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Abstract15

A volcanic eruption is usually preceded by seismic precursors, but their interpretation16

and use for forecasting the eruption onset time remain a challenge. Eruption processes17

in geysers are similar to volcanoes, but occur more frequently. Therefore, geysers are use-18

ful sites for testing new forecasting methods. We tested the application of Permutation19

Entropy (PE) as a robust method to assess the complexity in seismic recordings of the20

Strokkur geyser, Iceland. Strokkur features several minute-long eruptive cycles, enabling21

us to verify in 63 recorded cycles whether PE behaves consistently from one eruption to22

the next one. We performed synthetic tests to understand the effect of different param-23

eter settings in the PE calculation. Our application to Strokkur shows a distinct, repeat-24

ing PE pattern consistent with previously identified phases in the eruptive cycle. We find25

a systematic increase in PE within the last 15 s before the eruption, indicating that an26

eruption will occur. We quantified the predictive power of PE, showing that PE performs27

better than seismic signal strength or quiescence when it comes to forecasting eruptions.28

Plain Language Summary29

When a volcano shows the first sign of activity, it is challenging to determine whether30

and when the actual eruption will occur. Usually, researchers create earthquake lists and31

locate these events to assess this. However, an alternative and simpler method can be32

directly applied to continuous seismic data. We tested a method that assesses the com-33

plexity of signals. We first created synthetic data to find reasonable parameter settings34

for this method. While volcanoes do not erupt very often, frequent eruptions at geysers35

allow us to systematically study and compare several eruptions. We analyzed the con-36

tinuous record of 63 eruptions of the Strokkur geyser, Iceland. Our results show a dis-37

tinct pattern that repeats from one eruption to the next one. We also find a clear pat-38

tern that indicates about 15 s before the next eruption that an eruption will occur. We39

show that this method performs better in eruption forecasting than assessing the seis-40

mic noise or silence caused by the geyser.41

1 Introduction42

When a volcano becomes restless, it is challenging to assess whether it will lead to43

an actual eruption and determine the timing of the eruption onset. A magmatic intru-44

sion starting at depth can (i) remain at depth, (ii) stall just before reaching the surface,45

(iii) erupt in sluggish and viscous extrusion, or (iv) erupt rapidly or explosively (Moran46

et al., 2011). The process of magma migration involves interactions with the surround-47

ing country rock, cooling magma bodies from previous eruptions, and (or) hydrother-48

mal system (Moran et al., 2008). These interactions generate natural phenomena such49

as earthquakes, deformation, temperature changes, and gas emissions. These phenom-50

ena can be observed by geophysical and geochemical measurements (Moran et al., 2008)51

and integrated with the history of past eruptions in a framework of eruption forecast-52

ing (Whitehead & Bebbington, 2021).53

From a seismic point of view, eruptions can show precursors such as accelerating54

or decelerating earthquake rates. To assess this, monitoring institutes conventionally use55

methods to tabulate daily event counts (McNutt, 1996) and calculate the average am-56

plitude for a certain window length (Endo & Murray, 1991). The Failure Forecast Method57

estimates the onset time of eruption by using the rate and the acceleration of seismic pre-58

cursors associated with the rock failure caused by magma propagation (Boué et al., 2015).59

However, this method cannot deal with complex precursory signals, e.g., that exhibits60

fluctuations or deceleration (Boué et al., 2015). Furthermore, due to the uncertainty of61

the eruption forecast and numerous false alarms (Bell et al., 2013), this method is not62

recommended to be stand-alone (Whitehead & Bebbington, 2021). Dempsey et al. (2020)63

tested a real-time Machine Learning framework to detect eruption precursors of five ma-64
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jor eruptions at Whakaari volcano, New Zealand, from 2011 to 2020. This framework65

derives the information from the seismic amplitude between different frequency bands66

to assess whether an eruption will occur. A challenge lies in the threshold determina-67

tion: while increasing the threshold will eliminate false predictions, it leads to missing68

eruptions and vice versa.69

A robust forecasting framework requires incorporating different forecasting attributes70

from multiple methods. Developing or testing the application of new methods is impor-71

tant to improve the reliability of the forecasting framework. Permutation Entropy, here-72

inafter referred to as PE, has been proposed to be a promising tool for eruption forecast-73

ing (Glynn & Konstantinou, 2016), but the limitation of this method is currently not74

yet well-defined. PE quantifies the complexity of time series in a simple way, allowing75

us to characterize the evolution of a dynamic system (Bandt & Pompe, 2002; Zanin et76

al., 2012; Riedl et al., 2013).77

Geysers are hot springs characterized by intermittent discharge of water that erupts78

turbulently and is accompanied by a vapor phase (White, 1967). The eruption process79

of geysers requires magmatism as a heat source, abundant water recharge, and a plumb-80

ing system (Hurwitz & Manga, 2017). While the type of liquid and gas phase in geysers81

differs from the liquid, gas, and solid phase in magma, the fluid is driven to eruption by82

the gases in both cases. Therefore, the knowledge gained from understanding geyser erup-83

tions might provide useful insights for monitoring volcanic eruptions.84

Here, we tested the application of PE for forecasting eruptions at Strokkur geyser,85

Iceland (Fig. 1a and b). The Strokkur geyser is an ideal site for three reasons: (1) Strokkur86

features a several-minute long eruptive cycle (Eibl et al., 2021) which allows us to check87

if PE behaves consistently from one cycle to the next one, (2) the features of the erup-88

tive cycle were already described and interpreted multidisciplinary (Eibl et al., 2021) and89

provide a benchmark for our study, (3) the available instrument network (Fig. 1b) con-90

sists of seismometers located at a few meter distance from the geyser’s conduit, provid-91

ing signals with a high signal-to-noise ratio, and seismometers installed at 40 to 50m dis-92

tance, providing a good configuration to test the sensitivity of PE towards station dis-93

tance.94

In this publication, we firstly introduce the PE method (section 2.1) and perform95

several synthetic tests to choose the optimum parameters for PE calculations (section 2.2).96

