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Abstract13

We investigate the flow-wise variation of the hydraulic conductivity inside a non-uniformly14

shaped fracture within a porous medium. Using lubrication theory for viscous flows, in15

conjunction with the Beavers–Joseph–Saffman boundary condition at the permeable walls,16

we obtain an analytical expression for the velocity profile, conductivity, and wall perme-17

ation velocity. These predictions highlight the effects of geometric variation (through the18

local slope of the aperture’s flow-wise variation), the permeability of the walls (through a19

dimensionless slip coefficient), and the effect of flow inertia (through a Reynolds number).20

The theory is validated against an OpenFOAM R© solver for the Navier–Stokes equations21

subject to a tensorial slip boundary condition, showing good agreement. The mathematical22

results have implications on system-level (multiscale) modeling of hydraulically fractured23

reservoirs, in which the Darcy conductivity of each non-uniform passage must be accurately24

accounted for, throughout the fractured porous rock.25

Plain Language Summary26

Whether natural or induced, underground fractures have non-uniform shapes. Their27

cross-sectional area generally decreases slowly in the direction of the flow through the frac-28

ture. The walls of the fracture are the surrounding geological porous rock formations. Thus,29

fluid can leak from the fracture into the surrounding rock matrix. This leakage has signifi-30

cant implications for oil and gas recovery, as well as for evaluating the safety of groundwater31

reserves residing near fractures. What has not been appreciated in previous studies of flow32

in fractures is just how the fluid flows into the permeable walls is determined by the rocks’33

properties, the varying fracture geometry, and the pressure forces driving the flow. This34

study contributes and validates a mathematical expression for the resistance to flow in a35

single fracture, elucidating analytically the coupled roles of shape variation and permeation36

of fluid into the walls. Having such a precise prediction in hand can improve systems-level37

modeling of complex transport phenomena through fractured rock, which guides the evalu-38

ation of the lifespan of an oil or gas reservoir and the efficacy of underground carbon dioxide39

sequestration, amongst other applications.40

1 Introduction41

Crude oil and natural gas exist as fluids in large underground reservoirs in sedimentary42

basins around the world. They occupy the connected porous media within strata of sed-43

imentary rocks, typically sandstones or carbonates (van Golf-Racht, 1982). Over the last44

decade, hydraulic fracturing (“fracking”) of shales has paved the way towards increasing45

the recoverable reserves of oil and gas in the United States (McBride & Aly Sergie, 2015).46

During fracking, complex fluids (primarily water-based suspensions with dispersed particu-47

lates termed “proppants”) (Yew & Weng, 2015; Barbati et al., 2016) are pumped into tight48

formations (Detournay, 2016; Osiptsov, 2017). Fracking is inherently a multiscale problem49

(Hyman et al., 2016): as the injected high-pressure fluid enters a rock formation from the50

well bore, a complex array of cracks of various shapes, sizes, and with flow-wise variations,51

are created (Yew & Weng, 2015; Rassenfoss, 2015). This network of fractures increases52

the conductivity of the rock formation by increasing the available flow area (Phillips, 1991;53

Vincent, 2002). Similarly, in enhanced geothermal systems (Mohais et al., 2012), heat is54

extracted from hot rocks by flooding the dry fracture network (Mohais et al., 2016; Olasolo55

et al., 2016). Thus, it is of practical importance, as well as of fundamental scientific interest,56

to create mathematical models of the conductivity in complex and non-uniform fractures.57

In this letter, we derive a novel mathematical expression for the conductivity of a shaped58

fracture with flow-wise geometric variations.59

To provide a sense of the scale on which the half-depth h of a fracture may vary60

with the flow-wise direction x, consider the standard Perkins–Kern–Nordgren (PKN) and61

the Khristianovitch–Zheltov–Geertsma–de Klerk (KGD) models, which idealize fractures as62
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Figure 1. Schematic of a typical fracture flow geometry idealized as a Hele-Shaw cell. The

fracture’s shape varies appreciably over a “typical” length L, and it has a constant gradient dh/dx ∼
α, so that the half-depth is h(x) = h0 + αx (to a linear approximation). The fracture is long and

thin meaning ε = h0/L � 1 and α = dh/dx = [h(L) − h0]/L = ∆h/L � 1, where h0 = h(0).

Gravity is neglected but, in these schematics, it would act in the transversely in the negative y-

direction. The flow is symmetric about the centerline z = 0, and primarily in the x-direction, along

the fracture. The top and bottom walls z = ±h(x) are permeable (permeability kw) and allow a

non-zero vertical velocity component vw at the wall, which is to be determined.

Table 1. Typical dimensions of a hydraulic fracture and typical values of the dimensionless

parameters of the hydraulic conductivity model derived in this study.

Quantity Notation Value Remarks

Fracture total length Ltotal 100 ∼ 1000 m (Barbati et al., 2016)
Fracture width w 10 ∼ 100 m (Barbati et al., 2016)
Fracture gap/depth h0 2 ∼ 10 mm (Barbati et al., 2016)
Typical velocity U0 . 10−3 m s−1 (Yew & Weng, 2015, Ch. 1)
Permeability of the wall kw . 5× 10−13 m2 (Barbati et al., 2016)

Hele-Shaw shape variation δ = α/ε . 10−1 Slow variation assumption
Hele-Shaw aspect ratio ε = h0/L 10−4 ∼ 10−2 Using L = Ltotal/100
Hele-Shaw slope α = dh/dx . 10−3 Using |α| ∼ εδ
Wall slip coeff. φ =

√
kw/(ah0) . 10−3 a = 0.1

Reduced Reynolds number R̃e = ρU0h
2
0/(µL) . 0.1 ρ, µ for water

long and narrow elliptical cracks (Rahman & Rahman, 2010). Garagash and Detournay63

(1999) showed that the fracture tip has a shape with h(x) ∼ (xtip − x)1/2 as x→ xtip > L.64

(The typical fracture geometry we consider has total length Ltotal, appreciable variations in65

the shape occur over some typical scale L� Ltotal, with the tip falling outside the domain66

in Fig. 1.) Thus, the shape gradient away from the crack tip goes as α = dh/dx ∼ −(xtip −67

x)−1/2. Clearly, as x → −∞ (away from the crack tip), |α| → 0−, justifying the small68

slope assumption |α| � 1. Typical fracture geometry parameter values are summarized in69

Table 1, further justifying that, away from the crack tip, dh/dx ∼ |α| � ε = h0/L; that70

is, the fracture’s typical slope is much smaller than its aspect ratio. (Although our analysis71

does not depend on the sign of α, we henceforth take α < 0 for definiteness.)72

The simplest model of fracture conductivity (the parallel-plate model (Zimmerman73

