Sub-grid topographic heterogeneity has large impacts on surface energy balance and land-atmosphere interactions. However, the impacts of representing sub-grid topographic effects in land surface models (LSMs) on surface energy balance and boundary conditions remain unclear. This study analyzed and evaluated the impacts of sub-grid topographic representations on surface energy balance, turbulent heat flux and scalar (co-)variances in the Energy Exascale Earth System Model (E3SM) land model (ELM). Three sub-grid topographic representations in ELM were compared: (1) the default sub-grid structure (D), (2) the recently developed sub-grid topographic structure (T), and (3) high spatial resolution (1KM). Additionally, two different solar radiation schemes in ELM were compared: (1) the default plane-parallel radiative transfer scheme (PP) and (2) the parameterization scheme (TOP) that accounts for sub-grid topographic effects on solar radiation. A series of simulations with the three grid structures (D, T and 1KM) and two treatments of solar radiation (TOP and PP) were carried out in the Sierra Nevada, California. There are significant differences between TOP and PP in the 1-km simulated surface energy balance, but the differences in the mean values and standard deviations become small when aggregated to the grid-scale (i.e., 0.5°). The T configuration better mimics the 1KM simulations than the D configuration, and better captures the sub-grid topographic effects on surface energy balance as well as surface boundary conditions. These results underline the importance of representing sub-grid topographic heterogeneities in LSMs and motivate future research to understand the sub-grid topographic effects on land-atmosphere interactions over mountain areas.