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Key Points:

e The National Water Model (NWM), in general, under-estimates snow wa-
ter equivalent due to both model errors and inputs errors.

o Using observed precipitation and bias-corrected air temperature improved
the general downward bias in NWM snow water equivalent.

e NWM snow processes were further improved by using a dew-point based
rain-snow separation scheme.

Abstract

We compared snowfall, and snow water equivalent (SWE) accumulation and ab-
lation simulations from the WRF-Hydro model with the National Water Model
(NWM) configuration against observations at a set of representative point loca-
tions from Snow Telemetry (SNOTEL) sites across the western U.S. We focused
on the model’s partitioning of precipitation between rain and snow and selected
sites that span the variability of the percentage of rain on snow precipitation
events. Our results show that the NWM generally under-estimates SWE and
tends to melt snow earlier than observations in part due to errors in the pre-
cipitation and air temperature inputs. We reduced some of the observed and
modeled discrepancies by using SNOTEL snow-adjusted precipitation and re-
moving air temperature biases, based on observations. These input changes
produced an average 59% improvement in the peak SWE. Modeled peak SWE
was further improved using humidity-dependent rain-snow-separation. Both
dew point and wet-bulb parameterizations were evaluated, with the dew-point
parameterization giving better overall improvement, reducing the bias in SWE
by 18% compared to the NWM air temperature-based scheme. This modifica-
tion also improved melt timing with the number of site years having difference
between modeled and observed date of half melt from peak SWE six or more
days reduced by 6%. These SWE magnitude and timing improvements varied
when analyzed for each rain-on-snow percentage class, with generally better re-
sults at sites where most precipitation events fall either as snow or as rain, and
less improvement when there is a mix of snow and rain-on-snow events.

Plain Language Summary

In snow dominated regions, modeling the partitioning of input precipitation be-
tween rain and snow is important for flood prediction and water resources man-
agement. The National Water Model (NWM) includes equations to model this
partitioning and the resultant snow accumulation and melt in national scale wa-
ter forecasts. This paper compared NWM snow partitioning with observations
at Snow Telemetry sites and found that the NWM generally under-estimates
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snow water equivalent (SWE) and tends to melt snow earlier than observations.
This was due to both errors in the precipitation and air temperature inputs
and inaccuracies in the precipitation partitioning. We identified that improv-
ing inputs of temperature and precipitation has the potential to produce 59%
improvement in the modeling of peak SWE. We also evaluated alternative pre-
cipitation partitioning approaches based on dew point or wet bulb temperature,
rather than simply air temperature, and found that the dew-point based ap-
proach that we evaluated reduced the bias in SWE by 18%. There were also
improvements in the predicted melt timing that accrued from SWE magnitude
being better modeled. The findings thus document the benefits for improved
model inputs and better physically-based process representations and suggest
these as opportunities for the operational forecasts to be improved.

1 Introduction

Snow models are a central component of hydrologic forecasting systems when
snow and snowmelt are the dominant influence on the regional streamflow.
Decades of model development, combined with advances in technology and soft-
ware engineering, have gradually enabled snowmelt runoff models to evolve into
large-scale, high-resolution, and physically-based distributed models such as the
National Oceanic and Atmospheric Administration (NOAA) National Water
Model (NWM) in the U.S. (https://water.noaa.gov/about/nwm). This evolu-
tion was driven in part by the need to shorten the time interval for streamflow
forecasts; to accommodate the shift from simple temperature-index based to
energy balance methods; and to enable predicting the effects of anthropogenic
and environmental changes such as those caused by land-use change or climate
change on large heterogeneous basins (DeWalle & Rango, 2008). The NWM is
now part of NOAA’s water resources information system that provides timely
hydrologic forecasts and data to support and inform emergency services and
water resources decisions (https://water.noaa.gov).

To provide accurate predictions of seasonal water supplies over the continental
U.S. under future changing conditions, the NWM, operated by the National
Water Center, uses an energy balance model (Noah-MP) to solve the surface
energy and water balances based on first principles of conservation of energy
and mass to calculate snowmelt (Gochis, Barlage, Cabell, Dugger, et al., 2020;
Niu et al., 2011). In our previous work, we compared the Noah-MP models as
implemented in the NWM version 2.0 retrospective simulations with snow obser-
vations at Snow Telemetry (SNOTEL) sites over the western U.S. and showed
that the NWM generally underestimated snow water equivalent (SWE) early in
the season and became progressively more biased later in the season compared
to observations at SNOTEL sites, in part due to errors in inputs, notably pre-
cipitation and air temperature (Garousi-Nejad & Tarboton, 2022a). However,
the discrepancies in model inputs were not the only sources of SWE differences.
The SWE bias was persistent when the model precipitation input was relatively
(statistically) close to the observed precipitation, suggesting that there were chal-
lenges in the current snow parameterization within the specific configuration of
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Noah-MP as implemented in the NWM version 2.0 retrospective configuration.
We identified the current air temperature-dependent rain-snow-separation (RSS)
parameterization within Noah-MP as a potential source of model error in SWE
modeling, because this has been reported by other studies as a limitation of
Noah-MP as used in the NWM (Chen et al., 2014; Liu et al., 2017; Wang et
al., 2019). More generally, the accurate representation of RSS in hydrological
models is important as the proportion of rainfall versus snowfall across moun-
tainous regions changes, altering snowpack dynamics, streamflow timing and
amount, and frequency of rain-on-snow events (Bales et al., 2006; Barnett et
al., 2005; Gillies et al., 2012; Harpold et al., 2017; Knowles et al., 2006). Thus,
research that evaluates the NWM performance and enhances model output ac-
curacy through more realistic inputs and physics representations is essential.
This motivated our focus on the NWM'’s partitioning of precipitation between
rain and snow at sites selected to span the variability of precipitation events
that were rain on snow present in the western U.S.

We addressed the following questions in this study:

e Question 1. To what degree are discrepancies in NWM SWE and RSS
predictions due to input errors and how much could they potentially be
improved if inputs were better?

¢ Question 2. How well does the NWM RSS (rainfall and snowfall separa-
tion) parameterization work in comparison to SNOTEL observations?

e Question 3. Do any other RSS parameterization methods yield more
accurate snowfall compared to SNOTEL observations?

¢ Question 4. Does incorporating a statistically better RSS scheme into
the NWM translate into appreciable improvements in modeling of SWE?

e Question 5. How do improvements in modeled SWE vary over sites
grouped according to the percentage of precipitation events that are rain-
on-snow?

In what follows, we first review prior literature used in this work (Section 2). We
then describe the data and model we used (Section 3) followed by the method
and numerical experiment design developed to answer our research questions
(Section 4). We then compare gridded model results from each scenario simu-
lated with point-scale measurements across the western U.S. (Section 5). Fol-
lowing that, we discuss limitations and uncertainties associated with the data
and model providing perspective on the results presented and identifying areas
for input data improvement and model enhancements (Section 6). Finally, we
summarize our conclusions (Section 7) and provide links to data we used and
codes we developed.

2 Background

Seasonal mountain snowpack has key implications for mid-to high-latitude re-
gions such as the western U.S., storing water in the winter when snow falls



and then releasing it as runoff in spring and summer when the snow melts
and contributes (up to about 70%) to the total runoff in these regions (Li et
al., 2017). The recently published Intergovernmental Panel on Climate Change
(IPCC) report indicates a 0.29 million km? per decade decline in April snow
cover extent—commonly used as an indicator of water supply forecast for the
following spring and summer season—in the Northern Hemisphere (Gulev et
al., 2021). It is projected that seasonal snowpack decline will decrease water
supplies for about 2 billion people this century (Mankin et al., 2015). In the
western U.S., an average 30% decrease in areal extent of winter wet-day temper-
atures conducive to snowfall is projected (Klos et al., 2014). Given snowpack
decline due to climate warming and its impact on water resources, accurate pre-
diction of spring snowmelt will become increasingly important as the growing
population demands more water and as operational agencies have to manage
water under hydroclimate conditions outside of the historical record (Bhatti et
al., 2016; Gergel et al., 2017; Mote, 2003; Mote et al., 2005).

