. A. (2002). Cell retention devices for
suspended-cell perfusion cultures. Adv Biochem Eng Biotechnol ,74 , 129-169. https://doi.org/10.1007/3-540-45736-4_7
Cerri, S., Greco, R., Levandis, G., Ghezzi, C., Mangione, A. S.,
Fuzzati-Armentero, M. T., . . . Blandini, F. (2015). Intracarotid
Infusion of Mesenchymal Stem Cells in an Animal Model of Parkinson’s
Disease, Focusing on Cell Distribution and Neuroprotective and
Behavioral Effects. Stem Cells Transl Med , 4 (9),
1073-1085. https://doi.org/10.5966/sctm.2015-0023
Charles, C. J., Li, R. R., Yeung, T., Mazlan, S. M. I., Lai, R. C., de
Kleijn, D. P. V., . . . Richards, A. M. (2020). Systemic Mesenchymal
Stem Cell-Derived Exosomes Reduce Myocardial Infarct Size:
Characterization With MRI in a Porcine Model. Front Cardiovasc
Med , 7 , 601990. https://doi.org/10.3389/fcvm.2020.601990
Cunha, B., Aguiar, T., Silva, M. M., Silva, R. J., Sousa, M. F., Pineda,
E., . . . Alves, P. M. (2015). Exploring continuous and integrated
strategies for the up- and downstream processing of human mesenchymal
stem cells. J Biotechnol , 213 , 97-108.
https://doi.org/10.1016/j.jbiotec.2015.02.023
de Almeida Fuzeta, M., Bernardes, N., Oliveira, F. D., Costa, A. C.,
Fernandes-Platzgummer, A., Farinha, J. P., . . . da Silva, C. L. (2020).
Scalable Production of Human Mesenchymal Stromal Cell-Derived
Extracellular Vesicles Under Serum-/Xeno-Free Conditions in a
Microcarrier-Based Bioreactor Culture System. Front Cell Dev
Biol , 8 , 553444. https://doi.org/10.3389/fcell.2020.553444
de Almeida Fuzeta, M., Goncalves, P. P., Fernandes-Platzgummer, A.,
Cabral, J. M. S., Bernardes, N., & da Silva, C. L. (2022). From Promise
to Reality: Bioengineering Strategies to Enhance the Therapeutic
Potential of Extracellular Vesicles. Bioengineering (Basel) ,9 (11). https://doi.org/10.3390/bioengineering9110675
de Soure, A. M., Fernandes-Platzgummer, A., da Silva, C. L., & Cabral,
J. M. (2016). Scalable microcarrier-based manufacturing of mesenchymal
stem/stromal cells. J Biotechnol , 236 , 88-109.
https://doi.org/10.1016/j.jbiotec.2016.08.007
Dos Santos, F., Andrade, P. Z., Boura, J. S., Abecasis, M. M., da Silva,
C. L., & Cabral, J. M. (2010). Ex vivo expansion of human mesenchymal
stem cells: a more effective cell proliferation kinetics and metabolism
under hypoxia. J Cell Physiol , 223 (1), 27-35.
https://doi.org/10.1002/jcp.21987
Dos Santos, F., Campbell, A., Fernandes-Platzgummer, A., Andrade, P. Z.,
Gimble, J. M., Wen, Y., . . . Cabral, J. M. (2014). A xenogeneic-free
bioreactor system for the clinical-scale expansion of human mesenchymal
stem/stromal cells. Biotechnol Bioeng , 111 (6), 1116-1127.
https://doi.org/10.1002/bit.25187
Duijvestein, M., Vos, A. C., Roelofs, H., Wildenberg, M. E., Wendrich,
B. B., Verspaget, H. W., . . . Hommes, D. W. (2010). Autologous bone
marrow-derived mesenchymal stromal cell treatment for refractory luminal
Crohn’s disease: results of a phase I study. Gut , 59 (12),
1662-1669. https://doi.org/10.1136/gut.2010.215152
Elsharkasy, O. M., Nordin, J. Z., Hagey, D. W., de Jong, O. G.,
Schiffelers, R. M., Andaloussi, S. E., & Vader, P. (2020).
Extracellular vesicles as drug delivery systems: Why and how? Adv
Drug Deliv Rev , 159 , 332-343.
https://doi.org/10.1016/j.addr.2020.04.004
Fan, B., Li, C., Szalad, A., Wang, L., Pan, W., Zhang, R., . . . Liu, X.