& Bodvarsson, 1996)) assumes that fracture walls are smooth, impermeable walls with a74

constant gap depth of 2h0 (distance between the walls) and span w (length in the transverse75

direction); see Fig. 1. By analogy to lubricating viscous flow between two plates (the so-76

called Hele-Shaw model (Bear, 1972)), one can calculate the hydraulic conductivity to be77
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K = h20/3. Then, the transmissivity of the fracture (∝ h0wK) follows the well-known “cubic78

law” (Witherspoon et al., 1980). However, the flow passages in both naturally (van Golf-79

Racht, 1982) and hydraulically fractured (Yew & Weng, 2015) formations have a variable gap80

depth 2h(x). Generally, the walls of fractures are not parallel (Brown, 1987), in part due to81

the flow-wise deformation of the fracture due to large injection pressures (Iliev et al., 2008),82

requiring corrections to Darcy’s laws arise via a modified conductivity and transmissivity83

models (Jin et al., 2017; Wang et al., 2019; Rosti et al., 2020). However, these models are84

for impermeable walls.85

The bounding surfaces of a fracture are the porous rock formations themselves, there-86

fore they should not be idealized as impermeable plates (Berkowitz, 1989). Permeation87

of gas into the matrix, and its subsequent diffusion, affects the late-years productivity of88

fractured wells (Patzek et al., 2013; Karra et al., 2015). Berman (1953) and Sellars (1955)89

investigated the effects of a permeable wall in a constant-height channel using the idealized90

boundary condition of equal prescribed wall-normal velocities. Since then, a large literature91

has addressed many variations on this problem, including asymmetric wall normal velocities92

(Terrill & Shrestha, 1964), flow development effects (Brady, 1984), unsteadiness (King &93

Cox, 2001), and so on. These works rely on reducing the problem to a nonlinear ordinary94

differential equation, owing to the existence of a similarity transformation in two dimen-95

sions (2D). Unfortunately, this technique does not work in the case of a depth gradient,96

such as the present geometry with h = h(x); instead a perturbation solution must be sought97

(Grotberg, 1984; Wang et al., 2019). Kumar et al. (2016) showed that a similar situation98

arises if the geometry is uniform but the slip length varies in the flow-wise direction, i.e.,99

`slip = `slip(x). Importantly, imposing the wall-normal velocity a priori is a significant limi-100

tation of the previous studies because, as Conlisk notes, “[t]he suction velocity at the wall ...101

must be calculated from the properties of the porous medium” (Conlisk, 2012, p. 162). Here,102

we take the perturbative mathematical approach, based on the notion of slow variation in103

fluid mechanics (Van Dyke, 1987), to calculate the conductivity of a shaped fracture with104

permeable walls.105

Beavers and Joseph (1967) experimentally characterized pressure-driven (Poiseuille)106

flow over a naturally permeable surface (i.e., channel flow with porous walls) and proposed107

a boundary condition to account for the wall permeation. Specifically, they showed that the108

shear stress balance at the fluid–solid interface can be represented by a first-order (partial)109

slip boundary condition with slip length `slip =
√
kw/a, where kw is the permeability of the110

porous wall, and a is a dimensionless constant determined by the structure of the material,111

ranging from 0.1 to 4.0 (Beavers & Joseph, 1967). Taylor (1971) observed that a is not112

a universal value, but rather it depends on the flow geometry. Saffman (1971) substan-113

tiated this observation and generalized the slip condition to arbitrary surfaces. However,114

this correction only affects the already empirically-determined slip length, thus the form115

of the boundary condition remains unchanged, while a ≈ 0.1 is in good agreement with116

most experiments (Beavers et al., 1970). Zhang and Prosperetti (2009) provided further117

evidence for the slip boundary condition via pore-scale direct numerical simulations of a118

two-dimensional channel flow. A more detailed discussion of the history and mathematical119

foundations of the partial slip boundary condition can be found in (Nield & Bejan, 2013;120

Bottaro, 2019). Now, define the dimensionless quantity φ = `slip/h0 as the slip coefficient.121

For the typical dimensions of a hydraulically-driven fracture, we estimate the dimensionless122

parameters values in Table 1.123

To address the issue that fracture walls in the subsurface are themselves porous media,124

Mohais et al. (2011, 2012) employed the Beavers–Joseph boundary condition to solve for125

the flow in, and obtain a correction for the conductivity K of, uniform-depth fractures with126

permeable walls. So far, however, a theory for the conductivity of variable-depth fractures127

with porous walls (the most common case in the subsurface) is lacking. This study aims128

to fill this knowledge gap. Importantly, we also validate our proposed model for K against129

direct numerical simulations using a custom solver built on OpenFOAM R© (Weller et al.,130
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1998; The OpenFOAM Foundation Ltd, 2020). We provide an implementation of the semi-131

implicit method for pressure-linked equations (SIMPLE) (see, e.g., Moukalled et al., 2016,132

Ch. 15) algorithm for the Navier–Stokes equations subject to the tensorial form of the133

Beavers–Joseph–Saffman (BJS) boundary condition.134

2 Methods: Mathematical analysis and derivation of the conductivity135

2.1 Governing equations136

The flow geometry and notation are shown in Fig. 1. An incompressible Newtonian137

fluid of density ρ and dynamic viscosity µ fills the gap. The fracture is long and thin,138

which justifies taking h(x) to be a linear function (Nicholl et al., 1999). Alternatively, one is139

allowed to substitute α = α(x) in the results below if dh/dx 6= const., as long as maxx α(x)140

satisfies the original smallness assumption (Zimmerman & Bodvarsson, 1996; Wang et al.,141

2019). Let U0 be the average inlet velocity at the inlet (x = 0), which serves as the scale142

for the horizontal velocity u(x, z) in the fracture. The flow is assumed to be 2D, i.e., the143

fracture is infinite in the transverse y-direction. Then, conservation of mass requires that144

the scale for the vertical velocity v(x, z) be V0 = U0h0/L = εU0 (Conlisk, 2012, Sec. 4.9).145