Continued changes in the precipitation phase (rainfall, snowfall, or a mixture of
both) are expected to alter snowpack dynamics, streamflow timing and amount,
and frequency of rain-on-snow events; and thus present a new set of challenges
for hydrologic modeling (Harpold et al., 2017; Musselman et al., 2018). RSS is
one of the most sensitive parameterizations in simulating cold-region hydrolog-
ical processes (Loth et al., 1993) and has a notable influence on the success of
snowmelt models (Rutter et al., 2009). Despite advances in snowmelt modeling,
most models rely on empirical algorithms based on air temperature to separate
precipitation into rain and snow. For example, see the model comparison by
Wen et al. (2013). These methods are empirical and ignore some of the physical
processes involved in atmospheric formation of rain or snow where humidity and
latent heat exchanges between a hydrometeor and the surrounding air play a
role (Feiccabrino et al., 2015; Jennings et al., 2018). Such physical process rep-
resentations warrant consideration if models are to improve their predictability
by reducing their dependence on empirical parameterizations.

Inaccurate RSS may result in errors in SWE, snow depth, and snow cover dura-
tion at both point and basin scale (Harder & Pomeroy, 2014; Wang et al., 2019)
because snow can be produced in air temperatures slightly above freezing if the
wet-bulb temperature (the temperature to which air is cooled by evaporating
water into the air at constant pressure until it is saturated) is below about -2 °C
(Stull, 2011). Ultimately, these errors propagate into the hydrological response
(runoff and streamflow) of the watershed and land-atmosphere energy exchanges
(Jennings et al., 2018; Mizukami et al., 2013). Some studies suggest that using
dew point temperature, wet-bulb temperature, or psychrometric energy balance
based RSS schemes, which consider the impact of atmospheric humidity in the
energy budget of falling hydrometeors, improves the modeling of precipitation
phase and the accuracy of partitioning between rain and snow (Behrangi et al.,
2018; Harder & Pomeroy, 2013; Marks et al., 2013).

While there has been significant prior work on RSS, our goal was to evaluate



the NWM snow model performance across a set of SNOTEL sites that are
representative of various precipitation regimes (dominantly rainfall or snowfall,
or rain-on-snow) across the western U.S.; and to identify where model biases can
be removed by using a more physically accurate RSS method. The RSS methods
that we used here include the air temperature-based method from Jordan (1991)
currently used in the NWM, the air temperature-based method developed by the
U.S. Army Corps of Engineers (1956) as used in the Utah Energy Balance (UEB)
model (Tarboton & Luce, 1996), the dew point temperature-based method used
in the SNOBAL model (Marks et al., 1999), and the wet-bulb temperature-
based approach evaluated for the Variable Infiltration Capacity (Behrangi et
al., 2018) and Noah-MP (Wang et al., 2019) models.

3 Data and Model

We used SNOTEL data, NWM input data, and an offline version of the WRF-
Hydro model that serves as the basis for the NWM to evaluate different RSS
parameterizations and their corresponding impact on the modeled SWE as de-
tailed in the three subsections that follow.

3.1 SNOTEL Data

For more than 60 years, the automated SNOTEL network, currently consisting
of 808 sites across the western U.S., has measured SWE using a pressure sensing
snow pillow, precipitation (P) using a storage-type gage or tipping bucket, and
air temperature (Ta) using a shielded thermistor sensor to monitor winter snow
and inform spring and summer water supply forecasts. Our study used the daily
snow-adjusted precipitation (start of the day) that accounts for uncertainty as-
sociated with snowfall measurements being subject to under-catch (Mote, 2003;
Sun et al., 2019). We also used daily average air temperature and daily SWE
(start of the day) at SNOTEL sites as a reference dataset to evaluate: (1) the
snowfall fraction estimated from four different RSS parameterization methods,
and (2) the accuracy of the NWM inputs (precipitation and air temperature)
and outputs (SWE).

We recognize there are uncertainties associated with SNOTEL measurements
that need to be considered in our analysis. However, SNOTEL provides the
most comprehensive dataset we could obtain to explore our research questions
because of its long, historically continuous records of P, Ta, and SWE across
the western U.S. For our analysis, we focused on SNOTEL sites where complete
daily data were available for water years 2008-2020. This led to a set of 683
SNOTEL sites. Even though it would have been technically possible to set up
simulations and run WRF-Hydro for all 683 sites, it would have been compu-
tationally prohibitive, and we decided to focus on a representative set of them
for this research. To select a representative subset of SNOTEL sites, we used
a random sampling within rain-on-snow classes that led to a group of 33 sites
that spanned site rain-on-snow variability, described later, and for which we set
up simulations and ran WRF-Hydro.

3.2 National Water Model Input Data



The NWM surface physiographic and atmospheric meteorological inputs (1 km
spatial resolution and hourly temporal resolution) were made available to us
by the NCAR team (D. Gochis and A. RafieeiNasab, personal communica-
tion, March 16, 2021) as a read only directory in the NCAR Cheyenne high-
performance computer. The surface physiographic inputs included the model
domain; initial conditions such as soil moisture, soil temperature, and snow
states; geospatial inputs (such as topography, soil properties, land cover type,
etc.) and parameter files (such as calibrated snowmelt factor used in calcula-
tion of the snow-covered area fraction). The meteorological inputs included the
Analysis of Record for Calibration reanalysis dataset developed by NOAA Na-
tional Weather Service (Kitzmiller et al., 2018; National Weather Service, Office
of Water Prediction, 2021), hereafter referred to as AORC. AORC forcing data
included incoming short- and longwave radiation, specific humidity, wind, air
pressure, air temperature, and precipitation rate.

For each of the selected 33 SNOTEL sites we retrieved all required inputs for a
four grid cell 2 km by 2 km area containing the SNOTEL site (Garousi-Nejad
& Tarboton, 2022b). Then, we transferred data from Cheyenne to Expanse,
an eXtreme Science and Engineering Discovery Environment (XSEDE) super-
computer (Towns et al., 2014) where we ran WRF-Hydro. The first water year
(2008) was used for model spin up and, while the SNOTEL data extended to
2020, NWM forcing data was not available for 2020 at the time this work was
done. Therefore, we used the period 2009-2019 for model comparisons.

3.3 WRF-Hydro National Water Model Configuration Code

The NWM is a physically-based, distributed model based on the WRF-Hydro
modeling framework (Gochis, Barlage, Cabell, Dugger, et al., 2020) that
provides operational hydrological forecasts at 1 km spatial and hourly tem-
poral resolution for snow across the entire continental U.S. The NWM has
evolved beginning from version 1.0 (August 2016) to the current version
2.1 (October 2021) with improved soil/snow physics, calibration, and data
assimilation. The core of the NWM system is WRF-Hydro, developed by
the National Center for Atmospheric Research (NCAR), which consists of
different modules with different geospatial representation (e.g., grids in the
land surface and terrain routing modules connected to stream reaches in
the channel routing module) and resolution (e.g., 1 km in the land surface
module versus 250 m in the terrain routing module) to simulate land and
atmosphere energy/water fluxes and storages. Details about the NWM and
WRF-Hydro are available in Gochis, Barlage, Cabell, Casali, et al. (2020).
We obtained the Fortran source code from the WRF-Hydro GitHub webpage
(https://github.com/NCAR/wrf_hydro_nwm_ public/releases/tag/v5.1.1,

version 5.1.1 corresponding to the NWM version 2.0 available at the time this
work started (Gochis, Barlage, Cabell, Dugger, et al., 2020). Releases beyond
this to date include WRF-Hydro version 5.1.2 and version 5.2.0, both available
in GitHub(https://github.com/NCAR/wrf_hydro_nwm_ public/releases), but
to our understanding the rain and snow separation parameterization that we
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evaluated has not been changed in these releases.