We also introduce the Receiver Operating Characteristic (ROC) analysis (section 2.3)97

to assess the predictive power of PE. Then, the methods are applied to eruptions of the98

Strokkur geyser (section 3 and 4). We compare PE with seismic root-mean-square val-99

ues (RMS) for one eruptive cycle (section 5.1) and stacked for all available single erup-100

tive cycles (section 5.2). We assess PE for other eruption types (section 5.3) and the de-101

pendence of PE on distance (section 5.4). We discuss how PE relates to the seismic sources102

migration (section 6.1) and its predictive power for eruptions at the Strokkur geyser (sec-103

tion 6.3). We conclude that PE detects a clear precursory signal at stations at a few me-104

ter distance, making it a promising tool in eruption forecasting.105

2 Methods and Synthetic Test106

2.1 Calculation of Permutation Entropy (PE)107

Permutation Entropy is a robust way to quantify the complexity of a time series108

(Bandt & Pompe, 2002; Zanin et al., 2012; Riedl et al., 2013). This PE method analyzes109

the probability distribution of ordinal patterns observed in the data (Bandt & Pompe,110

2002). An ordinal pattern is a vector representing the relative order of amplitude of the111

successive samples in a sequence of time series (Bandt & Pompe, 2002; Zanin et al., 2012;112

Riedl et al., 2013). For example, a sequence of {0.5, 1.0, 3.5, 4.0, 5.7}, based on their113
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Figure 1. Overview of station network near Strokkur geyser, Iceland and the calculation of

PE. (a) Location of the Strokkur geyser in Iceland (blue triangle) and (b) aerial map where white

triangles indicate the location of the seismometers (7L network). (c) 10 s seismogram recorded

by the vertical component of station S1. The seismogram is divided into 10 bins of 1 s. The

shaded part is related to one of those bins. (d) A closer view of 0.12 s seismic data taken from

the shaded window in subfigure (c). The blue and red dot-connecting-lines visualize two consec-

utive ordinal patterns, {3, 1, 0, 2, 4} and {2, 1, 0, 3, 4} respectively. Each pattern is constructed

from five consecutive values selected using m = 5 and τ = 0.0015 s. The length of τ is visualized

as a black horizontal scalebar. (e) The 10 PE values calculated for the consecutive 1 s time win-

dow in subfigure (c), where the red dot refers to the PE calculated for the shaded time window in

subfigure (c).

amplitude order, is represented as an ordinal pattern of {0, 1, 2, 3, 4} and a sequence114

of {1.1, 0.8, 0.7, 1.3, 1.0} is represented as an ordinal pattern of {3, 1, 0, 4, 2}.115

To construct an ordinal pattern, we basically downsample the time series using an116

embedding dimension and a delay time. The embedding dimension is the number of sam-117

ples used to construct an ordinal pattern, i.e., the length of the ordinal pattern, while118

the delay time is the time gap between the successive samples constructing the ordinal119

pattern. The ordinal pattern is then defined by a vector of xs, xs+τ , ..., xs+(m−1)τ , where120

xs is the first sample in the sequence, m is the embedding dimension and τ is the de-121

lay time (Zanin et al., 2012; Riedl et al., 2013). If equal values of amplitude are selected,122

these values are ranked based on their temporal order (Zunino et al., 2017). To extract123

all ordinal patterns in a short time window, we continuously shift xs one sample forward124

until the last ordinal pattern reaches the end of the window. The PE for the time bin125
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is then calculated as follows:126

PE =
−1

log2 m!

m!∑
k=1

pk log2 pk (1)

where pk is the probability of the ordinal pattern k, and m is the value of the embed-127

ding dimension. pk is estimated by the relative frequency Nk/N , where Nk represents128

the number of recurrences of pattern k and N is the total number of ordinal patterns129

observed in the time window. The maximum number of different ordinal patterns in a130

time series signal is m!. Equation (1) is normalized with log2(m!) to limit the value of131

PE to the range of 0 to 1. We then repeat the PE calculation for the next time bin that132

does not overlap with the previous one until the whole time period of interest is processed,133

and we can study the PE changes in time.134

An example of PE calculated for seismic data of station S1 at Strokkur (see Fig. 1b)135

is illustrated in Fig. 1c-e. Here, we first divided the seismic time series into 1 s-windows136

(Fig. 1c), in which the ordinal patterns were extracted using m = 5 and τ = 0.015 s137

(Fig. 1d). We define the delay time as the time gap in seconds as we deal with seismic138

time series that were recorded with different sampling rates. In each 1 s-window, we then139

estimated the probability distribution of the ordinal patterns and calculated the respec-140

tive PE value (Fig. 1e).141

2.2 Synthetic Test of Permutation Entropy142

The calculation of PE requires the choice of the delay time, embedding dimension,143

and the length of time bins (e.g., the shaded window in Fig. 1c). We created several syn-144

thetic signals with and without noise to explore the role of these parameters and to de-145

fine reasonable settings for the PE calculation. The synthetic signals were generated us-146

ing the basic formula x(t) = sin(2πft) and a sampling rate of 100Hz. We set the length147

of the signals to 20000 s. For all tests, we used delay times τ ranging from 0.01T0 to T0148

with a step size of 0.01T0, where T0 = 1/f is the fundamental period of the signal, and149

embedding dimensions m range from 3 to 9. Since one point cannot create any vectors,150

and two points can only construct a vector with two possible directions, up and down,151

m = 3 becomes the smallest embedding dimension to assemble ordinal patterns (Zanin152

et al., 2012). In this test, m = 9 was chosen as the upper limit due to the high com-153

putational cost. To find out whether the wavelength of the targeted signal should be con-154

sidered when choosing the window length, we tested 8 different monochromatic signals155

with different wavelengths. All synthetic tests were performed using Python (Van Rossum156

