
GEOPHYSICAL RESEARCH LETTERS

Supporting Information for “Exploring a data-driven1

approach to identify regions of change associated2

with future climate scenarios”3

Zachary M. Labe1, Thomas L. Delworth2, Nathaniel C. Johnson2, and

William F Cooke2

1Atmospheric and Oceanic Sciences Program, Princeton University, NJ, USA4

2NOAA/OAR/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA5

Contents of this file6

1. Text S1: Artificial Neural Network Parameters7

2. Text S2: Software Programs and Other Tools8

3. Tables S1 to S29

4. Figures S1 to S1510

5. References11

Corresponding author: Zachary M. Labe (zachary.labe@noaa.gov)

March 19, 2024, 10:23am



X - 2 LABE ET AL.: CLASSIFICATION OF FUTURE CLIMATE SCENARIOS

Text S1: Artificial Neural Network Parameters12

For each classification task (e.g., predicting 5 climate scenarios or 2 climate scenarios) and climate13

variable (temperature or precipitation) (Figure S1), we find a unique artificial neural network14

(ANN) which scores the highest in validation data accuracy. These final architecture details are15

listed in Table S2, and each one is selected by identifying the median accuracy of different ANN16

iterations for a range of network complexities. For networks with similar median skill, we select17

the higher ridge regularization parameter to help reduce overfitting and improve interpretabil-18

ity. The iterations are conducted by randomly selecting different SPEAR ensemble members19

used for training, testing, and validation data and alternating different random initialization20

seeds. This is conducted three times each for the 5-class ANN and five times each for the binary21

ANNs, and these results are shown in Figures S5-S6 and S7-S10, respectively. The relatively22

small number of random iterations for each network is due to the high computational cost of this23

machine learning task (i.e., slow training process for a comprehensive hyperparameter sweep),24

but overall we find that adding more iterations does not change our skill score results (not shown).25

26

Each of the neural networks is fully-connected and receives vectorized maps of temperature or27

precipitation at the input layer that have a size equal to 207,360 units, which is comprised of28

360 latitude points by 576 longitude points. No other information is provided at the input layer29

or during the training process, and therefore the ANN has no direct knowledge of which year is30

associated with each climate map. The output layer contains either two or five nodes depending31

on the classification network (e.g., number of predicted climate scenarios) (Figure S1). All classes32

are balanced with 86 years of annual mean maps input for each scenario (either 1929-2014 or33
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2015-2100). Before inputting any data into the ANN, all climate maps are standardized by sub-34

tracting the mean of the training data and dividing by the training standard deviation. This is35

conducted across all years, relevant climate scenarios, and training ensemble members for every36

grid point.37

38

In short, a neural network training process consists of iteratively updating the model weights and39

biases until the loss function is minimized. For training each ANN, we use 24 ensemble members40

(80% of the data). There are 4 ensemble members then used for validation, and 2 ensemble41

members are used as testing data for independent classification evaluations. We consistently use42

one random initialization seed and the same subsets of individual ensemble members for training,43

testing, and validation for the main results of this study. Skill metrics for these specific ANNs,44

including testing accuracy, recall (proportion of classifications out of all possible samples in a45

given climate scenario class), precision (proportion of climate scenario classifications actually46

from that particular class), and the F1 score (harmonic mean of precision and recall) (Johnson47

& Khoshgoftaar, 2019), are shared in the main text and figures of the manuscript (e.g., Figure48

2). Across all ANNs, we use a batch size of 128, learning rate of 0.0001, a stochastic gradient49

descent optimizer (Ruder, 2016) using Nesterov momentum (0.9) (Nesterov, 1983), a categorical50

cross-entropy loss function, the rectified linear unit (ReLu; Agarap, 2018) for nonlinear transfor-51

mation in the hidden layers, and a softmax activation function applied to the output layer.52

53

To help limit overfitting, we apply several different approaches to each classification network.54

First, we include a ridge regularization (L2) parameter (L2; Friedman, 2012), which acts to55
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penalize larger weights across the input data and subsequently reduces autocorrelation in the56

gridded fields of temperature and precipitation (Sippel et al., 2019; Barnes et al., 2020; Labe et57

al., 2024). We test a number of different combinations of regularization values and ANN archi-58

tectures and then select the L2 separately for each variable and classification network. These59

final values are given in Table S2. Interestingly, we find that ANN classification accuracy is60

more sensitive to the choice of L2, rather than the complexity of the network itself (i.e., number61

of hidden layers and nodes). In general, our networks here are relatively shallow (one to three62

layers) and similar to recent studies applying feed-forward neural networks to climate science ap-63

plications (e.g., Toms et al., 2021; Labe & Barnes, 2022; Martin et al., 2022; Rader et al., 2022).64