In this study, we focused on the land surface module of the NWM, which is a
particular configuration of the Noah-MP model (Niu et al., 2011), where all snow
processes are simulated within a 1-dimensional vertical column over 1 km spatial
resolution grid cells. The Noah-MP module uses up to three snow layers to solve
the energy balance (Equation 1) and water balance (Equation 2) between the
snowpack, atmosphere, and the ground surface. The snow state variables for
each snow layer are the mass of liquid water, the mass of ice, layer thickness,
and layer temperature.

%:QSW+Q1W+Q1t+QSn+QQ+Qp+Qm (]-)
dSWE:P - M—E (2)

dt snow

where U is the snowpack internal sensible and latent heat storage, t is time,
Qg is net shortwave radiation flux, Q,, is net longwave radiation flux, Qy
is convective latent heat of vaporization/sublimation flux, Q,, is convective
sensible heat flux, Q, is conductive ground heat flux, Q,, is heat of fusion
energy flux due to meltwater leaving the snowpack (which is solved for as a
residual in Equation 1), P, is the snowfall (in terms of water depth) that
reaches the ground after adjusting for canopy interception, M is the meltwater,
and E is snow sublimation/frost (Shuttleworth, 2012).

4 Methods and Numerical Experiment Design
4.1 Input Data Evaluation

The first step in our work was to compare the NWM inputs (elevation, P, and T,
for water years 2009-2019) with observations at representative SNOTEL sites.
Results showed biases in model inputs that needed to be considered in the anal-
ysis. There were discrepancies of up to approximately 250 m between model
elevation and the elevation of SNOTEL sites (Figure 1a). This may be a con-
tributor to differences observed in the daily mean air temperature comparison
due to the lapse rate (Figure 1b).
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Figure 1. (a) NWM elevation inputs compared to SNOTEL site elevations
(each point is a SNOTEL site), (b) AORC mean daily temperature compared to
mean measurements at SNOTEL sites (each point is a day for a SNOTEL site
during the 2009-2019 water years) excluding incorrect AORC air temperatures
(see Figure 2), and (c) AORC annual precipitation compared to observations at
SNOTEL sites (each point represents total precipitation during a water year at
a SNOTEL site). Statistical metrics on graphs are coefficient of determination
(1?), Spearman’s rank correlation (Spearmanr), root mean square error (RMSE),
Nash Sutcliffe efficiency (NSE), and bias (Bias) for which equations are provided
in Table 1.

For some years, we found artifacts in the air temperature inputs at three SNO-
TEL sites (Figure 2). After excluding these periods, we observed a negative
bias (-0.53 °C) in AORC air temperatures compared to SNOTEL measurements
(Figure 1b), meaning that T, input to the NWM is generally colder than ob-
servations. There were no artifacts in AORC precipitation for the period of
our study; however, we observed a downward bias of about -55 mm (Figure 1c)
when comparing the annual precipitation (accumulated from October 1 through
September 30 for each water year at each representative SNOTEL site). These
observations were the basis for designing our initial numerical experiments (sce-
narios), where we attempted to reduce biases in model inputs (details are pro-
vided in Scenario 2 and Scenario 3 in Section 4.5).
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Figure 2. AORC and SNOTEL daily mean air temperature during 2009-2019
water years at (a) Blind Bull Sum SNOTEL site in Wyoming, (b) Clear Creek
#1 SNOTEL site in Utah, and (c) Seine Creek SNOTEL site in Oregon with
gray regions showing periods that AORC air temperature appear to be obviously
incorrect. We considered these as artifacts and excluded these periods from our
analysis.

4.2 Snow Rain Ratio

Evaluating simulated snowfall amounts from different RSS schemes is challeng-
ing due to the lack of reliable ground truth observations of the precipitation
phase (Harpold et al., 2017). The Natural Resources Conservation Service
(NRCS) reports a snow rain ratio (SNRR) for SNOTEL sites that estimates
the fraction of precipitation that falls as snowfall calculated as the ratio of daily
SWE increases to daily P for the same period. In theory, the SNRR should
range from 0 to 1, with 1 indicating all precipitation falls as snowfall. We
obtained daily SNRR values from NRCS Report Generator version 2 for 683
SNOTEL sites for water years 2008-2020 using a Jupyter Notebook script we




developed (Garousi-Nejad & Tarboton, 2022b). We realized that this ratio was
sometimes above 1 (100%) because it was calculated based on the daily P mea-
surements which may be less than accumulated daily SWE. This may occur
due to either precipitation measurement under-catch or processes that result in
additional SWE being measured, such as snow drifting. The NRCS provides a
snow-adjusted daily P estimate to account for this. We obtained this adjusted
P and recalculated SNRR to get values within the range 0-1 (Algorithm 1). We
used the computed SNRR values as a validation dataset to compare different
rain/snow separation parameterizations. We acknowledge that there are un-
certainties associated with this SNRR approach that may impact our analysis.
However, this indicator was the best option available to us for evaluating RSS
methods given the western-U.S.-wide dataset that we use in this study.

@ >p(- 0) * @ Algorithm 1. Snow rain ratio (SNRR) Calculation. P is the
total precipitation and SWE is the snow water equivalent at the start of day.
The index t and t+1 indicate the start and the end of the period (day).

IfpP, > 0:

// If there is an increase in SWE during the period,
// compute SNRR

If SWE,,, - SWE; > 0:

SNRR, = (SWE,, - SWE,) / P,

else:

// If there is a decrease in SWE during the period,
// SNRR should be 0 due to the rain melting the snow
SNRR, =0

else:

// SNRR cannot be computed because there

// is no precipitation to separate into rain and snow

SNRR, = nan

4.3 Representative SNOTEL Site Selection

We used the computed SNRR values to identify precipitation events that were
rain-on-snow and classified sites based the percentage of rain-on-snow events
they received to obtain a set to work with that spanned and is thus represen-
tative of the variability of rain-on-snow event percentages present across the
western U.S. We designated precipitation events with SNRR >= 0.95 as snow-
fall and events with SNRR < 0.95 as rain-on-snow. We, thus, took rainfall or
mixed rainfall and snowfall events for which SNRR < 0.95 as having a quantity
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of rain sufficient to be called rain-on-snow. We calculated the percentage of pre-
cipitation events that were rain-on-snow (ROS%) for each SNOTEL site over
water years 2008-2020 using a script we developed (Garousi-Nejad & Tarboton,
2022b). For the 683 SNOTEL sites, ROS% values ranged between 30-100% (Fig-
ure 3a). We classified sites according to ROS% into seven groups each spanning
a 10% class range. The largest number of sites fell in the 50-60% class, and the
least frequent group (three sites) had ROS% between 90-100%.
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Figure 3. (a) Histogram of the percentage of historical Rain-on-Snow (ROS%)
events inferred from the computed SNRR over SNOTEL sites (total of 683
sites) with data for 2008-2020 water years across the western U.S. (b) Location
of representative SNOTEL sites selected based on the ROS%.

To select the representative set of SNOTEL sites to work with, we randomly
selected five sites from each class with ROS% between 30-90% and selected all
members within the 90-100% class because it contained only three SNOTEL
sites using a script we developed (Garousi-Nejad & Tarboton, 2022b). This
yielded a subset of 33 SNOTEL sites with different ROS% values spread across
the western U.S. (Figure 3b). We obtained observed P, T,, and SWE for
these selected SNOTEL sites from NRCS Report Generator version 2 using
Jupyter Notebook data retrieval scripts we developed (Garousi-Nejad & Tar-
boton, 2022b).