& Drake, 2009).157

We first tested a pure monochromatic signal with f = 1 Hz (Fig. 2a) to evalu-158

ate the effect of different delay times and embedding dimensions. We observed that the159

minimum PE is obtained when the shortest delay time, i.e. τ =0.01 s, and a delay time160

τ close to T0 was used (Fig. 2c). We expected that the minimum PE is obtained when161

using τ = T0, since the delay time will select equal values of amplitude and construct162

a repeated ordinal pattern through the window. However, we obtained a very high PE,163

close to 1 (Fig. 2c). After checking the synthetic sine wave constructed using the numpy164

library (Harris et al., 2020), we found that there are small differences in the order of 10(−16)
165

between the amplitudes of the same wave phase, due to the floating error. While the rel-166

ative differences between values are negligible, the tiny differences disturb the ranking167

and create random ordinal patterns, resulting in PE close to 1.168

To make the time series more complex, in the next step, we (i) added noise to the169

signal and (ii) added different frequencies to create different signal types. We quantified170

the noise level by the signal-to-noise ratio (SNR), defined as the ratio between the vari-171
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Figure 2. Synthetic test for PE calculation. 10 s zoom of the 2000 s synthetic signal with a

frequency of f=1Hz (a) without noise, (b) with SNR=5, (c) PE calculated from the signal in

subfigure (a) using embedding dimensions m from 3 to 9 and delay times τ from 0.01T0 to T0

with step size 0.01T0. T0=1/f is the period of the signal. (d) Same as subfigure (c) for the signal

in subfigure (b), (e) Minimum PE values for 5 synthetic signals, with different complexity and

SNR=5, calculated using the same embedding dimensions and delay times as in subfigure (c),

(f) PE calculated for 8 different monochromatic signals with frequencies f between 0.005 and

10 Hz using m=7 and τ=0.2/f . The synthetic signals used for subfigures (e) and (f) are shown in

Fig. S1.

ance of signal and noise. The SNR hence can be calculated according to172

SNR =
σ2
S

σ2
N

(2)

where σS is the standard deviation of the signal and σS is the standard deviation of the173

noise. We used SNR=5 to create noise and added it to the monochromatic signal (Fig. 2b).174
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The analysis of the synthetic signal shows that PE is equal to 1 when calculated using175

the shortest delay time and delay time equal to T0 (Fig. 2d). We infer that the delay time176

should be short when the signal has a high signal-to-noise ratio. However, if the signal177

contains noise, the delay time should not be short nor equal to the fundamental period.178

In the next step, we generated four different signals containing two, three, four, and179

eight frequencies, with and without noise (see Fig. S1 for the detailed information on the180

frequency content). The PE was calculated using the same delay time and embedding181

dimension as for the monochromatic signal. The result shows higher PE obtained for the182

signal containing more frequencies (Fig. 2e and Fig. S1). Similar to the monochromatic183

signal without noise, the minimum PE is obtained using τ = 0.001 s and τ close to T0.184

While the signals with noise reach PE close to 1 when using τ = 0.001 s and τ close185

to T0.186

According to the PE result in Fig. 2c and d, and Fig. S1, using a higher embed-187

ding dimension will result in a lower PE. To see how the PE changes, we plotted the min-188

imum PE for the monochromatic signal (Fig. 2b) and four different signals in Fig. S1 with189

SNR=5 in Fig. 2e. The minimum PE is obtained for each embedding dimension, calcu-190

lated from different delay times ranging from 0.01T0 to T0. PE generally converges for191

each signal, meaning that PE decreases less when using higher embedding dimensions.192

Another requirement for PE calculation is that the window length has to accom-193

modate the maximum number of possible ordinal patterns. Additionally, we need to con-194

sider the dominant period of the targeted signal. We tested eight different monochro-195

matic signals, with the frequencies f ranging from 0.005Hz to 10Hz (see Fig. 2d for the196

detailed list of frequencies) with SNR=5 and a sampling frequency of 100Hz. PE was197

calculated using m = 7 and τ = 0.2T0 (see Fig. 2d). The delay time τ = 0.2T0 was198

chosen based on the result in Fig. 2f, where PE is minimum using τ = 0.2T0. The max-199

imum possible number of different ordinal patterns related to the embedding dimension200

of 7 is 7! or 5040 ordinal patterns. The PE calculated for the signals with low frequen-201

cies, e.g. 0.005Hz and 0.01Hz, are stable when the window length is 3 T0. In this case,202

the signal is much longer than required by m = 7. However, the number of points within203

3 T0 reduces with increasing signal frequencies given the fixed sampling frequency. There-204

fore, the signals with frequencies higher than 1Hz require more than 3 T0 to accommo-205

date the points required by the embedding dimension. In conclusion, the window length206

should provide enough points for the embedding dimension and be longer than the tar-207

geted signal period.208

2.3 Receiver Operating Characteristic (ROC) Analysis209

A well-known method to analyze the ability to predict an event, such as earthquakes210

or volcanic eruptions (DeVries et al., 2018; Spampinato et al., 2019), is the receiver op-211

erating characteristic (ROC) analysis (Fawcett, 2006). ROC analyzes the value of the212

predictor variable relative to a threshold. Four possible outcomes are possible: If the vari-213

able exceeds the threshold and an event (i.e., eruption in our case) follows within the alarm214

period (the subsequent NT time steps), it is a hit (true positive, TP); otherwise, it is a215

false alarm (false positive, FP). If no alarm is raised because the variable is below the216

threshold, either no event might occur (true negative, TN), or an event occurs (false neg-217

ative, FN) within the next NT time steps. In this way, each value of the time series is218

associated with one of the values TP, FP, TN, or FN, and their counts are calculated219

for the whole time series. Based on these counts, the true positive rate TPR = TP / (TP220