Now, we define the dimensionless (starred) variables146

147

x∗ = x/L, z∗ = z/h0, h∗(x∗) = h(x)/h0, u∗(x∗, z∗) = u(x, z)/U0,148

v∗(x∗, z∗) = v(x, z)/V0, p∗(x∗, z∗) = εh0p(x, z)/(µU0), K∗(x∗) = K(x)/h20, (1)149
150

where Re = ρU0h0/µ is the Reynolds number and R̃e = εRe is a reduced Reynolds num-151

ber (Zimmerman & Bodvarsson, 1996). Then, the dimensionless conservation of mass and152

momentum equations are153

∂u∗

∂x∗
+
∂v∗

∂z∗
= 0, (2a)154

R̃e

(
u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂z∗

)
= −∂p

∗

∂x∗
+ ε2

∂2u∗

∂x∗2
+
∂2u∗

∂z∗2
, (2b)155

ε2R̃e

(
u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂z∗

)
= −∂p

∗

∂z∗
+ ε4

∂2v∗

∂x∗2
+ ε2

∂2v∗

∂z∗2
, (2c)156

157

subject to the following boundary conditions (BCs):158

symmetry at z∗ = 0 :
∂u∗

∂z∗
= 0 and v∗ = 0; (3a)159

partial slip at z∗ = h∗ : u∗ = −φ∂u
∗

∂z∗
, (3b)160

161

where φ is the slip coefficient, and h∗ = h∗(x∗) = 1 + αx∗/ε. Observe that, here, we162

can introduce δ = α/ε = [h(L) − h(0)]/h0 = ∆h/h0, which is the percent change of h(x)163

over the typical fracture variation length L, so that h∗(x∗) = 1 + δx∗. The assumption164

of slow variation dictates that δ � 1, while the assumption of lubrication (small aspect165

ration) dictates that ε = h0/L � 1 (see also Conlisk, 2012; Zimmerman & Bodvarsson,166

1996). These two assumptions are independent and lead to α = εδ ≪ 1, which is typical of167

fractures, as discussed in Sec. 1.168

The BC in Eq. (3a) is the centerline symmetry condition, while the BC in Eq. (3b)169

comes from the BJS partial slip BC (Beavers & Joseph, 1967; Beavers et al., 1970; Saffman,170

1971; Layton et al., 2002; Jäger & Mikelić, 2000) on the permeable wall (see Supporting171

Information Text S1 for details). Importantly, the BJS BC allows us to solve for the flow172

in the fracture without solving for the flow in the surround porous medium.173
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2.2 Perturbation solution for the velocity profile174

Following the standard procedure of a regular perturbation expansion (Holmes, 2013),175

the velocity field is expanded as u∗ = u∗0 + R̃e u∗1 + · · · and v∗ = v∗0 + R̃e v∗1 + · · · (R̃e� 1).176

Then, we find the horizontal velocity at the leading order (see Supporting Information Text177

S1 for details):178

u∗0(x∗, z∗) =

(
h∗2 − z∗2

2
+ φh∗

)(
−dp

∗

dx∗

)
. (4)179

Since the flow is in the direction of positive x∗, dp∗/dx∗ < 0. Then, the leading-order180

depth-averaged velocity is181

〈u∗0〉(x∗) =
1

h∗(x∗)

∫ h∗(x∗)

0

u∗0(x∗, z∗) dz∗ =
3φh∗ + h∗2

3

(
−dp

∗

dx∗

)
. (5)182

And, the vertical velocity at the leading order is183

v∗0(x∗, z∗) = (h∗ + φ)
dh∗

dx∗
z∗
dp∗

dx∗
−
(
z∗2

6
− h∗2

2
− φh∗

)
z∗
d2p∗

dx∗2
. (6)184

At the next order in R̃e, we find the depth-averaged velocity’s correction:185

186

〈u∗1〉(x∗) =

(
3

35
h∗2 +

φ

3
h∗ +

φ2

3

)
h∗4

(
−dp

∗

dx∗

)
d2p∗

dx∗2
187

−
(
h∗

5
+
φ

3

)
h∗3(h∗ + φ)

1

ε

dh∗

dx∗

(
dp∗

dx∗

)2

. (7)188

189

For the present purposes, it is not necessary to write out u∗1 and v∗1 but they can be calculated190

(see Supporting Information Text S1).191

2.3 Equivalent Darcy’s law and the hydraulic conductivity192

To obtain the conductivity K in a shaped fracture with porous walls, we must put the193

flow field thus obtained into the form of a Darcy-like law, i.e., 〈u∗〉 ∝ −dp∗/dx∗, with the194

proportionality factor being the sought-after result. To this end, combining Eqs. (5) and (7)195

we obtain the “full” depth-average horizontal velocity up to O(R̃e): 〈u∗〉 = 〈u∗0〉+ R̃e〈u∗1〉.196

However, at this point, the pressure distribution p∗(x∗) is still unknown. To close the197

problem, we need another constraint. Mohais et al. (2012) provided one solution by assuming198

a constant permeation velocity vw in a parallel fracture (α = dh∗/dx∗ = 0, h∗ = 1), i.e.,199

v0|z=±h0
= ±vw. We could apply this BC here too (see Supporting Information Text200

S1), however, as discussed in Sec. 1, the assumption of a constant vw is not suitable for201

shaped fractures, due to the flow-wise x∗-variation of the aperture. Instead, to close the202

problem, we impose the full flux onto the leading-order depth-averaged velocity, i.e., we203

set 〈u∗0〉 = 1. Thus, v∗w will not be constant and will be self-consistently determined as a204

function of dp∗/dx∗. Another modeling approach is to set the wall-normal velocity via the205

local pressure, as in filtration problems (Tilton et al., 2012; Herterich et al., 2015), however206

this approach is beyond the scope of the present study focused on porous media flows.207

Applying the constraint 〈u∗0〉 = 1 to Eq. (5), we compute dp∗/dx∗ and d2p∗/dx∗2 (see208

Supporting Information Text S1). Substituting the latter results into Eq. (7) and putting209

it all together,210

〈u∗〉 = −K∗ dp
∗

dx∗
, K∗ = K∗(x∗) =

[
3φh∗ + h∗2

3
− R̃eh

∗3(28φ2 + 22φh∗ + 3h∗2)δ

35(3φ+ h∗)2

]
, (8)211

which is already in the form of Darcy’s law. Finally, Eq. (8) can be put in dimensional form:212

〈u〉 = −K
µ

∂p

∂x
, K =

h20
3
C, (9)213
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where we have defined the dimensionless function214

C = C(x) =

[
3φh∗ + h∗2 − 3R̃e

h∗3(28φ2 + 22φh∗ + 3h∗2)δ

35(3φ+ h∗)2

]
= 1︸︷︷︸

(I)

+ 3φ︸︷︷︸
(II)

+

[
(2 + 3φ)

x

L
− 3R̃e

3 + 22φ+ 28φ2

35(3φ+ 1)2

]
δ︸ ︷︷ ︸

(III)

+O
(
δ2
) (10)215

to represent the “correction” to the hydraulic conductivity of the fracture. As discussed in216

