Minerals are information-rich materials that offer researchers a glimpse into the evolution of planetary bodies. Thus it is important to extract, analyze, and interpret this abundance of information in order to improve our understanding of the planetary bodies in our solar system and the role our planet’s geosphere played in the origin and evolution of life. Over the past decades, data-driven efforts in mineralogy have seen a gradual increase. The development and application of data science and analytics methods to mineralogy, while extremely promising, has also been somewhat ad-hoc in nature. In order to systematize and synthesize the direction of these efforts, we introduce the concept of “Mineral Informatics”. Mineral Informatics is the next frontier for researchers working with mineral data. In this paper, we present our vision for Mineral Informatics, the X-Informatics underpinnings that led to its conception, the needs, challenges, opportunities, and future directions. The intention of this paper is not to create a new specific field or a sub-field as a separate silo, but to document the needs of researchers studying minerals in various contexts and fields of study, to demonstrate how the systemization and increased access to mineralogical data will increase cross- and interdisciplinary studies, and how data science and informatics methods are a key next step in integrative mineralogical studies.