+ FN) and the false positive rate FPR = FP / (TN + FP) are determined. The ROC221

curve is finally created by plotting TPR against FPR for threshold values ranging from222

the minimum to the maximum value of the assessed variable (here, RMS or PE). Both223

TPR and FPR range between 0 and 1. For quantification, the area under the TPR curve224

(AUC) is calculated for FPR ranging from 0 to 1. An optimal predictor variable has AUC=1,225
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while the ROC curve of a random variable scatters around the diagonal with AUC≈0.5.226

We applied this method to our PE and RMS time series, using a time window of 1 s to227

predict an eruption in the following 1 s window.228

3 Overview of Instrument Network near Strokkur and Eruption Be-229

haviour of Strokkur230

Strokkur geyser is a part of the Geysir geothermal area in the Haukadalur valley231

in southwest Iceland (Fig. 1). On the surface, Strokkur hosts a water-filled pool of 12m232

in diameter (Rinehart, 1986). In the middle of the pool, the uppermost part of the sin-233

ter conduit walls extends to the surface (Eibl et al., 2021). This conduit is 2.2m wide234

and changes shape and width with depth (Walter et al., 2020). Strokkur features sin-235

gle to sextuple eruptions with one to six water fountains jetting into the air with an av-236

erage interval of 16.1 s between fountains (Eibl, Hainzl, et al., 2020). Within this manuscript,237

we only assessed single to quadruple eruptions for which the waiting time after eruptions238

increases linearly from 3.7 ± 0.9 minutes to 11.3 ± 2.9 minutes (Eibl, Hainzl, et al., 2020).239

We used seismic data recorded at 5 to 14m distance south and east of the pool of240

Strokkur geyser, Iceland (Eibl, Walter, et al., 2020). The sensors are Nanometrics Tril-241

lium Compact Posthole 20 s seismometers at locations S2, S3, S5 and Nanometrics Tril-242

lium Compact 120 s at locations S1, S4 (see Fig. 1b) in the 7L seismic network (Eibl,243

Walter, et al., 2020). The seismometers were installed on 10 June 2018 for 4.5 to 5.25244

hours and recorded at a sampling rate of 400Hz. To assess the sensitivity of PE with245

respect to station distance from the source, we utilized the seismic data recorded at sta-246

tions G2, G3, and G4 at a distance of 42.5m, 47.3m, and 38.3m. For the latter stations,247

no data is available from 10 June, which does not hinder a comparison since the erup-248

tive pattern does not change with time (Eibl, Müller, et al., 2020). The data used are249

recorded on 3 June 2018 using a sampling rate of 200Hz.250

Based on the same seismic dataset, Eibl et al. (2021) suggested that the conduit251

is linked to a horizontal crack and a bubble reservoir at 23.7 ±4.4 m depth, where the252

bubble reservoir extends from about 13 to 23m west of the conduit and feeds eruptions253

of Strokkur. Strokkur passes through 4 phases during an eruptive cycle as laid out by254

Eibl et al. (2021) based on a multidisciplinary experiment (Eibl, Müller, et al., 2020).255

The eruptive cycle at Strokkur starts with Phase 1 (P1), when an eruption is con-256

firmed visually: a rising bubble slug reaches the surface, bursts, and pushes the water257

and steam upwards into a jetting water fountain. P1 ends when the eruption stops. Due258

to the water loss in the conduit, the water from the pool and water from a shallow aquifer259

flow back to refill the conduit. This process is identified as Phase 2 (P2). At the begin-260

ning of Phase 3 (P3), the water temperature in the bubble reservoir is low due to the261

heat loss during the eruption. Seismically, this phase features an eruption coda inter-262

preted as steam entering the reservoir, which partly collapses (Eibl et al., 2021). The col-263

lapses release heat and therefore increase the temperature of the water in the bubble reser-264

voir, eventually supporting the gas accumulation toward the end of P3. In Phase 4 (P4),265

bubbles regularly leave the bubble reservoir, migrate through the horizontal crack, and266

collapse at a temporal spacing of 21 to 26 s when reaching the water in the conduit that267

is not hot enough to preserve the steam bubble. With the water in the conduit heating268

up, the system eventually reaches conditions where steam bubbles burst on the surface,269

and the next eruption starts (P1).270

4 Seismic Preprocessing and PE Setting at Strokkur271

Previous volcano-seismic studies (Glynn & Konstantinou, 2016; Melchor et al., 2020)272

used only the vertical component of seismic data to calculate PE. We compared PE us-273

ing the vertical and both horizontal components (Fig. S2) of the stations S1, S2, S3, S4,274

and S5. While the PE trends of the three components are generally the same, the ver-275
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tical component exhibits larger variations in PE. We also checked and compared the seis-276

mogram and the spectrogram of the three components. The vertical components of these277