Sec. 1, typical fractures are long and shallow (ε � 1), and the slopes of the wall variation217

are even smaller (α = εδ ≪ 1), thus we expanded a number of terms in Eq. (10) into Taylor218

series and kept only terms up to O(δ) to highlight the key physical effects of shape variation219

in a fracture with permeable walls.220

The function C accounts for wall permeation through the BJS slip coefficient φ =221 √
kw/(ah0), the shape of the fracture through the slope α = dh/dx and aspect ratio ε =222

h0/L, and weak inertia through the reduced Reynolds number R̃e = ρU0h
2
0/(µL). The223

first term (I) on the right-hand side of Eq. (10) corresponds to the classic conductivity224

calculated by the Hele-Shaw analogy (Bear, 1972); the second term (II) comes from wall225

permeation (Mohais et al., 2012); the third term (III), which is the novel contribution of our226

calculation, and is explicitly a function of the flow-wise coordinate x, is due to the coupled227

effect of geometry variation, fluid inertia, and wall permeation.228

2.4 Wall permeation velocity229

Substituting the expression for dp∗/dx∗ into the vertical velocity from Eq. (6), and230

evaluating the result at z∗ = h∗, we obtain the a priori unknown wall permeation velocity231

vw(x) = −V0
h(x)δ

3φh0 + h(x)
. (11)232

Recall that α < 0 (⇒ δ < 0), so vw > 0, i.e., the velocity is into the wall. Observe that233

both vw and the term (III) in C vanish for α = 0 (⇒ δ = 0) (parallel walls) because, in this234

case, there is no driving force to push fluid into the porous walls. We have imposed the full235

volumetric flux onto the leading-order solution (see also Tavakol et al., 2017), and it must236

be conserved. Note vw 6= 0 for φ = 0 because there can still be fluid penetrating the wall in237

the normal direction even if there is no (tangential) slip. The permeation velocity for φ = 0238

is driven by the flow-wise contraction of the aperture (rather then being imposed a priori239

(Mohais et al., 2012)).240

3 Results and Discussion241

Figure 2 shows the flow profile generated from the perturbative solution from Sec. 2,242

for a fracture with linear depth variation. The streamlines highlight the 2D nature of the243

velocity field, as well as permeation through the fracture’s top wall. The pressure does not244

vary with z∗, as required by the lubrication (small aspect ratio, ε� 1) approximation.245

Next, we validate our mathematical results against “full” Navier–Stokes direct numeri-246

cal simulations (DNS) (Al-Yaarubi et al., 2013). We carried out DNS using the simpleFoam247

solver in OpenFOAM R© ver. 7.0 (Weller et al., 1998; The OpenFOAM Foundation Ltd,248

2020), an open-source library based on the finite volume method (Moukalled et al., 2016).249

The simulations (see Supporting Information Text S2 for description of the method) were250

performed using the Hele-Shaw cell geometry with varying depth along x from Fig. 1. Im-251

portantly, unlike previous computational studies on flow in fractures with permeable walls252

(Tian et al., 2018), we did not impose the wall (tangent and normal) velocities from the253

theory onto the simulations. The latter approach is akin to verification, while we seek vali-254

dation (Roache, 1998) between theory and simulation. Instead, we imposed a tensorial slip255

–7–



manuscript submitted to Geophysical Research Letters

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.25

0.50

0.75

1.00

1.25

V
el

oc
it

y
m

ag
n

it
u

d
e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized pressure

Figure 2. Illustration of the dimensionless analytical flow solution (Eqs. (4), (5) and (6)) ob-

tained for the model shaped fracture with permeable walls. Only the top half (z > 0) is shown, for

clarity. Background color denotes pressure, and curves are streamlines shaded by velocity magni-

tude. Here, α = −10−3, ε = 0.01, R̃e = 0.01, φ = 10−3.

condition on the tangential velocity (the BJS BC) coupled with a normal pressure flux BC,256

to allow the simulation to self-consistently determine the flow (in particular, the unknown257

wall permeation velocity) and pressure profiles.258

The DNSs provide the 2D velocity field
(
u∗(x∗, z∗), v∗(x∗, z∗)

)
and the pressure dis-259

tribution p∗(x∗, z∗) (both scaled as in Eq. (1)). From these quantities, the volumetric flux260

across a vertical cross-section and the pressure gradient at a given x∗ are computed, yielding261

〈u∗(x∗)〉 and dp∗/dx∗. Their ratio, 〈u∗〉/(−dp∗/dx∗) is to be compared to the theoretically262

predicted dimensionless conductivity K∗(x∗) from Eq. (8).263

First, in Fig. 3, we show the velocity profiles across the midlength plane (x∗ = 0.5) of264

fractures with different slopes. The simulation results agree well with theory. The zoomed-265

in inset in Fig. 3(a) highlights that u∗ does not start from 0, but rather some finite value, as266

required by the BJC partial slip BC. For all α, v∗ = 0 at the centerline (z∗ = 0) as required267

by symmetry, then increases smoothly in absolute value towards the walls (Fig. 3(b)). Fluid268

enters into the surrounding porous medium and the wall permeation velocity v∗w = v∗|z∗=h∗269

is self-consistently computed (shown in Supporting Information Fig. S7). The wall per-270

meation velocity increases with |α| to maintain the imposed flux through these narrowing271

fractures. Meanwhile, for α = 0, v∗ = 0 for all z∗, i.e., there is no permeation into the272

porous medium, only slip at the fluid–solid interfaces (z∗ = ±1).273

To verify the derived analytical expression for the hydraulic conductivity in a shaped274

fracture, we compute K∗(x∗) in multiple angled fractures with permeable walls, based on275

typical reservoir properties summarized in Table 1. Figure 4(a) shows the predicted K∗
276

(from theory) against the simulated K∗ values along the fracture (multiple x∗ for each) for277

multiple slope values α, and multiple slip coefficients φ, for fixed R̃e. In the same color278

family, the brightness of the color refers to the value of φ: the darker the color, the smaller279

φ is. The classical conductivity K = 1/3 (i.e., for α = φ = 0) calculated from the Hele-Shaw280

analogy (Bear, 1972; Zimmerman & Bodvarsson, 1996) is shown by (simulated) and281

(predicted). All data points in Fig. 4(a) lie close to the line of slope 1, which means that282

the predicted conductivity (from theory) is in good agreement with the simulations. For283

φ > 10−3, the correlated trend continues, but in these cases the slip length is large and the284

single-domain simulation approach is not appropriate (the flow in the surrounding porous285

medium should be resolved as well to be able to impose suitable BCs numerically).286

In Fig. 4(b), we plot the conductivity variation along the flow-wise (x∗) direction, a287

novel prediction of the present theory. By comparing the conductivity for the same α but288
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Figure 3. Velocity profiles versus fracture depth z∗ at the mid-fracture plane x∗ = 0.5, for

φ = 5×10−4 and R̃e = 0.01: (a) the horizontal component u∗(x∗, z∗) (inset highlights the non-zero

slip velocity at the wall); (b) the vertical component v∗(x∗, z∗). Solid curves are the theoretical

profiles from Eq. (6), and filled circles with the same colors are the corresponding simulation results.