4.4 Evaluation of Rain-Snow-Separation (RSS) Parameterizations

We evaluated four different RSS schemes, including two air temperature-
dependent and two humidity-dependent approaches, commonly used in
hydrological models. The air temperature-based RSS schemes were from the
U.S. Army Corps of Engineers, (U.S. Army Corps of Engineers, 1956; hereafter
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USCAE (1956)) as used in the UEB snow model (Tarboton & Luce, 1996),
and Jordan (1991) as used in the current version of the NWM Noah-MP. The
USACE (1956) T, based method separates precipitation into rain and snow
based on two temperature thresholds. All precipitation is rainfall if the air
temperature is greater than or equal to 3 °C, snowfall if the air temperature
is less than or equal to -1 °C, and varies linearly for air temperature between
-1 and 3 (Algorithm 2). The Jordan (1991) T, based method uses multiple
thresholds (0.5, 2, and 2.5 °C) to separate precipitation into rain and snow
(Algorithm 3). Both these methods only consider air temperature (Figure 4a,
4b).

@ >p(- 0) * @ Algorithm 2. Rain snow separation (RSS) scheme based on
USACE (1956). T, is air temperature in degree C and f, is the fraction of
snowfall.

IftT, >=3:

f,=0

a

else if T, <=-1:
f.=1
else:

fg=1-(Ta- (1)) / (3-(-1)

@ >p(- 0) * @ Algorithm 3. Rain snow separation (RSS) scheme based on
Jordan (1991). T, is air temperature in degree K, T is the freezing point in
degree K, and f, is the fraction of snowfall.

// Physical constants and parameters required

T, = 273.16

ItT, >=T; + 2.5
£, =0

else:

f.=1

it T, <=T; + 0.5
f.=1

else if T, <= Ty + 2:
f,=1-(-54.632 4+ 02T,)
else:

f.=0.6

12
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Figure 4. Snowfall fraction computed for the 33 SNOTEL sites using the
observed precipitation and the NWM inputs (including air pressure, specific
humidity, and bias-corrected air temperature) based on (a) USACE (1956), (b)
Jordan (1991), (c) Marks et al. (1999): discrete version, (d) Marks et al. (1999):
continuous version and (e) Wang et al. (2019) RSS methods. The plots on the
top row show the relationship between snowfall fraction as a function of air
temperature (T,), dew point (Ty), or wet-bulb (T,,) temperature depending on
the method. The plots on the bottom row illustrate the relationship between
snowfall fraction and air temperature for all methods. The colors represent data
with different relative humidity values.

The humidity-based RSS approaches were from the dew point temperature
method (Marks et al., 1999) as used in the SNOBAL model and the wet-bulb
temperature based method evaluated for Noah-MP (Wang et al., 2019). Dew
point temperature (T,), a measure of the vapor pressure of the air (Equation
3), is defined as the temperature to which air must cool at constant pressure
for it to saturate, without any moisture addition/removal (Marks et al., 2013;
Shuttleworth, 2012):

_ In(e)+0.49299
T, = 0.0707—0.00421 In(e) (3)

where e is the vapor pressure of the air in kPa and T is the dew point temper-
ature in °C.
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Marks et al. (1999) described a dew point based approach that uses discrete
steps to partition precipitation into rain and snow (Figure 4c, Algorithm 4). The
discrete stepped nature of the approach seemed limiting as there do not appear
to be physical reasons for such step changes. We thus developed a continuous
version of Marks et al’s (1999) method to provide a smoother function of Ty
(Figure 4d).

@ >p(- 0) * @ Algorithm 4. Rain snow separation (RSS) scheme based on
Marks et al. (1991). e is the vapor pressure of the air in kPa, P_; is the air
pressure in kPa, q is specific humidity kg/kg, T, is dew point temperature in
degree C, and f, is the fraction of snowfall.

// Compute the vapor pressure of the air from

// Shuttleworth (2012) Equation 2.8

e= (P, q) / (0.622 4+ 0.378 q)

// Compute Ty from Shuttleworth (2012) Equation 2.21
T, = (In(e) + 0.49299) / (0.0707 - 0.00421 In(e))

// Discrete version: compute snowfall fraction based on
// Tq from Marks et al. (1999) Table 1.

If Ty <-0.5:

f,=1

else if -0.5 <= T4 < 0:

f, =0.75

else if 0 <= T4 < 0.5:

f, =0.25

else:

f,=0

// Continuous version: compute snowfall fraction using a

// continuous version of Marks et al. (1999) Table 1

If Ty <-0.5:

f.=1

else if -0.5 <= Ty < 0.5:
£, =05-Ty

else:

f.=0
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Wet-bulb temperature (T,) is defined as the temperature to which air is cooled
by evaporating water into the air at constant pressure until it is saturated (T~
T4 ~T,,). According to thermodynamic laws, the air is thermally isolated in
saturated environments. In other words, as the air cools to get to the saturation
point, the heat (internal energy) removed from the air due to the cooling process
must equal the latent heat required to evaporate water (from the hydrometeor
surface in a precipitation event) to raise the specific humidity of the air to
saturation (Shuttleworth, 2012). This can be mathematically represented as
Equation (4) which can be reformulated as the wet-bulb equation (Equation 5):

pav (Ta - Tw) Cp = Pa [qsat (Tw) - Cﬂ \4 (4)

C Pair
es, (T,) —e= 5o (T, — T) (5)

where p, is air density (kg/m3), V is volume of air (m?®), T, is (dry-bulb) air
temperature (K), 7, is wet-bulb temperature (K), c, is specific heat at constant
pressure for air (1.04 kJ/kg K), g, (T,) is saturated specific humidity of air at
T, (kg/kg), q is specific humidity of air (kg/kg), A is latent heat of vaporization
(2.5 MJ/kg), es,, (T,,) is the saturated vapor pressure of air at T, (kPa), and P;,
is air pressure (kPa). Equation (5) does not have an analytical inverse solution
to calculate the wet-bulb temperature from air temperature and humidity (Stull,
2011), so was solved numerically using a Newton-Raphson scheme. We then used
the sigmoid function of Wang et al. (2019) to calculate RSS (Algorithm 5).

@ >p(- 0) * @ Algorithm 5. Rain snow separation (RSS) scheme based on
Wang et al. (2019). T is freezing point in degree K, cp is heat capacity of
vaporization in j/kg, L, is latent heat of vaporization in j/kg, NITER is number
of iterations to iteratively solve the T, equation, T, is air temperature in degree
K, P, is air pressure in Pa, q is specific humidity in kg/kg, gamma is the
psychrometric constant in Pa, e is the vapor pressure of the air in Pa, es, is the
saturated vapor pressure at T, in Pa, RH is relative humidity, T, is wet-bulb
temperature in degree C, es,, is the saturated vapor pressure at T, in Pa, and
fs is the fraction of snowfall. Note that constant values are the same as used in
the NWM Noah-MP code.

// Physical constants and parameters required

T, = 273.16
cp = 1004.64
L, = 2.5104E06
NITER = 20

Tc =T, - Ty // Kelvin to Celsius
gamma = (cp P,;.) / (0.622 L,)
e = (P, q) / (0.622 + 0.378 q)
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es, = 610.8 exp ((17.27 T.) / (237.3 + T.))