5 stations display the largest amplitude. Therefore, we used the vertical components for278

the following analysis. Station G3 and G4 recorded larger amplitudes on the horizon-279

tal components while G2 on the vertical component. The seismic data were detrended,280

tapered, and instrument corrected to velocity. Afterward, a high pass Butterworth fil-281

ter of order 4 with a corner frequency of 1Hz was applied to remove the oceanic micro-282

seism.283

Based on the eruption catalog compiled by Eibl et al. (2019), there were 63 erup-284

tions recorded on 10 June 2018 from midnight to 04:17 in the morning. These eruptions285

consisted of 53 single eruptions, 8 double eruptions, one triple eruption, and one quadru-286

ple eruption. As the waiting times after eruptions are in the order of minutes, and changes287

within the cycle occur within less than a second (Eibl et al., 2021), we aim for PE with288

high temporal resolution. In that case, we need to find the shortest window length pos-289

sible to calculate PE. We chose a window length of 1 s as it provides a good temporal290

resolution. The window length needs to contain more samples than the maximum pos-291

sible m! ordinal patterns constructed from the embedding dimension m. In this case, the292

highest embedding dimension that can be applied for a 1 s window length with a sam-293

pling frequency of 400Hz is 5.294

Since the stations are a few meters from the place where the bubbles burst (Fig. 1),295

the signal-to-noise ratio is high. According to our synthetic test of signals without noise296

in Fig. 2a, the minimum PE is obtained using the shortest delay time. To confirm this297

in the real seismic data, we compare five different estimations using small delay times,298

ranging from 0.0025 s to 0.0125 s (Fig. S3). The PE variations related to these five dif-299

ferent delay times exhibit consistent patterns, with a difference in the absolute values.300

As we are only interested in relative PE changes during the eruptive cycle and not in its301

absolute values, it is safe to use one of them. In this paper, we present the result of PE302

using a delay time of 0.005 s.303

In addition to PE, we calculated the Root-Mean-Square (RMS) of the ground mo-304

tion in velocity using the same 1 s long time window. Both quantities will be further eval-305

uated for their performance in eruption forecasting.306

5 Results307

5.1 PE and RMS Variation during an Eruptive Cycle308

Repetitive patterns of the eruptive cycle for 63 eruptions recorded on 10 June 2018309

are visible in seismogram, spectrogram, RMS, and PE. An exemplary single eruption start-310

ing at 00:24:39 recorded at station S1 is shown in Fig. 3a-d.311

The RMS rises at the beginning of P1 and drops at the end of P1 (Fig. 3c). It stays312

low during P2 but increases again when P3 starts. In P3, RMS shows a so-called erup-313

tion coda composed of seismic peaks at a temporal spacing of 1.5 to 1.7 s featuring a fast314

increase and a slow decrease in amplitude. The RMS features regular peaks during P4315

at an average temporal spacing of 22 to 27 s. Each of these peaks is followed by a weak316

eruption coda, while the seismic amplitude of the peaks tends to decrease towards the317

end of P4 (Eibl et al., 2021). The last peak is not followed by an eruption coda.318

Fig. 3d exhibits a high PE of 0.89 at the beginning of P1, then increases to the max-319

imum value at 0.94. PE slightly decreases at the start of P2 and suddenly drops towards320

P3. In P3, PE reaches a minimum value of 0.57, followed by a gradual increase towards321

P4. At the start of P4, PE reaches a value of 0.81 and sharply drops to 0.60. The fol-322

lowing trend then repeats several times: The PE gradually increases to about 0.83 and323

sharply decreases to about 0.61. In the last 12 s of P4, PE reaches a value of 0.80 and324
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remains high before it increases further and the next eruption (P1) starts. The double,325

triple, and quadruple eruptions also show similar patterns.326

Figure 3. A typical eruptive cycle of a single eruption at 00:24:38 on 10 June 2018. (a) Seis-

mogram of the vertical component after high pass filtering with a corner frequency of 1Hz. The

vertical red line indicates the start of P1, while the blue lines indicate the start of P2, P3, and P4

according to Eibl et al. (2021). (b) Amplitude Spectrogram of subfigure (a) using a time window

of 256 samples and overlap of 50 samples. (c) RMS and (d) PE calculated in non-overlapping 1 s

long time windows for the seismic data shown in subfigure (a).
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5.2 Stacked PE, RMS, and Hypocentral Distances of 53 Single Erup-327

tions328

To assess the repetitive pattern of PE and RMS, we stacked the PE and RMS of329

the 53 cycles, started with a single eruption, according to the start time of each phase.330

For better visualization, we calculated the mean and the 68% confidence interval (writ-331

ten as mean [lower bound, upper bound]) using a 1 s window. The 68% confidence in-332

terval is equivalent to plus/minus one standard deviation for a Gaussian distribution.333

If the pattern of PE and RMS in each phase is similar from one eruption to another erup-334

tion, stacking them will reduce the noise and enhance the pattern.335

We aligned the RMS from 55 s before to 50 s after the onset of each phase (Fig. 4a-336

d). The stacked RMS on each phase shows a clear pattern. At 35 s and 15 s before the337

onset of P1, two seismic peaks reach the mean RMS of 8.2 · 10−7 m/s and 9.4 · 10−7
338

m/s, respectively. While both peaks are followed by a decrease in seismic amplitude, the339

second last peak is also followed by a weak eruption coda (Fig. 4a). At the onset of P1,340

the seismic amplitude increases toward the peak at the mean velocity of 7.9 [3.4, 11]·10−6m/s341

(Fig. 4a). It drops rapidly to the onset of P2 (Fig. 4b). At the onset of P3, the seismic342

amplitude increases fast to the mean velocity of 1.2 [0.5, 1.9] ·10−6 m/s and slowly de-343

creases towards the end of the phase (Fig. 4c). P4 starts with a sudden peak of mean344

velocity with a value of 6.7 [3.8, 9.9]·10−6 m/s followed by a weak eruption coda (Fig. 4d).345

The stacked PE shows a stable pattern during the different eruptive cycles with346

different behavior than RMS. Around 35 s before the eruption, we see the last peak reach-347

ing a value of 0.78 [0.72, 0.83] in P4. Then the PE value drops to 0.68 [0.59, 0.76] about348