Colors represent different α values (see legend).

different φ, for example, α = −10−3 (the red color family), we observe that wall slip has289

only a weak effect on K∗. By comparing the conductivity for different α (different color290

families), we observe that K∗ decreases with x∗, which means that it becomes “harder” for291

the fluid to flow through the narrowing fractures. Of course this is expected on physical292

grounds, but this effect of α on K∗ had not been quantified prior to this study. In particular,293

our results in Fig. 4 show that that even weak slopes have a much more significant impact294

on the conductivity, than wall slip due to the permeability of the walls. Likewise, the wall295

permeation velocity v∗w has not been a priori specified, and is also a strong function of α296

(recall Sec. 2.4 and Supporting Information Fig. S7).297

4 Conclusions and Outlook298

The contribution of this study is the mathematical expressions, Eqs. (9) and (10),299

that relate the fracture conductivity to the geometric and physical quantities, and which300

explicitly shows the coupling between the fracture shape (in terms of its wall angle), the301

permeability of the porous wall (in terms of the Beavers–Joseph–Saffman slip length), and302

the inertia of the fluid in the fracture (in terms of a Reynolds number). Additionally,303

unlike previous studies on fractures with permeable walls, we self-consistently determined304

the wall permeation velocity, Eq. (6), which is a priori unknown and is set by the balance305

of pressure forces pushing fluid into the walls, and the permeability of the surrounding306

matrix. From these results, we concluded that the coupling effect of geometric variation,307

wall permeation and inertia leads to a decreasing conductivity along a narrowing fracture.308

Importantly, what has not been appreciated in previous studies is that, among these factors,309

the geometric variation (specifically, the resistance to flow induced by the narrowing of a310

fracture) dominates the conductivity change, even for slow shape variation (small slopes).311

The theoretical predictions were validated against direct numerical simulation of the Navier–312

Stokes equations in a model Hele-Shaw geometry.313

In future work, the analytical solutions derived could be used to improve systems-level314

(network) modelling of hydraulic fracturing and transport (Gostick et al., 2016), wherein315

simple modifications of Darcy’s law are currently used to capture the geometric variation316
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Figure 4. The conductivity K∗ of shaped fractures, for different slip coefficients φ and geometry

slopes α: (a) correlation plot of predicted K∗ values versus simulated K∗ values; (b) the variation

of K∗(x∗) along the fracture length. Colors represent cases with different α and φ values: :

α = 0, φ ∈ {0, 5 × 10−4, 10−3}; : α = −10−4, φ ∈ {0, 5 × 10−4, 10−3}; : α = −5 × 10−3,

φ ∈ {0, 5 × 10−4, 10−3}; : α = −10−3, φ ∈ {0, 5 × 10−4, 10−3}. In (b), filled circles represent

the simulation results, and solid curves of the same color represent the corresponding theoretical

prediction Eq. (10) with R̃e = 0.01.

and wall permeability (Birdsell et al., 2015). Likewise, our hydraulic conductivity expression317

accounting for aperture variation and wall permeation could prove useful in modeling the318

alteration of fractures by precipitation and dissolution in geothermal systems (Chaudhuri et319

al., 2008). In this context, the OpenFOAM R© solver developed could be adapted to account320

for solute non-Fickian transport and wall reactions (Municchi & Icardi, 2020). Our results321

could also guide the design of microfluidic analogues of porous media flows (Sinton, 2014)322

for emerging reservoir-on-a-chip technologies (Kumar Gunda et al., 2011) meant to emulate323

flow in geophysical reservoirs (Porter et al., 2015). Additionally, our solutions for the wall324

permeation velocity can be employed to estimate leakage in near-well operations, which can325

improve the accuracy of reservoir simulations (Dumkwu et al., 2012) and estimate the water326

content in low permeability layers (needed to establish the effectiveness of carbon dioxide327

sequestration (Gilmore et al., 2020)).328

Data Availability Statement329

The OpenFOAM R© solver, example simulation configuration files, and post-processing330

scripts are freely available in this in-text data citation reference: Lu et al. (2020) [University331

of Illinois/NCSA Open Source License].332
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Jäger, W., & Mikelić, A. (2000). On the interface boundary condition of Beavers, Joseph, and395

Saffman. SIAM J. Appl. Math., 60 , 1111–1127. doi: 10.1137/S003613999833678X396

Jin, Y., Dong, J., Zhang, X., Li, X., & Wu, Y. (2017). Scale and size effects on fluid flow397

through self-affine rough fractures. Int. J. Heat Mass Transfer , 105 , 443–451. doi:398

10.1016/j.ijheatmasstransfer.2016.10.010399

Karra, S., Makedonska, N., Viswanathan, H. S., Painter, S. L., & Hyman, J. D. (2015).400

Effect of advective flow in fractures and matrix diffusion on natural gas production.401

Water Res. Res., 51 , 8646–8657. doi: 10.1002/2014WR016829402

King, J. R., & Cox, S. M. (2001). Asymptotic analysis of the steady-state and403

time-dependent Berman problem. J. Eng. Math., 39 , 87–130. doi: 10.1023/A:404

1004824527547405

Kumar, A., Datta, S., & Kalyanasundaram, D. (2016). Permeability and effective slip in406

confined flows transverse to wall slippage patterns. Phys. Fluids, 28 , 082002. doi:407

10.1063/1.4959184408

Kumar Gunda, N. S., Bera, B., Karadimitriou, N. K., Mitra, S. K., & Hassanizadeh, S. M.409

(2011). Reservoir-on-a-Chip (ROC): A new paradigm in reservoir engineering. Lab410

Chip, 11 , 3785. doi: 10.1039/c1lc20556k411

Layton, W. J., Schieweck, F., & Yotov, I. (2002). Coupling fluid flow with porous media412

flow. SIAM J. Numer. Anal., 40 , 2195–2218. doi: 10.1137/S0036142901392766413

Lu, D., Municchi, F., & Christov, I. C. (2020). The Hydraulic Conductivity of Shaped414

Fractures With Permeable Walls. Zenodo. doi: 10.5281/zenodo.3934416415

McBride, J., & Aly Sergie, M. (2015). Hydraulic Fracturing (Fracking) (Tech. Rep.).416

Council on Foreign Relations. Retrieved from https://www.cfr.org/backgrounder/417

hydraulic-fracturing-fracking418

Mohais, R., Xu, C., & Dowd, P. (2011). Fluid flow and heat transfer within a single419

horizontal fracture in an enhanced geothermal system. ASME J. Heat Transfer , 133 ,420

112603. doi: 10.1115/1.4004369421

Mohais, R., Xu, C., Dowd, P. A., & Hand, M. (2012). Permeability correction factor422

for fractures with permeable walls. Geophys. Res. Lett., 39 , L03403. doi: 10.1029/423