RH = e/es
if RH > 100:
T, =T,

es,, = 610.8 exp ((17.27 T,,) / (237.3 + T,))

else:

T, = Tc -5 // First guess for T, to start the iterative method
for i in range (1, NITER): // Use Newton-Raphson method:
es,, = 610.8 exp ((17.27 T,,) / (237.3 + T,,))

F=T,-T,+ (1/gamma) (es, —e)

Foim =1+ (1 / gamma) (es,) [17.27 / (237.3 + T,) - (17.27 T,) / (237.3 +
T.) **2]

T, =T, -F /F,, // Update T,
// Check the stopping criteria

if ABS (F / Fpim) <= 0.01:
break
T, = max (-50, T)

// Compute fs using Wang et al. (2019) approach
A = 6.99%10%*(-5)

B=2

C =397

f,=1/ (1 +Aexp (B(T, + QC)))

4.5 RSS Modeling Experimental Design

We developed a set of modeling scenarios to answer the research questions given
earlier. For each of the 33 representative SNOTEL sites selected, we used the
WRF-Hydro version 5.1.1 NWM configuration in the following scenarios:

1. Base scenario with AORC inputs. The hourly AORC forcing data
was used to simulate snow processes from January 2008 to September 2019
(with the first nine months being set aside as model spin up) over 33 grid
cells containing the representative SNOTEL sites. We call this scenario
the base scenario as we kept all inputs and model settings the same as
those used in the operational NWM version 2.0. The outputs that we
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evaluated are hourly snowfall (from the Jordan (1991) RSS scheme) and
SWE values.

. Replacing AORC precipitation with observations from SNOTEL
(Observed precipitation scenario). Scenario 2 was the same as the
base scenario except for the input precipitation. In our preparation step
(Section 3.3), we showed a downward bias for AORC precipitation com-
pared to observations at SNOTEL sites. To isolate the effects of AORC
precipitation biases on modeled snowfall and SWE, we used the SNOTEL
observed precipitation as supplemental precipitation to run the model.
This means that the model used all other AORC inputs, but the precip-
itation data were read from the additional forcing inputs. To generate
supplemental precipitation input files, we followed the steps described in
Gochis et al. (2020). We resampled observed daily precipitation into
hourly precipitation by dividing the total daily precipitation from SNO-
TEL sites equally into 24 hours using scripts we developed (Garousi-Nejad
& Tarboton, 2022b).

. Replacing AORC air temperature with bias corrected air tem-
perature based on SNOTEL on top of the precipitation adjust-
ments of Scenario 2 (Bias-corrected temperature scenario). Since
we observed a negative bias in AORC air temperature compared to SNO-
TEL observations, we designed Scenario 3 to diminish the impact of errors
in air temperature on the modeled snowfall and SWE. For each SNOTEL
site we computed the average difference in daily temperature for the com-
mon data period (12 years) and used this difference to adjust the AORC
hourly temperature inputs. This one difference value thus served as a bias
correction offset for each representative SNOTEL site. The model physics
settings were the same as in Scenarios 1 and 2, and precipitation was from
SNOTEL observations (as prepared in Scenario 2).

. Inputs prepared for Scenario 3 but with USACE (1956) air tem-
perature RSS modifications to the code. In this scenario, we used
inputs prepared for Scenario 3 to run the WRF-Hydro model modified
to use the USACE (1956) air temperature-based RSS scheme (Algorithm
2). This was achieved by editing the rain snow separation code in the
module_noahmplsm.F source code file and recompiling the model.

. Inputs prepared for Scenario 3 but with continuous dew point
based RSS based on Marks et al. (1999). In this scenario, we used
inputs prepared for Scenario 3 to run the WRF-Hydro model modified to
implement the continuous version of the Marks et al. (1999) dew point
based RSS method (Algorithm 4). This was also achieved by editing the
rain snow separation code in the module noahmplsm.F source code file
and recompiling the model.

. Inputs prepared for Scenario 3 but with Wang et al. (2019)
wet-bulb based RSS. In this scenario, we used inputs prepared for Sce-
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nario 3 and implemented the Wang et al. (2019) wet-bulb based RSS
parametrization (Algorithm 5) in the NWM code as for scenarios 4 and 5.

4.6 Comparing Snow Accumulation and Melt

To assess the performance of the model, we first compared the computed snow-
fall amount from each RSS method and quantified the performance of each
approach against observed RSS that was inferred from SNRR at SNOTEL sites
through a set of statistical metrics, including Coefficient of Determination (r?),
Spearman’s Rank Correlation (Spearmanr), Root Mean Square Error (RMSE),
Nash Sutcliffe Efficiency (NSE), and Bias (Table 1). In addition to these sta-
tistical metrics, we used (1) SWE on observed peak date, (2) observed and
modeled peak SWE, and (3) date of half melt from peak SWE metrics to com-
pare the simulated SWE to observed SWE at SNOTEL sites (Garousi-Nejad &
Tarboton, 2022b). First, we used the date on which peak SWE was observed
to compare modeled SWE against observations. We refer to this comparison
metric as a same-day comparison. Note that if there is a discrepancy in timing,
model and observed peak SWE may be similar, while the model SWE on the
observed peak date is different. To account for this the second metric compared
observed and modeled peak SWE regardless of the dates when they occur. This
is referred to as a different-day comparison in this study. This comparison may
have limitations due to cumulative precipitation inputs being different up to the
different dates. We did not report comparison of the Peak SWE timing because
of variability associated with peak SWE time related to long periods where the
SWE time series was flat near the peak. Instead, we chose the date of half melt
from peak SWE as a metric to quantify the model’s performance in terms of
simulating the melt timing (Clow, 2010). This is the date (either modeled or
observed) when half of the peak SWE has melted. To quantitively assess the
difference between the modeled and observed half melt dates, we categorized
the date differences into four groups—close, model early, model late, and far
apart (Garousi-Nejad & Tarboton, 2022b). Close indicates that modeled and
observed half melt dates are within 5 days of each other. Model early refers to
the situation where modeled half melt dates are 6 to 19 days before observed,
while model late means that modeled half melt dates are 6 to 19 days after
observed. Lastly, far apart means that modeled an observed half melt dates are
more than 20 days apart.

Table 1. Common statistical metrics used in this study to compare model
inputs and outputs versus observations?.

Name Equation Range
2
~ _ .
Coefficient of determination (r?) r? = Nztzl w:?t)(j:[ﬁMt)i ~ -1 to 1 with 1 indicating
VL, 0,-0)" S, (M-1,)
N2
Spearman’s rank correlation (Spearmanr) Spearmanr = 1 — ?V(Z]\f;ﬂt) -1 to 1 with 1 indicating
N 2
Root mean squared error (RMSE) RMSE = W Depends on the variable
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Name Equation

Range

N 2
Nash Sutcliffe efficiency (NSE) NSE=1-— M
Y1 (0:=0y)

N
Bias Bias — w

-infinity to 1 with 1 indi

Depends on the variable

"M, is model simulation, O, is observation, t is time, N is the total number
of simulations or observations, d, is difference between observed and modeled
rank, and the overbar indicates average.

5 Results
5.1 Changes in Snowfall

We compared the estimated annual snowfall magnitude from five different RSS
methods with the observations inferred from SNRR from SNOTEL and found
a persistent upward bias in snowfall from all methods (Figure 5). This is an
average bias across all 33 sites and all years. USACE (1956) T, based showed
the smallest bias (about 6 mm) and Marks et al. (1999) T, based (continuous
version) had the most significant bias (about 45 mm). Results for Jordan (1991)
T, based (the current RSS scheme in the NWM Noah-MP) were slightly better
than the dew point temperature-based (both discrete and continuous) methods
(Figure 5b, 5c, and 5d). Among the two humidity-based methods, Wang et al.
(2019) T, based showed a smaller bias (more than 10 mm smaller), but its bias
was still six times larger than USACE (1956) T, based (Figure 5d and 5a).