S. (2020). Mesenchymal stromal cell-derived exosomes ameliorate
peripheral neuropathy in a mouse model of diabetes. Diabetologia ,63 (2), 431-443. https://doi.org/10.1007/s00125-019-05043-0
Fernandes-Platzgummer, A., Carmelo, J. G., da Silva, C. L., & Cabral,
J. M. (2016). Clinical-Grade Manufacturing of Therapeutic Human
Mesenchymal Stem/Stromal Cells in Microcarrier-Based Culture Systems.Methods Mol Biol , 1416 , 375-388.
https://doi.org/10.1007/978-1-4939-3584-0_22
Fernandes-Platzgummer, A., Lobato da Silva, C., & Cabral, J. (2014).
Maximizing mouse embryonic stem cell production in a stirred tank
reactor by controlling dissolved oxygen concentration and continuous
perfusion operation Biochemical Engineering Journal , 82 ,
81-90.
Garcia-Olmo, D., Garcia-Arranz, M., Herreros, D., Pascual, I., Peiro,
C., & Rodriguez-Montes, J. A. (2005). A phase I clinical trial of the
treatment of Crohn’s fistula by adipose mesenchymal stem cell
transplantation. Dis Colon Rectum , 48 (7), 1416-1423.
https://doi.org/10.1007/s10350-005-0052-6
Gardiner, C., Ferreira, Y. J., Dragovic, R. A., Redman, C. W., &
Sargent, I. L. (2013). Extracellular vesicle sizing and enumeration by
nanoparticle tracking analysis. J Extracell Vesicles , 2 .
https://doi.org/10.3402/jev.v2i0.19671
Haraszti, R. A., Miller, R., Stoppato, M., Sere, Y. Y., Coles, A.,
Didiot, M. C., . . . Khvorova, A. (2018). Exosomes Produced from 3D
Cultures of MSCs by Tangential Flow Filtration Show Higher Yield and
Improved Activity. Mol Ther , 26 (12), 2838-2847.
https://doi.org/10.1016/j.ymthe.2018.09.015
Heathman, T. R. J., Nienow, A. W., Rafiq, Q. A., Coopman, K., BoKara, &
Hewitt, C. J. (2018). Agitation and aeration of stirred-bioreactors for
the microcarrier culture of human mesenchymal stem cells and potential
implications for large-scale bioprocess development. Biochemical
Engineering Journal , 136 , 9-17.
https://doi.org/10.1016/j.bej.2018.04.011
Hewitt, C. J., Lee, K., Nienow, A. W., Thomas, R. J., Smith, M., &
Thomas, C. R. (2011). Expansion of human mesenchymal stem cells on
microcarriers. Biotechnol Lett , 33 (11), 2325-2335.
https://doi.org/10.1007/s10529-011-0695-4
Horwitz, E. M., Gordon, P. L., Koo, W. K., Marx, J. C., Neel, M. D.,
McNall, R. Y., . . . Hofmann, T. (2002). Isolated allogeneic bone
marrow-derived mesenchymal cells engraft and stimulate growth in
children with osteogenesis imperfecta: Implications for cell therapy of
bone. Proc Natl Acad Sci U S A , 99 (13), 8932-8937.
https://doi.org/10.1073/pnas.132252399
Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., Koo, W. W., Gordon,
P. L., Neel, M., . . . Brenner, M. K. (1999). Transplantability and
therapeutic effects of bone marrow-derived mesenchymal cells in children
with osteogenesis imperfecta. Nat Med , 5 (3), 309-313.
https://doi.org/10.1038/6529
Hyland, M., Mennan, C., Wilson, E., Clayton, A., & Kehoe, O. (2020).
Pro-Inflammatory Priming of Umbilical Cord Mesenchymal Stromal Cells
Alters the Protein Cargo of Their Extracellular Vesicles. Cells ,9 (3). https://doi.org/10.3390/cells9030726
Katsuda, T., Kosaka, N., Takeshita, F., & Ochiya, T. (2013). The
therapeutic potential of mesenchymal stem cell-derived extracellular
vesicles. Proteomics , 13 (10-11), 1637-1653.
https://doi.org/10.1002/pmic.201200373
Kay, A. G., Treadwell, K., Roach, P., Morgan, R., Lodge, R., Hyland, M.,
. . . Kehoe, O. (2021). Therapeutic Effects of Hypoxic and
Pro-Inflammatory Priming of Mesenchymal Stem Cell-Derived Extracellular
Vesicles in Inflammatory Arthritis. Int J Mol Sci , 23 (1).
https://doi.org/10.3390/ijms23010126
Kraitchman, D. L., Tatsumi, M., Gilson, W. D., Ishimori, T., Kedziorek,
D., Walczak, P., . . . Bulte, J. W. (2005). Dynamic imaging of
allogeneic mesenchymal stem cells trafficking to myocardial infarction.Circulation , 112 (10), 1451-1461.