27 s before the eruption. Around 15 s before the eruption, the mean of PE reaches a sim-349

ilar value as the last peak of P4. However, instead of decreasing like after the previous350

peaks, PE remains high for about 6 s and then increases for 8 s to 0.90 [0.88, 0.93] at the351

start of P1 (Fig. 4e). The PE decreases slightly to P2 and drops to 0.70 [0.61, 0.78] at352

the beginning of P3 (Fig. 4f-g). PE continues declining for around 3 s to the minimum353

PE of 0.63 [0.57, 0.68]. After reaching the minimum, PE increases gradually for about354

31 s to 0.80 [0.77, 0.82] at the onset of P4 (Fig. 4h). PE then rapidly decreases to 0.63355

[0.59, 0.80] for about 8 s after the peak. This pattern repeats several times in P4 before356

the pattern changes about 14 s before P1.357

To investigate the relation between PE and the distance to the source, we calcu-358

lated the distances from the estimated median source locations (Eibl et al., 2021) to the359

station S1. S1 is located about 10m to the south of the conduit on the surface. Eibl et360

al. (2021) estimated the source location by using the particle motion of the recorded seis-361

mic waves. The epicenters of the sources were estimated from the intersection of the az-362

imuth angles derived from all 5 stations. Eibl et al. (2021) project the epicenter loca-363

tion vertically down and extract the source depth from the intersection point with the364

derived incidence angles for all stations. Note that the shallow source depths during P1365

and peaks in P4 are poorly constrained since the particle motion shows an elliptical par-366

ticle motion characteristic for Rayleigh waves when the seismic sources reach or approach367

the surface. We stacked the hypocentral distances from the sources to S1 and calculated368

their mean and the confidence interval (Fig. 4i-l).369

We notice that from 15 s before the eruption, the seismic sources remain at about370

10m depth from the surface or about 20m away from S1 until the eruption occurs (Fig. 4i).371

The source gradually deepens in P2 and reaches a distance of 34m from S1 (Fig. 4j-k).372

The sources in P3 are mostly located 13 to 23m west of the conduit (Eibl et al., 2021),373

then hypocentral distances decrease toward P4. We checked the source depth and ob-374

served that the seismic sources migrate upwards. P4 starts with seismic sources at a depth375

of about 10m with a distance of 21m to S1. It is likely that the seismic source reached376

shallower depths during the peaks in P4 (Fig. 4l) and even more during P1, when the377

eruption occurs on the surface (Fig. 4i).378
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Figure 4. Stacked RMS, PE, and hypocentral distance values for the 53 cycles of single erup-

tions recorded at station S1. Grey lines mark the RMS values for each eruption aligned at (a) the

start of the eruption (P1), (b) the end of the eruption (start of P2), (c) the start of the eruption

coda (P3), and (d) the start of P4 with regular bubble collapses in the conduit at depth. The

time is measured relative to the alignment time (i.e., the start of the red or blue area highlighting

the mean duration of the phase). The black lines define the mean values in a 1 s window, while

the dashed lines represent the 68% confidence interval. The black arrows point to the seismic

eruption coda visible in P3 and P4. (e-l) Same as subfigures (a-d) for (e-h) PE and (i-l) the dis-

tance between the seismic source location and station S1 (Eibl et al., 2021).

5.3 PE Pattern with Respect to Double to Quadruple Eruptions379

We also assessed the PE pattern of 8 double eruptions recorded on 10 June 2018.380

These eruptions consist of two water fountains at an average temporal spacing of 15.6 s,381

and the duration of phases P3 and P4 increase linearly with respect to single eruptions382

(Eibl et al., 2021). The PE pattern of double eruptions throughout the cycle is similar383

to single eruptions. Its variation is not systematically higher or lower than for single erup-384

tions. While in single eruptions, the PE drastically drops, on average, after 8 s from the385

beginning of the eruptions, the PE of double eruptions remains high until the second wa-386

ter fountain. PE only drops when entering P3 on average 28 s after the beginning of the387

first water fountain (Fig. S4).388

There was only one triple and one quadruple eruption during the whole recording389

period. In general, the PE patterns for both triple and quadruple are similar to the sin-390
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gle and double eruptions, with PE remaining high in P1 until the last water fountain oc-391

curred.392

5.4 Reliability of PE Results with Respect to Distance from the Source393

To evaluate the performance of PE with respect to the station location, we com-394

pared the stacked PE variations obtained for the records at stations S1, S2, S3, S4, and395

S5. We also calculated the variations of the stacked source-station distance for the same396

stations in the same way. Supplementary Fig. S5 shows that PE is sensitive with respect397

to the stations location. The differences in source distance to each station are small, but398

the absolute values of PE for different stations are quite distinct. S1, which is located399

closest to the seismic sources, exhibits the lowest absolute values of PE compared to the400

other stations. S2, S3, and S4 display a similar temporal variation as S1 but with higher401

absolute values throughout the cycles. An exception is station S5. While the distance402

from S5 to the seismic sources is similar to the other stations, the temporal variation of403

PE does not reflect clearly the changing phases in the eruptive cycle. Overall, the PE404

at station S5 is dominated by high values except for the first half of P3. The PE in P4405

is as high as in P1, making it difficult to see the transition to the eruption in the PE value.406

To investigate further the performance of PE at stations with a larger distance, we407

calculated PE of seismic data recorded at stations G2, G3, and G4 (Fig. 1b) on 3 June408