The seasonal variations (11-year daily averages across selected SNOTEL sites)
of accumulated snowfall from all methods indicated that more than 70% of the
annual precipitation during February through May, independent of the RSS
method, fell as snowfall averaged across the SNOTEL sites and water years
(Figure 5f). Observations and USACE (1956) T, based average accumulation
matched well over the entire year. The other RSS methods tracked above ob-
servations and were all close together during the accumulation phase (October
through May). Following May, Marks et al. (1999) T4 based (continuous ver-
sion) diverged and produced more snowfall than other RSS methods and obser-
vations (50% more than observed in May). Also, Marks et al. (1999) T, based
was the only RSS method that showed 19% and 17% of precipitation falling
as snowfall during July and September, respectively. This sets the Marks et
al. (1999) T, based method apart from other methods as the only one that
estimated snowfall during warmer months (Figure 5f). Average air, wet-bulb,
and dew point temperatures for each day across all site years indicated the gen-
eral differences between these quantities that were inputs to the RSS methods
(Figure 5g).
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Figure 5. Analysis of annual snowfall estimated from different RSS schemes
versus observations inferred from SNRR at SNOTEL sites for a period of 11
years (water years 2009-2019). (a) USACE (1956) air temperature-based RSS
method versus SNRR, (b) Jordan (1991) air temperature-based RSS method
(the current approach in the NWM version 2.0) versus SNRR, (¢) Marks et
(1999) dew point based (discrete version) RSS method versus SNRR, (d)
Marks et al. (1999) dew point based (continuous version) RSS method versus
SNRR, and (e) Wang et al. (2019) wet-bulb based RSS method versus SNRR.
Each point in panels (a)-(e) represents a water year and a SNOTEL site. (f)
The seasonal pattern of the long-term annual observed precipitation, observed
snowfall inferred from SNRR, and modeled snowfall from all RSS schemes av-
eraged across all sites and years. (g) Seasonal pattern of the long-term daily
bias-corrected AORC air temperature (T,) and computed wet-bulb (T,,) and
dew point (T,) temperatures using AORC data averaged across all sites and
years.

al.

5.2 Snow Water Equivalent on Observed Peak Date (Same-day Comparison)

The comparison between modeled and observed SWE on the date of observed
peak SWE revealed a general downward bias in modeled SWE (Figure 6), sug-
gesting that the NWM generally underestimated SWE on the date of observed
peak SWE, independent of the model input errors (shown before in Figure 1)
and model physics (specifically in terms of the different RSS methods as shown
before in Figure 5). However, biases in modeled SWE were reduced when using
observed precipitation instead of AORC precipitation, from -228 mm in the base
scenario to -92 mm in the observed precipitation scenario (Figure 6b). This em-
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phasizes the importance of using high-quality input forcing in the NWM. Even
though we further reduced model input errors/biases by correcting the AORC
air temperature biases, this did not improve SWE estimates (Figure 6¢). Con-
trarily, it increased the downward bias in SWE. This should not be considered
as a negative point as it is essential to have correct/accurate inputs, even though
that may not necessarily translate into improvements in model outputs.

Even though our comparison of annual snowfall magnitude from different RSS
methods (Figure 5) showed that USACE (1956) T, based had the best agree-
ment with observations, this agreement did not translate to the best same-day
SWE comparison. Among the four RSS comparisons, when the best input esti-
mates were used (Scenarios 3 to 6), USACE (1956) T, based showed the largest
negative bias (about -168 mm) and Marks et al. (1999) T, based showed the
least bias (about -111 mm) and best NSE and RMSE (Figure 6¢, 6d, 6e, and
6f). Similar to the snowfall comparison, the modeled SWE from the current
NWM RSS scheme (Jordan (1991) T, based) and Wang et al. (2019) T, based
had almost statistically identical behavior when compared to SWE observations

(Figure 6¢ versus 6f).
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Figure 6. SWE Comparison on date of observed peak SWE. (a) NWM base
scenario (Scenario 1) versus SNOTEL SWE, (b) NWM observed precipitation
scenario (Scenario 2) versus SNOTEL SWE, (¢) NWM bias-corrected temper-
ature scenario (Scenario 3) versus SNOTEL SWE, (d) NWM using USACE
(1956) air temperature (T,) based RSS method (Scenario 4) versus SNOTEL
SWE, (¢) NWM using Marks et al. (1999) dew point (Ty) based (continuous
version) RSS method (Scenario 5) versus SNOTEL SWE, (f) NWM using Wang
et al. (2019) wet-bulb (T,) based RSS method (Scenario 6) versus SNOTEL
SWE. Each point on the graph represents a SNOTEL site and a water year.

5.3 Observed and Modeled Peak Snow Water Equivalent (Different-day Com-
parison)

Under-modeling of SWE was also evident in our comparison of observed and
modeled peak SWE noting that the observed and modeled peak SWE do not nec-
essarily occur on the exact same date (Figure 7). Among the four RSS schemes
modeled (Scenarios 3 to 6) the dew point temperature-based scheme (Scenario
5) provided less biased modeled SWE similar to the same-day comparison. In
general, these different day peak SWE comparisons had smaller error metrics
than the comparisons presented above for the day of observed peak SWE.
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Figure 7. Observed and modeled peak SWE comparison (on the generally
different dates they occur). (a) NWM base scenario (Scenario 1) versus SNO-
TEL SWE, (b) NWM observed precipitation scenario (Scenario 2) versus SNO-
TEL SWE, (¢) NWM bias-corrected temperature scenario (Scenario 3) versus
SNOTEL SWE, (d) NWM using USACE (1956) air temperature (T,) based
RSS method (Scenario 4) versus SNOTEL SWE, (e) NWM using Marks et

al.

(1999) dew point (T4) based (continuous version) RSS method (Scenario

5) versus SNOTEL SWE, and (f) NWM using Wang et al. (2019) wet-bulb
(T,,) based RSS method (Scenario 6) versus SNOTEL SWE. Each point on the
graphs represents a SNOTEL site and a water year.

5.4 Seasonal Snow Water Equivalent

The seasonal pattern of SWE averaged across the representative SNOTEL sites
indicated the general under-modeling of SWE relative to observations at SNO-
TEL sites in all scenarios, with USACE (1956) T, based scheme (Scenario 3)
being further apart from and Marks et al. (1999) T4 based scheme (Scenario
5) being the closest to the observations (Figure 8a). For the purpose of evalu-
ating RSS options, we did not include results from scenarios that had inferior
inputs (Scenarios 1 and 2) in this comparison. Furthermore, our results showed
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that discrepancies between seasonal patterns of SWE vary when analyzed for
each ROS percentage class (Figure 8b-g). For SNOTEL sites with the small-
est ROS% (30-40%, meaning that most precipitation events fall on average as
snow), all RSS methods simulated almost identical SWE (Figure 8b). However,
as ROS% increased, the impact of different RSS methods in modeling SWE
became more evident in such a way that the Ty based RSS SWE simulations
almost always stayed above the SWE from other RSS methods, meaning that
it produced more SWE compared to other RSS methods. For the sites with
ROS% between 80-100 (where rain-on-snow events are dominant), the T4 based
RSS scheme simulated SWE was almost identical to observations during the
accumulation period, October-March, while the other RSS methods underesti-
mated SWE (Figure 8g). During the melt period all methods tended to melt
the snow a bit slowly compared to observations, a difference likely due to model
considerations other than RSS.
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Figure 8. Observed and modeled SWE at the beginning of each date averaged
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across all years and (a) all selected SNOTEL sites, (b) sites with ROS% between
30-40%, (c) sites with ROS% within 40-50%, (d) sites with ROS% within 50-
60%, (e) sites with ROS% within 60-70%, (f) sites with ROS% within 70-80%,
and (g) sites with ROS% within 80-100%.