2011GL050519424

Mohais, R., Xu, C., Dowd, P. A., & Hand, M. (2016). Enhanced Geothermal Systems.425

In J. H. Lehr, J. Keeley, & T. B. Kingery (Eds.), Alternative energy and shale gas426

encyclopedia (pp. 265–289). Hoboken, NJ: Wiley. doi: 10.1002/9781119066354.ch27427

Moukalled, F., Mangani, L., & Darwish, M. (2016). The Finite Volume Method in428

Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM R© and429

Matlab. Cham, Switzerland: Springer International Publishing. doi: 10.1007/430

978-3-319-16874-6431

Municchi, F., & Icardi, M. (2020). Macroscopic models for filtration and heterogeneous432

reactions in porous media. Adv. Water. Res., 141 , 103605. doi: 10.1016/j.advwatres433

.2020.103605434

Nicholl, M. J., Rajaram, H., Glass, R. J., & Detwiler, R. (1999). Saturated flow in a single435

fracture: evaluation of the Reynolds Equation in measured aperture fields. Water Res.436

Res., 35 , 3361–3373. doi: 10.1029/1999WR900241437

Nield, D. A., & Bejan, A. (2013). Mechanics of Fluid Flow Through a Porous Medium.438

In Convection in porous media (4th ed., pp. 1–29). New York, NY: Springer Sci-439

ence+Business Media. doi: 10.1007/978-1-4614-5541-7{\ }1440
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Supporting Information Text S1 provides the steps in the derivation of the hydraulic

conductivity presented and discussed in the main text. These steps are included for

completeness and to aid a reader in following the mathematical derivation.

Supporting Information Text S2 describes the OpenFOAM R© solver methodology for

generating the direct numerical simulation data reported in the main text. Text S2 in-

cludes ancillary details about the verification of the simulations (grid independence tests)

and post-processing of the simulation data. Toward these ends, Fig. S1 through S5 are

referenced as part of Text S2.

The OpenFOAM R© solver and post-processing scripts are freely available at the repos-

itory https://github.com/daihui-lu/HydraulicConductivityofShapedFractures,

per the AGU data policy and as stated in the “Data Availability Statement” of the

main text.

Figures S6 and S7 are complementary representations of data and information discussed

in the main text. They are provided for completeness but are not essential to the conclu-

sions in the main text.
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Text S1.

The Beavers–Joseph–Saffman (BJS) (Beavers & Joseph, 1967; Saffman, 1971) partial

slip boundary condition (BC) on the permeable wall is

u∗ = −φ
(
∂u∗

∂z∗
+ ε2

∂v∗

∂x∗

)
= −φ∂u

∗

∂z∗
+O(ε2) at z∗ = ±h∗(x∗). (SI.1)

The slip coefficient φ, which is a dimensionless slip length (i.e., φ = `slip/h0), is an

empirically-measurable quantity that accounts for the actual flow into the porous walls

and their permeability, as discussed in the Introduction of the main text.

Let R̃e = εRe be finite as ε → 0. Then, upon taking the limit ε → 0 of Eqs. (2) from

the main text, Eq. (2a) remains unchanged, and Eqs. (2b) and (2c) become

R̃e u∗
∂u∗

∂x∗
+ R̃e v∗

∂u∗

∂z∗
= −∂p

∗

∂x∗
+
∂2u∗

∂z∗2
, (SI.2a)

0 = −∂p
∗

∂z∗
. (SI.2b)

Now, assume a regular perturbation expansion in R̃e� 1. The velocity field is expanded

as

u∗ = u∗0 + R̃e u∗1 + · · · , (SI.3a)

v∗ = v∗0 + R̃e v∗1 + · · · . (SI.3b)

Substituting Eqs. (SI.3) into Eqs. (SI.2) and neglecting O(R̃e) and higher-order terms,

we obtain the leading-order momentum equations:

0 = −∂p
∗

∂x∗
+
∂2u∗0
∂z∗2

, (SI.4a)

0 = −∂p
∗

∂z∗
, (SI.4b)
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subject to the boundary conditions

∂u∗0
∂z∗

∣∣∣∣
z∗=0

= 0, v∗0|z∗=0 = 0 and u∗0|z∗=h∗ = − φ∂u
∗

∂z∗

∣∣∣∣
z∗=h∗

. (SI.5)

Recall that, by symmetry, we are only solving for the profile in the top half of the fracture.

Therefore, the leading-order solution for the horizontal velocity has the form

u∗0(x
∗, z∗) =

1

2

dp∗

dx∗
z∗2 + C1(x

∗)z∗ + C2(x
∗), (SI.6)

where C1 and C2 are arbitrary (integration) functions of x∗. Since p∗ is independent of

z∗ by Eq. (SI.4b), henceforth we write ∂p∗/∂x∗ = dp∗/dx∗. Imposing the boundary

conditions (SI.5) onto Eq. (SI.6), we obtain

u∗0(x
∗, z∗) =

(
h∗2 − z∗2

2
+ φh∗

)(
−dp

∗

dx∗

)
. (SI.7)

Since the flow is in the direction of positive x∗, dp∗/dx∗ < 0, so we choose to associate

a negative sign with this term in some equations, for clarity, as is standard in the fluid

mechanics literature. Then, the leading-order depth-averaged velocity is

〈u∗0〉(x∗) =
1

h∗(x∗)

∫ h∗(x∗)

0

u∗0(x
∗, z∗) dz∗ =

3φh∗(x∗) + h∗(x∗)2

3

(
−dp

∗

dx∗

)
. (SI.8)

Next, we determine the leading-order vertical velocity. From the conservation of mass

equation,

∂u∗

∂x∗
+
∂v∗

∂z∗
= 0, (SI.9)

we deduce that

∂v∗0
∂z∗

= −∂u
∗
0

∂x∗
=

(
h∗
dh∗

dx
+ φ

dh∗

dx

)
dp∗

dx∗
−
(
z∗2 − h∗2

2
− φh∗

)
d2p∗

dx∗2
. (SI.10)
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Now, integrating both sides of Eq. (SI.10) from 0 to an arbitrary z∗, and using the second

boundary condition in Eq. (SI.5), we find that the vertical velocity is

v∗0(x∗, z∗) =

(
h∗
dh∗

dx
+ φ

dh∗

dx

)
z∗
dp∗

dx∗
−
(
z∗3

6
− h∗2z∗

2
− φh∗z∗

)
d2p∗

dx∗2
. (SI.11)

From Eqs. (SI.2), we obtain the first-order perturbation equation:

u∗0
∂u∗0
∂x∗

+ v∗0
∂u∗0
∂z∗

=
∂2u∗1
∂z∗2

. (SI.12)

