Infrared spectral radiation fields observed by satellites make up an information-rich, multi-decade record with continuous coverage of the entire planet. As direct observations, spectral radiation fields are also largely free from uncertainties that accumulate during geophysical retrieval and data assimilation processes. Comparing these direct observations with earth system models (ESMs), however, is hindered by definitional differences between the radiation fields satellites observe and those generated by models. Here, we present a flexible, computationally efficient tool called COSP-RTTOV for simulating satellitelike radiation fields within ESMs. Outputs from COSP-RTTOV are consistent with instrument spectral response functions and orbit sampling, as well as the physics of the host model. After validating COSP-RTTOV's performance, we demonstrate new constraints on model performance enabled by COSP-RTTOV. We show additional applications in climate change detection using the NASA AIRS instrument, and observing system simulation experiments using the NASA PREFIRE mission. In summary, COSP-RTTOV is a convenient tool for directly comparing satellite radiation observations with ESMs. It enables a wide range of scientific applications, especially when users desire to avoid the assumptions and uncertainties inherent in satellite-based retrievals of geophysical variables or in atmospheric reanalysis.