5.5 Melt Timing Comparison (Half Melt from Peak Snow Water Equivalent
Date)

Our comparison of the modeled half melt date (from scenarios that had valid
inputs) with observations showed that the modeled half melt date was generally
earlier than observations for more than 60% of the site-years (Table 2). When
further classified depending on whether the differences between observed and
modeled half melt dates from peak SWE were close, ahead, behind or far apart
from observed melt dates, we observed that the NWM half melt date was off
by 6 days or more for about 75% of site years (Figure 9a). This became even
more noticeable when using the USACE (1956) T, based RSS method (Figure
9b showing that about 79% of site-years deviated by 6 days or more from obser-
vations). Our results show that using humidity-based RSS methods improved
the early melt issue in the NWM to some extent (Figure 9¢ and 9d), with the
T4 based RSS method showing the most considerable degree of improvement
compared to other RSS methods.

Table 2. Observed and modeled half melt dates comparison. Model half melt
date is considered as early if it occurs one or more days before observations.

@ >p(-4) * >p(-4) * >p(- 4) * @ Scenarios that had observed precipi-
tation and bias-corrected air temperature) & RSS scheme &

Percentage of days with modeled half melt date earlier than
observation across all sites and years

Scenario 3 & Jordan (1991) T, based &
67

Scenario 4 & USACE (1956) T, based &
72

Scenario 5 & Marks et al. (1999) Ty ™ based &
62

Scenario 6 & Wang et al. (2019) T * based &
65
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T Air temperature
TDew point temperature
*Wet-bulb temperature

a Jordan (1991) air temperature based b USACE (1956) air temperature based
* Ta-1991 : Ta-1956

41.8%
23.7% 26.6%

C.  Marksetal. (1999) dew point based d. Wangetal. (2019) wet-bulb based
Td-1999 Tw-2019

e

38.1%  19.8% 404% 55 6%

Half Melt Timing

Figure 9. Analysis of melt timing based on classification of differences be-
tween observed and modeled dates of half melt from peak SWE. (a) NWM
bias-corrected temperature scenario versus SNOTEL half melt dates, (b) NWM
using USACE (1956) Ta based RSS method versus SNOTEL half melt dates,
(¢) NWM using Marks et al. (1999) T4 based RSS method versus SNOTEL
half melt dates, and (d) NWM using Wang et al. (2019) T, based RSS method
versus SNOTEL half melt dates. In this figure, FAR APART: modeled and
observed half melt dates are more than 20 days apart; CLOSE: modeled and
observed half melt dates are within 5 days of each other; BEHIND: modeled
half melt dates are 6 to 19 days after observed; and AHEAD: modeled half melt
dates are 6 to 19 days before observed.

The NWM early melt issue inferred from the half melt date comparison between
modeled results (Scenario 4 with Marks et al. (1999) T, based method) and
observations at selected SNOTEL sites during 11 years (the water year 2009-
2019) was persistent across all sites but varied differently across ROS% classes
(Figure 10). In this figure, the ROS% classes in the middle of the range, which
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represent sites with rain and snow mixes, as opposed to dominantly snow or
dominantly rain, tended to have smaller percentages with close melt timing. For
the sites where ROS% events were significantly high (>80%) or low (<40%), the
modeled half melt date was close (off 6 days or less) more frequently (Figure
10a and 10f).
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Figure 10. Analysis of melt timing from NWM using T, based RSS scheme
(the approach with the least bias and best NSE and RMSE in SWE compar-
isons) across different ROS% classes. (a) ROS% between 30 to 40%, (b) ROS%
between 40 to 50%, (¢) ROS% between 50 to 60%, (d) ROS% between 60 to
70%, (e) ROS% between 70 to 80%, and (f) ROS% between 80 to 100%.

6 Discussion, Perspective, and Future Work

In this study, our goal was to evaluate input data and three alternative RSS
parameterizations to the NWM version 2.0 to find whether these improve SWE
simulations. This section discusses findings for each of the research questions
given in the introduction.

To what degree are discrepancies in NWM SWE and RSS predictions
due to input errors and how much could they potentially be improved
if inputs were better?
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In this experiment, the most noticeable improvements in modeling SWE com-
pared to the base scenario were achieved when we used observed precipitation
from SNOTEL sites instead of the NWM AORC precipitation data (about 60%
and 77% improvements in bias for same-day and different-day comparisons of
peak SWE, respectively). Using better meteorological inputs to improve NWM
performance has been reported by other studies (Lahmers et al., 2019; Viterbo
et al., 2020). While stating that better inputs lead to better model performance
is not new, this emphasizes the sensitivity to hydrometeorological input error,
specifically precipitation and near-surface air temperature, in hydrological mod-
eling predictions (Forster et al., 2014; Raleigh et al., 2015; Zehe et al., 2005).

Our model evaluation that quantifies how much the NWM performance in mod-
eling SWE could improve by using more accurate meteorological inputs is im-
portant in considering where to invest time and effort in enhancing the NWM
overall. We understand that model input improvements do not per se improve
hydrologic process understanding; however, the ability to produce accurate hy-
drological forecasts is essential, and beyond forecast quality, the NWM does
provide several outputs of hydrologic quantities, either not observed, or only
observed in specialized field studies, and certainly not comprehensively across a
continent. Examination of these outputs and their patterns across a continent
does enhance process understanding. In addition, developing more accurate
gridded precipitation products may reduce the need to make existing physical
parameterizations more complex and add more uncertainties to the model due
to new parameters (e.g., best fit coefficients in the Wang et al. (2019) T, based
approach).

How well does the NWM RSS (rainfall and snowfall separation)
parameterization work in comparison to SNOTEL observations?

Our results showed that the NWM RSS (Jordan (1991) T, based) performed
statistically poorly (bias 41 mm, RMSE 74 mm) in separating precipitation
into rain and snow compared to observed snowfall inferred from SNRR at 33
representative SNOTEL sites across the western U.S. Several challenges exist
in this comparison, and each can be considered as a contributor to discrepan-
cies observed. First, the spatial scale differences between SNOTEL and NWM
datasets are a source of uncertainty in this analysis. As with all numerical
models, the representation of sub-grid variability of snow processes may not
be well parameterized when working with models such as the NWM that sim-
ulate snow processes across 1 km spatial resolution. Second, even though we
used snow-adjusted precipitation from SNOTEL sites, there may still be sys-
tematic bias for SNOTEL precipitation due to under-catch (Mote, 2003; Sun et
al., 2019). Third, even though we used observed precipitation from SNOTEL
sites (instead of AORC precipitation that had downward bias) along with bias-
corrected AORC air temperatures (corrected based on SNOTEL observations),
there may still be uncertainties associated with other NWM AORC inputs, in-
cluding specific humidity, in RSS calculations. Fourth, the method for inferring
SNRR from SNOTEL measurements of precipitation and SWE has limitations.
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For example, rain that falls on a cold snowpack, freezes and adds to SWE mass
will increase SWE and be interpreted to be snowfall. Other processes such as
wind drifting or scouring of SWE at the SNOTEL site also introduce uncertainty.
Lastly, while when SWE increases were more that P measurements they were
used to infer and adjust for P under-catch, this does not adjust for under-catch
of rainfall that may be present, even though it is commonly not thought to be
as problematic as under-catch of snowfall (e.g., Meyer et al., 2012).

Do any other RSS parameterization methods yield more accurate
snowfall compared to SNOTEL observations?