Substituting the O(1) solution from Eq. (SI.7) above into Eq. (SI.12), we obtain

∂2u∗1
∂z∗2

=

[(
h∗2

2
+ φh∗

)2

+
z∗4

12

]
dp∗

dx∗
d2p∗

dx∗2
+

(
h∗2 + z∗2

2
+ φh∗

)
(h∗ + φ)

α

ε

(
dp∗

dx∗

)2

,

(SI.13)

subject to homogeneous BCs:

∂u∗1
∂z∗

∣∣∣∣
z∗=0

= 0 and u∗1|z∗=h∗ = 0. (SI.14)

Integrating both sides of Eq. (SI.13) from 0 to an arbitrary z∗, and substituting the

boundary conditions from Eq. (SI.14), we obtain the first-order inertial correction to the

horizontal velocity component:

u∗1(x
∗, y∗) =

[(
h∗2

2
+ φh∗

)2
z∗2 − h∗2

2
+

1

360

(
z∗6 − h∗6

)] dp∗
dx∗

d2p∗

dx∗2

+

[(
h∗2

2
+ φh∗

)
z∗2 − h∗2

2
+
z∗4 − h∗4

24

]
(h∗ + φ)

α

ε

(
dp∗

dx∗

)2

.

(SI.15)

From the latter, we find the depth-averaged velocity correction:

〈u∗1〉 =
1

h∗(x∗)

∫ h∗(x∗)

0

u∗1(x
∗, z∗) dz∗

=

(
3

35
h∗6 +

1

3
φh∗5 +

φ2

3
h∗4
)(
−dp

∗

dx∗

)
d2p∗

dx∗2
−
(

1

5
h∗4 +

1

3
φh∗3

)
(h∗ + φ)

α

ε

(
dp∗

dx∗

)2

.

(SI.16)

To close the problem, we need another constraint. Mohais, Xu, Dowd, and Hand (2012)

provided one solution by assuming a constant permeation velocity vw in a parallel fracture
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(α = 0, h∗ = 1), i.e., v0|z=±h = ±vw (v∗0|z∗=±1 = ±1). If we apply this constraint to the

above analysis, the dimensionless average horizontal velocity becomes

〈u∗〉 =

[
3φ+ 1

3
+ R̃e

(
3

35
+

1

3
φ+

φ2

3

)
3

3φ+ 1

](
−dp

∗

dx∗

)
=

(
3φ+ 1

3

)[
1 + R̃e

(
3

35
+

1

3
φ+

φ2

3

)
9

(3φ+ 1)2

](
−dp

∗

dx∗

)
.

(SI.17)

This solution differs from (Mohais et al., 2012) in that the we have expanded only the

velocity u∗ in powers of R̃e, while Mohais et al. (2012) expanded p∗ as well and obtained

(using our notation):

−dp
∗

dx∗
= 〈u∗〉

{
3

1 + 3φ
− R̃e

[
9(7φ+ 1)

140(1 + 3φ)3
+

(
3 + 6φ

2 + 6φ

)2
]}

. (SI.18)

To the leading order in R̃e, we may use the Taylor series (1 − ξ)−1 = 1 + ξ + O(ξ2) to

rewrite (SI.18) as

〈u∗〉 =

(
3φ+ 1

3

){
1 + R̃e

[
3(7φ+ 1)

140(3φ+ 1)2
+

3(2φ+ 1)2

4(3φ+ 1)

]}(
−dp

∗

dx∗

)
. (SI.19)

Despite the different expansion methods used to obtain Eqs. (SI.17) and (SI.19), the

leading-order terms are the same, i.e., they both yield:

〈u∗〉 =
1

3
(1 + 3φ)

(
1 +

27

35
R̃e

)(
−dp

∗

dx∗

)
+O(R̃e

2
, φ2, φR̃e), (SI.20)

meaning they are asymptotically equivalent at the leading order in φ� 1 and R̃e� 1.

Now, however, the wall permeation velocity vw (and its relation to the pressure gradi-

ent dp/dx) is not necessarily known a priori. To close the problem, we apply the flux

constraint 〈u∗0〉 = 1 to Eq. (SI.8), and we obtain

dp∗

dx∗
= − 3

3φh∗(x∗) + h∗(x∗)2
⇒ d2p∗

dx∗2
=

(9φ+ 6h∗)δ

[3φh∗(x∗) + h∗(x∗)2]2
. (SI.21)
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Substituting the latter results into Eq. (SI.16) and suppressing the explicit notation that

h∗ is a function of x∗, we have

〈u∗1〉 =
h∗3(28φ∗2 + 22φh∗ + 3h∗2)δ

35(3φ+ h∗)2
dp∗

dx∗
. (SI.22)

Finally, from Eqs. (SI.8) and (SI.22), 〈u∗〉 can be reconstituted into a Darcy’s law, as

shown in Eq. (8) in the main text and discussed therein.
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Text S2.

The solution algorithm for the incompressible Navier–Stokes equations [Eqs. (2) in the

main text] used in our direct numerical simulation (DNS) study is SIMPLE (semi-implicit

method for pressure-linked equations) (see, e.g., Moukalled et al., 2016, Ch. 15). In this

study, we set the tolerance for the pressure and velocity components’ residuals to be 10−5

(see the example convergence plot in Fig. S1). The BCs applied in the simulation are

summarized in the schematic in Fig. S2. In particular, note that the BJS BC (SI.1) is,

mathematically, a Robin (or mixed-type) BC. However, within the iterative algorithm,

we reformulated it as a Dirichlet boundary condition to enhance stability and ensure

consistency of fluxes within the pressure iterations.

The BJS BC, as given in the computational paper by Layton, Schieweck, and Yotov

(2002), is essentially a slip condition enforcing a specific value of the velocity field in the

face-planar direction of the boundary cell. In this formulation, the condition does not

alter the velocity normal to the porous walls.

In OpenFOAM R© (Weller et al., 1998; The OpenFOAM Foundation Ltd, 2020) and, more

generally, in the finite volume method (Moukalled et al., 2016), discretization is performed

by summing all the contribution from the volumetric source terms (if present) and fluxes,

looping over all the cell faces. In order to discretize generic differential equations without

any specific knowledge of the form of the fluxes, OpenFOAM R© requires that each flux

is expressed in terms of a face value uf and a face-normal gradient (∇u)f · nf , where

f is a generic face and nf is the vector normal to such face. Therefore, an explicit or

implicit (i.e., matrix coefficients) expression for those two face-based fields is required.
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Boundary faces are no exception. Thus, with reference to Fig. S3, it is necessary to

provide expressions for ub and (∇u)b · n that take into account the BJS BC. In vector

form, the boundary condition reads:

T · ub = −T ·
(
`
∂u

∂n

)
b

, (SI.23)

where T = (I− nn) is the projector on the tangential plane, I is the identity operator,

and ` = `slip is the BJS slip length discussed in the main text.

