Xue Zheng

and 7 more

This study estimates the meteorological covariations of aerosol and marine boundary layer (MBL) cloud properties in the Eastern North Atlantic (ENA) region, characterized by diverse synoptic conditions. Using a deep-learning-based clustering model with mid-level and surface daily meteorological data, we identify seven distinct synoptic regimes during the summer from 2016 to 2021. Our analysis, incorporating reanalysis data and satellite retrievals, shows that surface aerosols and MBL clouds exhibit clear regime-dependent characteristics, while lower tropospheric aerosols do not. This discrepancy likely arises synoptic regimes determined by daily large-scale conditions may overlook air mass histories that predominantly dictate lower tropospheric aerosol conditions. Focusing on three regimes dominated by northerly winds, we analyze the Atmospheric Radiation Measurement Program (ARM) ENA observations on Graciosa Island in the Azores. In the subtropical anticyclone regime, fewer cumulus clouds and more single-layer stratocumulus clouds with light drizzles are observed, along with the highest cloud droplet number concentration (Nd), surface Cloud Condensation Nuclei (CCN) and surface aerosol levels. The post-trough regime features more broken or multi-layer stratocumulus clouds with slightly higher surface rain rate, and lower Nd and surface CCN levels. The weak trough regime is characterized by the deepest MBL clouds, primarily cumulus and broken stratocumulus clouds, with the strongest surface rain rate and the lowest Nd, surface CCN and surface aerosol levels, indicating strong wet scavenging. These findings highlight the importance of considering the covariation of cloud and aerosol properties driven by large-scale regimes when assessing aerosol indirect effects using observations.

Meng Zhang

and 8 more

This study evaluates high-latitude stratiform mixed-phase clouds (SMPC) in the atmosphere model of the newly released Energy Exascale Earth System Model version 2 (EAMv2) by utilizing one-year-long ground-based remote sensing measurements from the U.S. Department of Energy Atmospheric Radiation and Measurement (ARM) Program. A nudging approach is applied to model simulations for a better comparison with the ARM observations. Observed and modeled SMPCs are collocated to evaluate their macro- and microphysical properties at the ARM North Slope of Alaska (NSA) site in the Arctic and the McMurdo (AWR) site in the Antarctic. We found that EAMv2 overestimates (underestimates) SMPC frequency of occurrence at the NSA (AWR) site nearly all year round. However, the model captures the observed larger cloud frequency of occurrence at the NSA site. For collocated SMPCs, the annual statistics of observed cloud macrophysics are generally reproduced at the NSA site, while at the AWR site, there are larger biases. Compared to the AWR site, the lower cloud boundaries and the warmer cloud top temperature observed at NSA are well simulated. On the other hand, simulated cloud phases are substantially biased at each location. The model largely overestimates liquid water path at NSA, whereas it is frequently underestimated at AWR. Meanwhile, the simulated ice water path is underestimated at NSA, but at AWR, it is comparable to observations. As a result, the observed hemispheric difference in cloud phase partitioning is misrepresented in EAMv2. This study implies that continuous improvement in cloud microphysics is needed for high-latitude mixed-phase clouds.