When considering other RSS alternatives from the literature, we observed that
the dual-threshold air temperature-based method (USACE (1956) T, based)
yields noticeably better agreement between modeled and observed snowfall (bias
6 mm, RMSE 54 mm) compared to the other two humidity-based approaches
(T4 based and T, based). This may be interpreted as good, because it would be
easier to apply a dual-threshold method with a linear decrease in between that
takes only air temperature as the input to separate precipitation into rain and
snow than T, based or T, based methods that determine the snowfall fraction
using humidity information which potentially could add more errors if input data
are not accurate. This finding is in line with the work of Feiccabrino et al. (2013)
that reported on the superiority of the air temperature-based method over the
dew point temperature approach based on data from 19 Swedish meteorological
stations.

However, we should consider that this finding may be based on some assump-
tions that hinder us from concluding that USACE (1956) T, based is the best
among other methods tested in this study. Firstly, there are uncertainties as-
sociated with the NWM AORC data (even with our bias removal from pre-
cipitation and air temperature) we used as inputs to RSS methods and the
reference data (SNRR) that we used to evaluate the performance of each RSS
scheme. Secondly, even though air temperature-based RSS schemes are easy
to use, they are empirically-based methods that have been developed based on
historical data. Physically based methods are theoretically preferable for the
simulation of processes under conditions that may differ from the historical con-
ditions where empirical methods have been calibrated or optimized. We note
that other studies report on the superiority of humidity-based approaches over
air temperature-based ones in modeling both snowfall and SWE over mountain-
ous regions (Ding et al., 2014; Marks et al., 2013; Wang et al., 2019). Further,
as noted above, there are limitations associated with the SNOTEL inferred
SNRR that may merit giving higher consideration to overall SWE simulation
comparisons than snowfall ratio comparisons in assessing a RSS model. This is
discussed below.

In this study, our results showed that snowfall estimates from Wang et al. (2019)
T,, based scheme better agreed with observations inferred from SNRR at SNO-
TEL sites (Figure 5e: bias 34 mm, RMSE 63 mm) than those from Marks et al.
(1999) T, based scheme (Figure 5d: continuous version with bias 45 mm and
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RMSE 76 mm). This difference could be because T, is more physically related
to the precipitation phase as it considers the sensible and latent heat fluxes that
determine the internal energy and temperature of a hydrometeor, and thus it is
closer to the surface temperature of a falling hydrometeor than the air temper-
ature (Wang et al., 2019). However, T only describes the cooling necessary for
an unsaturated parcel of air to reach saturation over constant pressure, and it
does not consider sensible and latent heat fluxes to the hydrometeor (Harder &
Pomeroy, 2013). There may also be uncertainty related to best fit coefficients
in the Wang et al. (2019) snowfall fraction equation that has been optimized to
fit the observation-based relationship between snowfall probability and the T,
from Behrangi et al. (2018).

Does incorporating a statistically better RSS scheme into NWM
translate into appreciable improvements in modeling of SWE?

Not only did incorporating a statistically better RSS scheme (Scenario 4 with
USACE (1956) T, based scheme) not translate into appreciable improvements
in SWE estimates, but it turned out that this scheme was the least accept-
able among the RSS alternatives evaluated when compared to SNOTEL SWE
observations (evident in both same day and different day comparison of peak
SWE).

When using observed precipitation and unbiased air temperature, our analy-
sis showed that the humidity-dependent RSS schemes (dew point and wet-bulb
temperature based) overcame the under-modeling of SWE to some extent. This
is in line with previous work reporting on the impact of incorporating humid-
ity into RSS processes on snowfall and snow mass compared to ground-based
snow products (Behrangi et al., 2018; Jennings et al., 2018; Marks et al., 2013;
Wang et al., 2019). In our study, while the Wang et al. (2019) T,, based
RSS method showed better snowfall results than those from the Marks et al.
(1999) T, based RSS scheme, we found greater improvements in modeled SWE
from the T, based than T, based RSS scheme (Figures 6 and 7). We give
this finding that the T, based RSS scheme performs better for direct compar-
isons against SNOTEL SWE observations greater credence than the USACE T,
based method performing best against inferred snowfall, due to the limitations
associated with the SNOTEL SNRR separation method, and due to predictions
of SWE being an ultimate target of this modeling. There was, however, remain-
ing under-modeling of SWE which could be due to shortcomings associated
with other meteorological inputs such as incoming solar and long-wave radia-
tion which we did not study in this work and snow processes parameterizations
in the NWM Noah-MP, such as the snow cover fraction calculations which have
been reported to be problematic in modeling of SWE (Helbig et al., 2015; Mag-
and et al., 2014; Wrzesien et al., 2015). These are open areas for future research
to advance snow modeling in the NWM.

Collectively, our results showed that, on average, the NWM tended to melt snow
early compared to observations at SNOTEL sites independent of the RSS scheme
being used. However, the humidity-dependent approaches showed slightly better
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results. This observation that the modeling of melt timing was not significantly
sensitive to the RSS scheme suggests that there is a need to investigate the
overall energy balance and snow surface temperature calculations in the model.

How do improvements in modeled SWE vary over sites grouped ac-
cording to the percentage of precipitation events that are rain on
snow?

We observed that the degree of improvement in modeled SWE (in terms of both
magnitude and melt timing) varied across ROS% classes. SWE was not well
modeled for the ROS% classes in the middle rain dominated part of the range
(60-80%), while at the lower end (predominantly snow) or higher end (predom-
inantly rain) the model performed better. For these ROS% classes where the
model performs better, Marks et al. (1999) T, based separation gave the best
improvements. A caveat of this analysis is that we characterized the repre-
sentative SNOTEL sites based on the ROS% events metric that we computed
based on the inferred precipitation phase from SNRR. We understand that this
approach has limitations; however, without direct rainfall and snowfall measure-
ments, which are rare across larger areas, it was the approach that was available
to us.

7 Conclusions

Two key points emerge from this work. First, our comparison of the National
Water Model (NWM) Noah-MP snow water equivalent (SWE) and SNOTEL
snow water equivalent for representative sites and dates in the 2009-2019 wa-
ter years reiterated that the accuracy of model inputs plays a key role in the
accuracy of model outputs. Results showed that using observed precipitation
and bias-corrected air temperature significantly improved the general downward
bias in the NWM SWE magnitude and slightly improved early half melt timing
of NWM compared to observations at representative SNOTEL sites across the
western U.S. Second, our evaluation of three alternative RSS parameterizations
in the NWM across a set of representative SNOTEL sites that spanned site
rain-on-snow variability indicated that the negative bias in NWM SWE can be
reduced, on average, by using RSS methods that incorporate specific humidity
information in precipitation separation into rain and snow with consistent best
estimates of the input data. Among the two humidity-based RSS schemes, the
dew point temperature-based method was slightly better (smaller RMSE and
Bias and larger NSE) than the wet-bulb temperature-based method at simulat-
ing peak SWE. Using the dew point temperature-based RSS also improved the
modeling of melt timing slightly (early melt inferred from the half melt date
comparison). Both SWE magnitude and timing varied across ROS% classes,
with better results for the ROS% classes at the lower end (predominantly sow)
or higher end (predominantly rain). These findings support the benefit of in-
cluding physically based process representations in a model such as the NWM.
Future work is required to assess the impact of improved SWE on streamflow.
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Open Research

Codes developed for this research and the data we specifically used are publicly
available in the HydroShare repository (Garousi-Nejad & Tarboton, 2022b).

The data and model sources that we drew from include:

e SNOTEL data accessed through the NRCS Report Generator v2:
https://wce.sc.egov.usda.gov/reportGenerator/

« WRF-Hydro version 5.1.1 source code was accessed in GitHub: https:
//github.co m/NCAR/wrf_hydro_nwm_ public/releases/tag/v5.1.1

e NWM physiographic and atmospheric meteorological inputs were made
available to us by the NCAR team in the NCAR Cheyenne high-
performance computer. The specific data we used from this source are in
the HydroShare resource given above.
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