Although a slightly deeper ANN is sometimes selected for the binary classification prediction65

problem (Table S2), we acknowledge that this does not necessarily imply that a more complex66

network is necessarily needed given such similar skill is found between architectures and training67

iterations. We further apply early stopping to each training process, which stops model training68

if there is no improvement in validation accuracy (i.e., minimizing the loss function) after 1069

epochs. The network with the best weights is then returned after this technique, and note that70

each ANN trains for no more than 1500 epochs. Lastly, we include a dropout layer after the71

first hidden layer (dropout rate = 0.4), which is another form of regularization that forces the72

ANN to learn more slowly and acts to lessen overfitting on new unseen data (Hinton et al., 2012;73

Srivastava et al., 2014).74

75

To find a more comprehensive introduction to machine learning, we recommend resources pro-76

vided by Goodfellow, Bengio, and Courville (2016) and Russell and Norvig (2021). In addition,77
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overviews specifically related to the atmospheric sciences can be found in Chase, Harrison, Lack-78

mann, and McGovern (2022); Chase, Harrison, Burke, Lackmann, and McGovern (2022); de79

Burgh-Day and Leeuwenburg (2023), including for the use of explainability methods (Toms et80

al., 2020; Flora et al., 2023).81

82

Text S2: Software Programs and Other Tools83

As suggested by Irving (2016) on improving data and method standards in climate science, we84

provide references that document the important computational packages utilized in this work.85

Preprocessing of the large ensemble data was completed using CDO v1.9.10 (Schulzweida, 2019)86

and NCO v5.0.1 (Zender, 2008). Python code for the machine learning models and other sta-87

tistical analysis is available from Labe, Delworth, Johnson, and Cooke (2023). The majority of88

this study uses Python v3.9.13 (Rossum & Drake, 2009) with the Conda v23.1.0 (Anaconda,89

2023) environment and package management system. Specific Python packages that make up90

the majority of the analysis include Numpy v1.22.4 (Harris et al., 2020), SciPy v1.8.1 (Virtanen91

et al., 2020), Scikit-learn v1.1.1 (Pedregosa et al., 2011), TensorFlow/Keras v2.7.0 (Abadi et al.,92

2016; Chollet, 2015), iNNvestigate v2.0.2 (Alber et al., 2019), Matplotlib v3.5.2 (Hunter, 2007),93

Basemap v1.3.6, (Basemap, 2022), CMasher v1.6.3 (van der Velden, 2020), and cmocean v2.094

(Thyng et al., 2016).95
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Table S.1. List of the GFDL SPEAR Large Ensemble experiments (medium resolution

configuration (MED)) evaluated using the neural network framework. More information on

the model can be found at https://www.gfdl.noaa.gov/spear large ensembles/, and it is

comprehensively documented in Delworth et al. (2020).

Experiment Name Climate Scenario Years # Members

SPEAR MED SSP119 SSP1-1.9 2015-2100 30
SPEAR MED SSP245 SSP2-4.5 2015-2100 30
SPEAR MED SSP585 SSP5-8.5 2015-2100 30

SPEAR MED NATURAL Only Natural Forcing 2015-2100 30
SPEAR MED HISTORICAL CMIP6 Historial Forcing 1929-2014 30

SPEAR MED SSP534OS SSP5-3.4OS 2015-2100 30
SPEAR MED SSP534OS 10ye SSP5-3.4OS, but with CO2/CH4 2015-2100 30

mitigation starting 10 years earlier
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Table S.2. Parameters for the artificial neural network (ANN) architecture that is ultimately

selected for each classification network. These choices are determined by identifying the best

performing network after a hyperparameter tuning process conducted for each separate variable

(temperature and precipitation) and sequence of predicted climate scenarios, as shown in

Figures S5-S10. This is done by identifying the combination of ridge regularization parameter

and architecture (i.e., number of layers and nodes) with the highest median categorical accuracy

after comparing several networks with random seeds. See Text S1 for more details.

Artificial Neural Network – Possible Classes Variable # Layers # Nodes Per Layer Ridge regularization (L2)

Historical, Natural, SSP1-1.9, SSP2-4.5, SSP5-8.5 Temperature 1 100 0.1
Historical, Natural, SSP1-1.9, SSP2-4.5, SSP5-8.5 Precipitation 1 100 0.1

SSP2-4.5, SSP5-8.5 Temperature 1 20 0.2
SSP2-4.5, SSP5-8.5 Precipitation 3 100 0.05