https://doi.org/10.1161/CIRCULATIONAHA.105.537480
Le Blanc, K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis,
I., . . . Marrow, T. (2008). Mesenchymal stem cells for treatment of
steroid-resistant, severe, acute graft-versus-host disease: a phase II
study. Lancet , 371 (9624), 1579-1586.
https://doi.org/10.1016/S0140-6736(08)60690-X
Lembong, J., Kirian, R., Takacs, J. D., Olsen, T. R., Lock, L. T.,
Rowley, J. A., & Ahsan, T. (2020). Bioreactor Parameters for
Microcarrier-Based Human MSC Expansion under Xeno-Free Conditions in a
Vertical-Wheel System. Bioengineering (Basel) , 7 (3).
https://doi.org/10.3390/bioengineering7030073
Ma, J., Zhao, Y., Sun, L., Sun, X., Zhao, X., Sun, X., . . . Zhu, W.
(2017). Exosomes Derived from Akt-Modified Human Umbilical Cord
Mesenchymal Stem Cells Improve Cardiac Regeneration and Promote
Angiogenesis via Activating Platelet-Derived Growth Factor D. Stem
Cells Transl Med , 6 (1), 51-59.
https://doi.org/10.5966/sctm.2016-0038
Madlambayan, G. J., Rogers, I., Kirouac, D. C., Yamanaka, N., Mazurier,
F., Doedens, M., . . . Zandstra, P. W. (2005). Dynamic changes in
cellular and microenvironmental composition can be controlled to elicit
in vitro human hematopoietic stem cell expansion. Exp Hematol ,33 (10), 1229-1239.
https://doi.org/10.1016/j.exphem.2005.05.018
Malhotra, S., Dumoga, S., Sirohi, P., & Singh, N. (2019). Red Blood
Cells-Derived Vesicles for Delivery of Lipophilic Drug Camptothecin.ACS Appl Mater Interfaces , 11 (25), 22141-22151.
https://doi.org/10.1021/acsami.9b04827
Mawji, I., Roberts, E. L., Dang, T., Abraham, B., & Kallos, M. S.
(2022). Challenges and opportunities in downstream separation processes
for mesenchymal stromal cells cultured in microcarrier-based stirred
suspension bioreactors. Biotechnol Bioeng , 119 (11),
3062-3078. https://doi.org/10.1002/bit.28210
Mazzini, L., Ferrero, I., Luparello, V., Rustichelli, D., Gunetti, M.,
Mareschi, K., . . . Fagioli, F. (2010). Mesenchymal stem cell
transplantation in amyotrophic lateral sclerosis: A Phase I clinical
trial. Exp Neurol , 223 (1), 229-237.
https://doi.org/10.1016/j.expneurol.2009.08.007
Mizukami, A., Fernandes-Platzgummer, A., Carmelo, J. G., Swiech, K.,
Covas, D. T., Cabral, J. M., & da Silva, C. L. (2016). Stirred tank
bioreactor culture combined with serum-/xenogeneic-free culture medium
enables an efficient expansion of umbilical cord-derived mesenchymal
stem/stromal cells. Biotechnol J , 11 (8), 1048-1059.
https://doi.org/10.1002/biot.201500532
Moon, G. J., Sung, J. H., Kim, D. H., Kim, E. H., Cho, Y. H., Son, J.
P., . . . Bang, O. Y. (2019). Application of Mesenchymal Stem
Cell-Derived Extracellular Vesicles for Stroke: Biodistribution and
MicroRNA Study. Transl Stroke Res , 10 (5), 509-521.
https://doi.org/10.1007/s12975-018-0668-1
Pascucci, L., Cocce, V., Bonomi, A., Ami, D., Ceccarelli, P., Ciusani,
E., . . . Pessina, A. (2014). Paclitaxel is incorporated by mesenchymal
stromal cells and released in exosomes that inhibit in vitro tumor
growth: a new approach for drug delivery. J Control Release ,192 , 262-270. https://doi.org/10.1016/j.jconrel.2014.07.042
Phinney, D. G., & Pittenger, M. F. (2017). Concise Review: MSC-Derived
Exosomes for Cell-Free Therapy. Stem Cells , 35 (4),
851-858. https://doi.org/10.1002/stem.2575
Prasad, V. K., Lucas, K. G., Kleiner, G. I., Talano, J. A., Jacobsohn,
D., Broadwater, G., . . . Kurtzberg, J. (2011). Efficacy and safety of
ex vivo cultured adult human mesenchymal stem cells (Prochymal) in
pediatric patients with severe refractory acute graft-versus-host
disease in a compassionate use study. Biol Blood Marrow
Transplant , 17 (4), 534-541.