2018. These three stations are located at 42.5m, 47.3m, and 38.3m north-west, west,409

and south-east of the conduit, respectively. However, the temporal variation of PE on410

these stations does not correlate with the phases in the eruptive cycle.411

6 Interpretation and Discussion412

6.1 The relation between PE and Strokkur eruptive cycle413

PE does not depend on the absolute amplitudes, and multiplying a signal by a fac-414

tor leads to the same PE value. In contrast, PE depends on the frequency bandwidth415

of the signal. Our synthetic test shows that a synthetic signal containing more frequen-416

cies, i.e., by superposing more harmonic signals, produces a higher PE than a signal con-417

taining fewer frequencies. We suggest that a signal with a broader frequency content has418

a higher PE compared to a signal with a narrower frequency band. Dávalos et al. (2021)419

investigated the effect of bandpass filters such as Butterworth and Chebyshev applied420

before the PE calculation and observed that lower PE corresponded to narrower band-421

widths while higher PE corresponded to broader bandwidths. Our synthetic tests con-422

firm their result.423

Our observation at Strokkur shows that PE reaches the highest value during the424

eruption phase (P1) when the water jets into the air. In this phase, the amplitude peaks425

and the frequency content is broad. Once the last fountain stops (P2), the amplitude quickly426

drops and declines to narrower bandwidth. PE is still high at the end of the last foun-427

tain but then quickly drops to the next phase (P3). During P3, the eruption coda is com-428

posed of seismic peaks at a temporal spacing of 1.5 to 1.7 s. Whilst their frequency con-429

tent is broad, it is not as broad as during seismic peaks in P1 and P4. Between these430

peaks in P3, the frequency content of the seismic signal is narrow banded, and the PE431

fluctuates and reaches minimum values. In P4, during the regular peaks and broad spec-432

trum of the energy produced by the bubble collapses at depth, PE reaches the local max-433

imum. Conversely, PE is smallest directly after the peaks in P4 despite a starting erup-434

tion coda that increases in amplitude and widens in frequency content. Shortly before435

the next peak in P4, it seems seismically quiet and with a narrow-banded frequency con-436

tent while the PE value keeps increasing. The PE hence does not solely depend on the437

broadness of the frequency spectrum.438
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During P4, the two last bubble collapses at depth in the conduit happen about 35439

and 15 s before the start of the next eruption, respectively. Both collapses are recorded440

as a peak in seismic amplitude and are followed by a drop in seismic amplitude, as seen441

in the stacked RMS. During these collapses, the PE values reach a local maximum. Fol-442

lowing the second last collapse, the PE value drops, while it remains high after the last443

bubble collapse. We further investigated the waveforms and spectrograms in the last 50 s444

before the eruption. The second last collapse is followed by a weak eruption coda. This445

coda is similar to the eruption coda in P3 in terms of the peaks’ temporal spacing and446

frequency content. However, it is smaller in amplitude, and the duration is shorter than447

in P3. In contrast, the last collapse before the eruption is not followed by an eruption448

coda. Hence, the RMS value drops to a lower amplitude while the PE value remains high.449

With respect to the state of the geyser, this implies that the second last bubble collapse450

triggers recharge in the reservoir, while after the last bubble collapse at depth, the sys-451

tem has reached a state that is ready for eruption. At that stage, the water in the reser-452

voir and conduit is most likely heated sufficiently - without further need to recharge -453

and contains small bubbles in the whole pipe system. The next large bubble that rises454

in the conduit can then reach the surface and burst into a jetting water fountain.455

Eibl et al. (2021) observed a decrease in seismic peak amplitude during collapses456

in the conduit with time. They speculate that this is due to damping when more bub-457

bles accumulate in the conduit and decouple the noise from the bubbles and the conduit458

walls. Here, an increasing amount of bubbles might then suggest that the PE values through-459

out P4 should increase. While in some eruptions, such an increase can be observed through-460

out P4, it is not always the case. Glynn and Konstantinou (2016) observed an increase461

of PE for two days between a 5.6Mw earthquake in Bárarbunga on 29 September 1996462

and the onset of a subglacial eruption in Gjálp on 1 October 1996. This PE increase was463

preceded by 8 days of PE decrease, which they associated with the lack of frequency higher464

than 1Hz. After the 5.6Mw earthquake, earthquake swarms migrated to the Gjálp fis-465

sures featuring a broader frequency content up to 7Hz (Konstantinou et al., 2000). Glynn466

and Konstantinou (2016) suggested that these higher frequencies increase the complex-467

ity, hence causing the PE increase.468

6.2 How the station distance could affect the PE value469

We observed that the PE at stations S1, S2, S3, and S4 correlates strongly with470

the distance between seismic sources and the station. As the seismic sources migrate to471

the surface and the source-station distance decreases, PE increases. We suspect that the472

attenuation during the seismic wave propagation could play a role. When the source is473

at a larger depth, the seismic wave travels a longer path, and more of the higher frequen-474

cies are attenuated and scattered. As a result, the PE value of this signal should be low.475

As the source moves closer to the surface, the seismic wave travels a shorter distance and476

attenuates less, yielding a higher PE value. This observation is similar to Glynn and Kon-477

stantinou (2016), where the increase of PE due to the earthquake migration prior to the478

1996 Gjalp eruption is smaller at the further stations. Glynn and Konstantinou (2016)479

also suggested that this due to the attenuation. However, the attenuation cannot be the480

only reason, as S5 has, on average, a larger distance to the sources compared to S1-S4481

but shows larger PE values with a different pattern than the other four stations. Eibl482

et al. (2021) observed that stations S1 to S4 exhibit high linearity in the particle mo-483

tion from the deep seismic source, while station S5 exhibits significantly lower linearity484

and was hence excluded from the depth location. The lower data quality of S5 may also485

cause high PE values at station S5.486

At larger distance of 38.3 to 47.3m, PE does not perform well. We observed that487