SSP1-1.9, SSP2-4.5 Temperature 2 20 0.05
SSP1-1.9, SSP2-4.5 Precipitation 3 100 0.05
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Figure S1. Outline of our approach for classifying maps of climate variables to individual

climate scenarios. (a) A classification ANN that takes inputs of global maps of annual mean

near-surface temperature or total precipitation and then outputs whether each map is from a

historical forcing scenario, a natural forcing scenario, Shared Socioeconomic Pathway (SSP) 1-1.9

(SSP1-1.9), SSP2-4.5, or SSP5-8.5. See Text S1 and Table S2 for the architecture specifications

and hyperparameter choices. (b) As in (a), but for an ANN that only predicts two classes (SSP2-

4.5 or SSP5-8.5). (c) As in (b), but instead predicts either SSP1-1.9 or SSP2-4.5.
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Figure S2. (a) Time series of annual mean carbon dioxide (CO2; parts per million (ppm)) for

the concatenated historical scenario and SSP5-8.5 scenario of SPEAR from 1921 to 2100 (solid

red line; SPEAR MED SSP585), the SSP5-3.4OS scenario from 2015 to 2100 (solid dark green

line; SPEAR MED SSP534OS), and the SSP5-3.4OS 10ye scenario from 2031 to 2100 (dashed

bright green line; SPEAR MED SSP534OS 10ye). The vertical dark green line indicates the

start of mitigation in 2040, and the bright vertical green line indicates the start of mitigation in

2031. (b) As in (a), but for methane (CH4; parts per billion (ppb)). (c) As in (a), but for nitrous

oxide (N2O; parts per billion (ppb)).
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Figure S3. (a) Decadal trends of annual mean temperature (◦C) from 2071 to 2100 for the

ensemble mean of the natural forcing run of SPEAR. The map is calculated by considering the

linear least-squares regression at every grid point in single ensemble members before averaging

all members for the ensemble mean. (b) As in (a), but for the SSP5-8.5 future scenario. (c) As

in (a), but for the SSP1-1.9 future scenario. (d) As in (a), but for the SSP2-4.5 future scenario.

(e-h) As in (a-d), but calculated for fields of precipitation (mm/day).
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Figure S4. As in Figure S3, but for the SSP5-3.4OS future scenario (a,c) and the SSP5-

3.4OS 10ye future scenario (b,d).
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Figure S5. Scores for the total class accuracy of validation data using the 5-class artificial

neural network (ANN) and inputs of global maps of annual mean temperature. (a) The ANN

architecture consists of 1 hidden layer and 5 nodes. Four different L2 regularization values

(0.001, 0.01, 0.1, 5) are compared using this same ANN architecture. Each set of red points

is the distribution of accuracies from 3 ANN iterations (randomized combinations of ensemble

members used for training, validation, and testing and selection of random initialization seeds).

The median accuracy is shown with a blue horizontal line and organized by L2 parameter. (b-l)

As in (a), but for ANN architectures of 1 hidden layer and 20 nodes, 1 hidden layer and 100

nodes, 2 hidden layers of 5 nodes each, 2 hidden layers of 30 nodes each, 2 hidden layers of 100

nodes each, 3 hidden layers of 5 nodes each, 3 hidden layers of 20 nodes each, 3 hidden layers of

100 nodes each, 4 hidden layers of 5 nodes each, 4 hidden layers of 30 nodes each, and 4 hidden

layers of 100 nodes each.
March 19, 2024, 10:23am



LABE ET AL.: CLASSIFICATION OF FUTURE CLIMATE SCENARIOS X - 13

Figure S6. As in Figure S5, but for global maps of annual mean precipitation.
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Figure S7. Scores for the total class accuracy of validation data using the binary ANN

framework (either SSP2-4.5 or SSP5-8.5) and inputs of global maps of annual mean temperature.

(a) The ANN architecture consists of 1 hidden layer and 5 nodes. Eight different L2 regularization

values (0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 5) are compared using this same ANN architecture.

Each set of red points is the distribution of accuracies from 5 ANN iterations (randomized

combinations of ensemble members used for training, validation, and testing and selection of

random initialization seeds). The median accuracy is shown with a blue horizontal line and

organized by L2 parameter. (b-q) As in (a), but for ANN architectures of 1 hidden layer and 20

nodes, 1 hidden layer of 30 nodes, 1 hidden layer of 100 nodes, 2 hidden layers of 5 nodes each,

2 hidden layers of 20 nodes each, 2 hidden layers of 30 nodes each, 2 hidden layers of 100 nodes

each, 3 hidden layers of 5 nodes each, 3 hidden layers of 20 nodes each, 3 hidden layers of 30

nodes each, 3 hidden layers of 100 nodes each, 4 hidden layers of 5 nodes each, 4 hidden layers

of 20 nodes each, 4 hidden layers of 30 nodes each, and 4 hidden layers of 100 nodes each.
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Figure S8. As in Figure S7, but for global maps of annual mean precipitation.
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Figure S9. As in Figure S7, but for the binary ANN framework that predicts either SSP1-1.9

or SSP2-4.5 climate scenarios.
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Figure S10. As in Figure S8, but for the binary ANN framework that predicts either SSP1-1.9

or SSP2-4.5 climate scenarios.
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Figure S11. (a) The ensemble mean of the confidence values (after the softmax operator)

for the ANN with 5 climate scenario classes (historical scenario (purple line), natural forcing

scenario (blue line), SSP5-8.5 (green line), SSP1-1.9 (yellow line), or SSP2-4.5 (red line)) after

making inferences on maps of temperature from the SSP5-3.4OS experiment for 2015 to 2100.