https://doi.org/10.1016/j.bbmt.2010.04.014
Schop, D., Janssen, F. W., van Rijn, L. D., Fernandes, H., Bloem, R. M.,
de Bruijn, J. D., & van Dijkhuizen-Radersma, R. (2009). Growth,
metabolism, and growth inhibitors of mesenchymal stem cells.Tissue Eng Part A , 15 (8), 1877-1886.
https://doi.org/10.1089/ten.tea.2008.0345
Sotiropoulou, P. A., Perez, S. A., Salagianni, M., Baxevanis, C. N., &
Papamichail, M. (2006). Characterization of the optimal culture
conditions for clinical scale production of human mesenchymal stem
cells. Stem Cells , 24 (2), 462-471.
https://doi.org/10.1634/stemcells.2004-0331
Sun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C., . . .
Zhang, H. G. (2010). A novel nanoparticle drug delivery system: the
anti-inflammatory activity of curcumin is enhanced when encapsulated in
exosomes. Mol Ther , 18 (9), 1606-1614.
https://doi.org/10.1038/mt.2010.105
Syromiatnikova, V., Prokopeva, A., & Gomzikova, M. (2022). Methods of
the Large-Scale Production of Extracellular Vesicles. Int J Mol
Sci , 23 (18). https://doi.org/10.3390/ijms231810522
Toma, C., Wagner, W. R., Bowry, S., Schwartz, A., & Villanueva, F.
(2009). Fate of culture-expanded mesenchymal stem cells in the
microvasculature: in vivo observations of cell kinetics. Circ
Res , 104 (3), 398-402.
https://doi.org/10.1161/CIRCRESAHA.108.187724
Tsai, A. C., & Pacak, C. A. (2021). Bioprocessing of Human Mesenchymal
Stem Cells: From Planar Culture to Microcarrier-Based Bioreactors.Bioengineering (Basel) , 8 (7).
https://doi.org/10.3390/bioengineering8070096
Tsuji, K., Ojima, M., Otabe, K., Horie, M., Koga, H., Sekiya, I., &
Muneta, T. (2017). Effects of Different Cell-Detaching Methods on the
Viability and Cell Surface Antigen Expression of Synovial Mesenchymal
Stem Cells. Cell Transplant , 26 (6), 1089-1102.
https://doi.org/10.3727/096368917X694831
Viswanathan, S., Shi, Y., Galipeau, J., Krampera, M., Leblanc, K.,
Martin, I., . . . Sensebe, L. (2019). Mesenchymal stem versus stromal
cells: International Society for Cell & Gene Therapy (ISCT(R))
Mesenchymal Stromal Cell committee position statement on nomenclature.Cytotherapy , 21 (10), 1019-1024.
https://doi.org/10.1016/j.jcyt.2019.08.002
Wang, Y., Lai, X., Wu, D., Liu, B., Wang, N., & Rong, L. (2021).
Umbilical mesenchymal stem cell-derived exosomes facilitate spinal cord
functional recovery through the miR-199a-3p/145-5p-mediated NGF/TrkA
signaling pathway in rats. Stem Cell Res Ther , 12 (1), 117.
https://doi.org/10.1186/s13287-021-02148-5
Webber, J., & Clayton, A. (2013). How pure are your vesicles? J
Extracell Vesicles , 2 .
https://doi.org/10.3402/jev.v2i0.19861
Witwer, K. W., Soekmadji, C., Hill, A. F., Wauben, M. H., Buzas, E. I.,
Di Vizio, D., . . . Thery, C. (2017). Updating the MISEV minimal
requirements for extracellular vesicle studies: building bridges to
reproducibility. J Extracell Vesicles , 6 (1), 1396823.
https://doi.org/10.1080/20013078.2017.1396823
Zhang, B., Yin, Y., Lai, R. C., Tan, S. S., Choo, A. B., & Lim, S. K.
(2014). Mesenchymal stem cells secrete immunologically active exosomes.Stem Cells Dev , 23 (11), 1233-1244.
https://doi.org/10.1089/scd.2013.0479
Zhou, T., Yuan, Z., Weng, J., Pei, D., Du, X., He, C., & Lai, P.
(2021). Challenges and advances in clinical applications of mesenchymal
stromal cells. J Hematol Oncol , 14 (1), 24.
https://doi.org/10.1186/s13045-021-01037-x
Zhu, L. P., Tian, T., Wang, J. Y., He, J. N., Chen, T., Pan, M., . . .
Bai, Y. P. (2018). Hypoxia-elicited mesenchymal stem cell-derived
exosomes facilitates cardiac repair through miR-125b-mediated prevention
of cell death in myocardial infarction. Theranostics ,8 (22), 6163-6177. https://doi.org/10.7150/thno.28021