PE at stations G2, G3, and G4 exhibit lower values with no clear precursory signal. Our488

synthetic test (Fig. 2) shows that PE is sensitive to the presence of noise. When the dis-489

tance of the source to the station is far, and the signal strength in the recorded seismo-490
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gram is low, PE seems to reflect the dynamics of the local station environment more than491

the eruptive cycle of the Strokkur geyser. This is also supported by findings of Eibl et492

al. (2021) who could not use these stations for the seismic source location due to low-493

quality particle motions.494

6.3 Predictive power of PE in comparison to RMS495

We used the ROC analysis to quantify the predictive power of PE in comparison496

to RMS. The resulting curves are shown in Fig. 5 for alarms raised for the next time step497

when the variables exceed a certain threshold. PE demonstrates good predictive skills498

with AUC=0.846, while RMS is even worse than random with AUC=0.433. The latter499

is not surprising, having in mind that RMS tends to decrease prior to eruptions (see Fig. 4e).500

Thus, we also calculated the inverse of RMS as a measure of quiescence. However, 1/RMS501

yields AUC=0.567 which is only slightly better than a random forecast.502

To rank the predictive power of the PE using only 1 s bin information, we also ap-503

plied the statistical recurrence model of Eibl, Hainzl, et al. (2020) which was inferred from504

20390 waiting times after eruptions of Strokkur geyser in December 2017 and January505

2018. The analysis of this long sequence revealed log-normal recurrences with mean and506

standard deviations dependent on the eruption type of the last event. In particular, we507

determined the probability pT of the next event within the alarm time, knowing the time508

to the last eruption and its eruption style. This value is found to outperform PE with509

AUC=0.971. Of course, the comparison is unfair because pT is based on combined in-510

formation over a very long time. However, PE can even improve the pT -result if the prod-511

uct of both variables is considered. This result can be understood by considering that512

pT is monotonously increasing with increasing time to the last eruption. At the same513

time, PE is similarly high at intermediate bubble collapses at depth as before the erup-514

tions (see Fig. 3d). The multiplication (shown in the black dashed and continuous lines515

in Fig. 5) suppresses the high values related to bubble collapses, leading to an enhanced516

forecast power. This effect is amplified, if the mean (⟨PE⟩) value is removed from the517

PE signal, PEn = (PE - ⟨PE⟩) H(PE - ⟨PE⟩), with H the Heaviside function (H(x)=1518

if x>0 and zero else). In this case, the AUC is 0.99, very close to the optimal value of519

1.0.520

Note that to test the predictive power of PE and RMS, we have only used so far521

the information in separate 1 s bins of the seismogram. We ignored the information en-522

coded in the time evolution of these parameters. To analyze the possible improvements523

using the full PE and RMS patterns requires machine learning techniques and is left for524

future studies.525

7 Conclusions526

In this research, we show a good capability of PE in characterizing different phases527

in the eruptive cycle of the Strokkur geyser. PE also performs better in predicting an528

eruption than RMS of the ground velocity. About 15 s before the eruption, PE indicates529

that the system is prone to erupt after the last collapse by increasing values. At the same530

time, the RMS indicates quiescence, and the seismic sources remain at a shallow depth.531

The PE reflects the seismic changes linked to a status with superheated water in the pipe532

system and small bubbles drifting in it. Hence, the PE might be indirectly sensitive to533

the number of small bubbles present in the water.534

PE can characterize the different phases of the geyser’s eruptive cycle for the near-535

field stations, but it seems that PE cannot resolve the dynamics for signals at larger dis-536

tances. Depending on the signal strength at the source and the signal-to-noise ratio, our537

results indicate that this method requires seismic data recorded as close to the source538

as possible, in the case of Strokkur within 15m. Defining suitable preprocessing steps539
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Figure 5. Assessing the predictive power of PE using ROC.ROC curves for PE (green), RMS

(light blue), the inverse of RMS (blue), and the probability pT calculated for the recurrence

model of Eibl, Hainzl, et al. (2020) (grey), as well as combinations of the latter with PE (solid

black and dashed black). Here, PEn refers to the rescaled PE value, PEn = (PE - ⟨PE⟩) H(PE -

⟨PE⟩), with ⟨PE⟩ being the mean value of PE and H the Heaviside function. The alarm period is

the next time step (NT=1) with the corresponding AUC values given in the legend. The result

of a random variable is indicated by the dashed diagonal with AUC=0.5, while the result of an

optimal predictor is marked in the upper left corner.

for PE application on a volcano requires further research. While in a geyser, the inter-540

action between the water and gas with the surrounding rock mostly generates tremors,541

the interaction between magma and the surrounding rock in a volcano generates more542

types of volcano-seismic signals with different complexities. For monitoring a volcano,543

the seismic stations are usually installed at larger distances, which will decrease the sig-544

nal strength. These factors need to be taken into account. Nonetheless, PE has a strong545

potential to contribute to the framework of eruption forecasting. For this purpose, our546

study might help to define distinct precursory features in the temporal variation of PE547

prior to eruptions that are useful for eruption forecasting.548
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Boué, A., Cortés, G., Vallete, B., & G, R. (2015). Real-time eruption forecasting us-563

–16–



manuscript submitted to JGR: Solid Earth

ing the material failure forecast method with a bayesian approach. Journal of564

Geophysical Research: Solid Earth, 120 . doi: 10.1002/2014JB011637565

Dempsey, D. E., Cronin, S. J., Mei, S., & A.W, K. (2020). Automatic pre-566

cursor recognition and real-time forecasting of sudden explosive volcanic567

eruptions at whakaari, new zealand. Nature Communication, 11 . doi:568

1038/s41467-020-17375-2569

DeVries, P. M. R., Viégas, F., Wattenberg, M., & Meade, B. J. (2018). Deep learn-570

ing of aftershock patterns following large earthquakes. Nature, 560 (7720), 632-571

634.572
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