Nicholas D Ward

and 8 more

Coastal wetlands, including freshwater systems near large lakes, rapidly bury carbon, but less is known about how they transport carbon either to marine and lake environments or to the atmosphere as greenhouse gases (GHGs) such as carbon dioxide and methane. This study examines how GHG production and organic matter (OM) mobility in coastal wetland soils vary with the availability of oxygen and other terminal electron acceptors. We also evaluated how OM and redox-sensitive species varied across different size fractions: particulates (0.45–1μm), fine colloids (0.1–0.45μm), and nano particulates plus truly soluble (<0.1μm; NP+S) during 21-day aerobic and anaerobic slurry incubations. Soils were collected from the center of a freshwater coastal wetland (FW-C) in Lake Erie, the upland-wetland edge of the same wetland (FW-E), and the center of a saline coastal wetland (SW-C) in the Pacific Northwest, USA. Anaerobic methane production for FW-E soils were 47 and 27,537 times greater than FW-C and SW-C soils, respectively. High Fe2+ and dissolved sulfate concentrations in FW-C and SW-C soils suggest that iron and/or sulfate reduction inhibited methanogenesis. Aerobic CO2 production was highest for both freshwater soils, which had a higher proportion of OM in the NP+S fraction (64±28% and 70±10% for FW-C and FW-E, respectively) and organic C:N ratios reflective of microbial detritus (5.3±5.3 and 5.3±7.0 for FW-E and FW-C, respectively) compared to SW-C, which had a higher fraction of particulate (58±9%) and fine colloidal (19±7%) OM and organic C:N ratios reflective of vegetation detritus (11.4 ± 1.7). The variability in GHG production and shifts in OM size fractionation and composition observed across freshwater and saline soils collected within individual and across different sites reinforce the high spatial variability in the processes controlling OM stability, mobility, and bioavailability in coastal wetland soils.

Bing Li

and 15 more

The complex interactions among soil, vegetation, and site hydrologic conditions driven by precipitation and tidal cycles control biogeochemical transformations and bi-directional exchange of carbon and nutrients across the terrestrial-aquatic interfaces (TAIs) in the coastal regions. This study uses a highly mechanistic model, ATS-PFLOTRAN, to explore how these interactions impact the material exchanges and carbon and nitrogen cycling along a TAI transect in the Chesapeake Bay region that spans zones of open water, coastal wetland and upland forest. Several simulation scenarios are designed to parse the effects of the individual controlling factors and the sensitivity of carbon cycling to reaction constants derived from laboratory experiments. Our simulations revealed a hot zone for carbon cycling under the coastal wetland and the transition zones between the wetland and the upland. Evapotranspiration is found to enhance the exchange fluxes between the surface and subsurface domains, resulting in higher dissolved oxygen concentration in the TAI. The transport of organic carbon decomposed from leaves provides additional source of organic carbon for the aerobic respiration and denitrification processes in the TAI, while the variability in reaction rates mediated by microbial activities plays a dominant role in controlling the heterogeneity and dynamics of the simulated redox conditions. This modeling-focused exploratory study enabled us to better understand the complex interactions of various system components at the TAIs that control the hydro-biogeochemical processes, which is an important step towards representing coastal ecosystems in larger-scale Earth system models.

Solomon Ehosioke

and 11 more

The land-lake interface is a unique zone where terrestrial and aquatic ecosystems meet, forming part of the Earth’s most geochemically and biologically active zones. The unique characteristics of this interface are yet to be properly understood due to the inherently high spatiotemporal variability of subsurface properties, which are difficult to capture with the traditional soil sampling methods. Geophysical methods offer non-invasive techniques to capture variabilities in soil properties at a high resolution across various spatiotemporal scales. We combined electromagnetic induction (EMI), electrical resistivity tomography (ERT), and ground penetrating radar (GPR) with data from soil cores and in-situ sensors to investigate hydrostratigraphic heterogeneities across land-lake interfaces along the western basin of Lake Erie. Our Apparent electrical conductivity (ECa) maps matched soil maps from a public database with the hydric soil units delineated as high conductivity zones (ECa > 40 mS/m) and also detected additional soil units that were missed in the traditional soil maps. This implies that electromagnetic induction (EMI) could be relied upon for non-invasive characterization of soils in sampling-restricted sites where only non-invasive measurements are feasible. Results from ERT and GPR are consistent with the surficial geology of the study area and revealed variation in the vertical silty-clay and till sequence down to 3.5 m depth. These results indicate that multiple geophysical methods can be used to extrapolate soil properties and map stratigraphic structures at land-lake interfaces, thereby providing the missing information required to improve the earth system model (ESM) of coastal interfaces.