However, a problem described by the Navier–Stokes equations with a BC of the type in

Eq. (SI.23) is not well posed, since such condition only constrains the face-planar field.

Therefore, it is necessary to specify a condition on the face-normal field. Since the BJS

BC does not provide such a constrain, we assume that all the flow arriving normal to the

boundary leaves the domain. This assumption corresponds to:

n ·
(
∂u

∂n

)
b

= 0 . (SI.24)

In this sense, condition (SI.24) merely correspond to copying the value of the velocity field

in the first cell. In fact, using a linear interpolation scheme one obtains:

n ·
(
∂u

∂n

)
b

≈ n · (ub − uc)

δx
, (SI.25)

which results in:

n · ub = n · uc . (SI.26)

Equation (SI.23) is also discretized using a linear interpolation scheme:

T · ub = −T ·
(
`
ub − uc

δx

)
= T ·

(
`

uc

δx+ `

)
. (SI.27)

The final form of the BC is then implemented as a Dirichlet BC:

ub = n(n · ub) + T · ub = n(n · ub) + T ·
(
`

uc

δx+ `

)
. (SI.28)
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This formulation clearly requires multiple fixed point iterations that, if they converge,

result in the correct calculation of up up to second-order accuracy. For the pressure field,

we employ a fixedFluxPressure BC, which essentially imposes a pressure gradient based

on the flux leaving the domain, and allows the simulation to self-consistently determine

the wall permeation velocity.

Since study steady flow, the initial conditions are only relevant for the convergence

(rather than the accuracy), so they are simply specified as zero velocity and zero pressure.

That is, we assume the fracture is fill with fluid at rest. At the inlet of the fracture (x = 0),

we impose the theoretically computed velocity profile given by Eqs. (SI.7) and (SI.10)

(with dp∗/dx∗ computed from Eq. (SI.16) under the constraint 〈u∗〉 = 1), which has a

non-zero permeation velocity and satisfies the BJS BC at the inlet’s walls (z = ±h0). A

zero-gradient velocity BC is employed across the outlet plane (x = L), and the pressure

there is set to zero gauge pressure (see Fig. S2). We do not consider the case of a closed

fracture, so we do not need to impose a crack-tip condition.

To find the optimal computational grid arrangement for the simulations results pre-

sented in the main text, we ran a series of test cases with different numbers of grid

elements and with different grid resolutions (spacing), as summarized in Table S1. The

simulations can be considered non-dimensional (the fluid’s physical properties are chosen

to fix the dimensionless parameters such as R̃e). To maintain ε, the simulation channel

has length L = 100 and inlet half-depth h0 = 1. From each simulation, we extracted the

velocities at the cross-sectional plane located at x∗ = 0.5. We also extracted the pressure

gradient dp∗/dx∗ variation along the whole channel. Then, we calculated the percent
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change of these quantities with respect to the theoretical values (see above). Finally, the

velocities from the simulations were rescaled by 〈u〉 to be comparable to the theory, since

the constraint 〈u〉 = 1 was imposed in the derivation.

The grid independence study revealed that the optimal choice is 4000 grid elements with

∆x = 0.5 and ∆z = 0.05, as it showed significantly better performance on the permeation

velocity than coarser girds and finer grids did not improve the accuracy notably (see

Fig. S4). The slip velocity and axial pressure gradient showed convergence for 4000 grid

elements, with the error increasing for larger grids. Therefore, we used 4000 grid elements

for all DNS results reported in the main text. Note that a non-uniform grid spacing (see

Fig. S5) was used in the vertical direction to better resolve the flow near the porous walls.
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Figure S1. SIMPLE algorithm’s residuals plot for a sample simulation with α = −10−3,

φ = 5×10−4 and R̃e = 0.01. The tolerance used is 10−5 for both the pressure residual and

each velocity component’s residual. The simulation converges after about 10000 iterations.
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U: zeroGradient
p: FixedValue

z

Inlet Outlet

BJS BC + FixedFluxPressure

BJS BC + FixedFluxPressure

xU: FixedPro�le
p: zeroGradient

Figure S2. Schematic of the OpenFOAM R© boundary conditions used in the numerical

simulations.

n
c b

Figure S3. Illustration of a boundary cell with face centers an face normals. In this

figure, c is the cell center (blue dot) and the blue line represents the boundary. The BJS

BC is applied at point b, corresponding to the center of the boundary face, where δx is

the distance between b and c, and n is the vector normal to the boundary face.
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Figure S4. Grid independence of key flow quantities. Percent difference (relative to

the theoretical solution in the main text) of the wall permeation velocity v∗
(
x∗, h∗(x∗)

)
,

the wall slip velocity u∗
(
x∗, h∗(x∗)

)
, and the axial component of the pressure gradient

dp∗/dx∗, all evaluated at x∗ = 0.5 but using different grids.

Figure S5. Numerical grid showing schematic the non uniform vertical spacing (“bound-

ary layer meshing”). Notice that the grid spacing is scaled in the horizontal direction to

fit the figure.
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Figure S6. Flow-wise variation: Velocity profiles versus fracture depth z∗ at the planes

x∗ ∈ {0.2, 0.5, 0.8}, for α = −10−3, φ = 10−4 and R̃e = 0.01: (a) the horizontal component

u∗(x∗, z∗); (b) the vertical component v∗(x∗, z∗). Solid curves are the theoretical profiles

from Eq. (SI.11), and filled circles with the same colors are the corresponding simulation

results. Profiles are color-coded by their x∗ positions.

July 2, 2020, 12:28pm



LU ET AL.: CONDUCTIVITY OF A FRACTURE WITH PERMEABLE WALLS X - 17

0.00 0.25 0.50 0.75 1.00

x∗

0.000

0.025

0.050

0.075

0.100

v
∗ w

Figure S7. The wall permeation velocity v∗w(x∗) along the channel for R̃e = 0.01.

Colors represent cases with different α and φ values: : α = 0, φ ∈ {0, 5× 10−4, 10−3};

: α = −10−4, φ ∈ {0, 5× 10−4, 10−3}; : α = −5× 10−3, φ ∈ {0, 5× 10−4, 10−3}; :

α = −10−3, φ ∈ {0, 5 × 10−4, 10−3}. Filled circles represent the simulation results, and

solid curves of the same color represent the corresponding theoretical predictions.

Table S1. Information about the grids used to establish grid independence of the

direct numerical simulation results.

Grid arrangement 100× 50 200× 100 400× 200 800× 400

Total grid elements 5 000 20 000 80 000 320 000

∆x resolution 1 0.5 0.25 0.125

∆z resolution 0.02 0.01 0.005 0.0025
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