The vertical black line indicates the start of climate mitigation for this experiment (year 2040).

The darker colored lined are denoted for the climate scenario with the highest mean confidence

value in each year, and the remaining classes subsequently have a lighter transparency shading.

(b) As in (a), but for inputting maps of precipitation. (c) As in (a), but for the SSP5-3.4OS 10ye

experiment. The vertical dashed gray line shows the start of mitigation in 2031 for this scenario.

Note that the predictions from 2015 to 2030 are the same as the SSP5-3.4OS experiment in panel

(a) (see Section 2.2). (d) As in (c), but for precipitation.
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Figure S12. (a) The ensemble mean of network confidence values (after the softmax function)

for the ANN with two climate scenario classes (SSP2-4.5 (red line) or SSP5-8.5 (green line)) after

making inferences on maps of temperature from the SSP5-3.4OS experiment for 215 to 2100. The

vertical black line indicates the start of climate mitigation for this experiment (year 2040). The

darker colored lined are denoted for the climate scenario with the highest mean confidence value

in each year, and the remain classes subsequently have a lighter transparency shading. (b) As

in (a), but for inputting maps of precipitation. (e) As in (a), but for the SSP5-3.4OS 10ye

experiment. The vertical dashed gray line shows the start of mitigation in 2031 for this scenario.

Note that the predictions from 2015 to 2030 are the same as the SSP5-3.4OS experiment in panel

(a). See methods in Section 2. (f) As in (a), but for precipitation. (c,d,g,h) As in (a,b,e,f), but

for the binary ANN predicting either SSP1-1.9 (yellow line), or SSP2-4.5 (red line).
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Figure S13. Difference in temperature (◦C) for the ensemble mean of SSP5-3.4OS temperature

predictions for the five years after the transition period in classifications from SSP8-8.5 to SSP2-

4.5 minus the five years before the transition period (i.e., mean of 2063 to 2067 minus the mean

of 2048 to 2052). See also Figure 4a. Statistically significant differences are overlaid with black

stippling after using a two-sided Student’s t test and adjusting for field significance using the false

discovery rate (FDR; Benjamini & Hochberg, 1995; Wilks, 2006, 2016) with an FDR-adjusted

p value less than 0.05. (b) As in (a), but for the ensemble mean of predictions using SSP5-

3.4OS 10ye (i.e., years of 2056 to 2060 minus the mean of 2044 to 2048). See also Figure 4b.

(c) As in (b), but for the five years after the transition period in classifications from SSP2-4.5

to SSP1-1.9 subtracted by the five years before this transition period (i.e., mean of 2084 to 2088

minus the mean of 2069 to 2073). (d-f) As in (a-c), but for maps of precipitation (mm/day)

using transition periods around the years (a) 2064 to 2068 minus 2045 to 2049, (b) 2051 to 2055

minus 2041 to 2045, and (c) 2086 to 2090 minus 2068 to 2072. See also Figure 4c,d.
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Figure S14. (a-e) Explainability composites using the Integrated Gradients method aver-

aged for each climate scenario prediction using the 5-class ANN after inputting yearly maps of

temperature from the SSP5-3.4OS experiment for 2015 to 2100. Thus, there are a total of 2580

possible predictions (N) in the top row (86 years times 30 ensemble members). The number of

times each class was predicted (n) is denoted in the upper-left corner of every map composite.

Gray shaded maps indicate that this climate scenario was never predicted. Positive areas of

relevance (red shading) indicate that the region had a positive contribution to the ANN’s predic-

tion (i.e., pushed the network toward the ultimately predicted climate scenario). Negative areas

of relevance (blue shading) indicate that the region had a negative contribution to the ANN’s

prediction (i.e., pushed the network toward predicting one of the other climate scenario classes).

(f-j) As in (a-e), but for 30 ensemble members of the SSP5-3.4OS 10ye experiment. Note that

the composites for years from 2015 to 2030 are the same as the SP5-3.4OS experiment in (a-e).
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Figure S15. As in Figure S14, but for fields of precipitation.
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